3 # A generic model for a tri-hexaflexagon
5 # Copyright (C) 2018 Antonio Ospite <ao2@ao2.it>
7 # This program is free software: you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation, either version 3 of the License, or
10 # (at your option) any later version.
12 # This program is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
17 # You should have received a copy of the GNU General Public License
18 # along with this program. If not, see <http://www.gnu.org/licenses/>.
20 from math import cos, sin, pi
23 class Triangle(object):
24 def __init__(self, hexagon, index):
25 self.hexagon = hexagon
29 def calc_plan_coordinates(radius, i, j):
30 apothem = radius * cos(pi / 3.)
31 side = 2. * radius * sin(pi / 3.)
35 xoffset = (j + 1) * width / 2.
36 yoffset = (i + (((i + j + 1) % 2) + 1) / 3.) * height
38 return xoffset, yoffset
40 def get_angle_in_plan(self):
41 """The angle of a triangle in the hexaflexagon plan."""
42 return - ((self.index) % 2) * pi / 3.
44 def get_angle_in_plan_relative_to_hexagon(self):
45 """"Get the angle of the triangle in the plan relative to the rotation
46 of the same triangle in the hexagon."""
47 # The explicit formula for this angle would be:
49 # pi + pi / 6 + (((self.index + 1) % 6) // 2) * pi * 2 / 3
51 # The meaning of the part regarding the index is the following:
52 # - rotate the indices by 1
53 # - group by 2 (because couples of triangles move together in the
55 # - multiply the group by a rotation factor
57 # The explicit formula shows clearly that triangles move in groups of
60 # However, use an implicit form for robustness, so that if the other
61 # angle functions change this one can be left untouched.
62 return self.get_angle_in_hexagon() - self.get_angle_in_plan()
64 def get_angle_in_hexagon(self):
65 """Get the angle of the triangle in the hexagons.
67 NOTE: the angle is rotated by pi to have the first triangle with the
68 base on the bottom."""
69 return pi + pi / 6. + self.index * pi / 3.
72 return "%d,%d" % (self.hexagon.index, self.index)
75 class Hexagon(object):
76 def __init__(self, index):
80 triangle = Triangle(self, i)
81 self.triangles.append(triangle)
86 output += str(self.triangles[i])
92 class TriHexaflexagon(object):
97 self.hexagons.append(hexagon)
99 # A plan is described by a mapping of the triangles in the hexagons,
100 # repositioned on a 2d grid.
102 # In the map below, the grid has two rows, each element of the grid is
103 # a pair (h, t), where 'h' is the index of the hexagon, and 't' is the
104 # index of the triangle in that hexagon.
106 [(0, 5), (1, 4), (1, 3), (2, 2), (2, 1), (0, 2), (0, 1), (1, 0), (1, 5)],
107 [(2, 4), (2, 3), (0, 4), (0, 3), (1, 2), (1, 1), (2, 0), (2, 5), (0, 0)]
110 # Preallocate a bi-dimensional array for an inverse mapping, this is
111 # useful to retrieve the position in the plan given a triangle.
112 self.plan_map_inv = [[-1 for t in h.triangles] for h in self.hexagons]
115 for i, plan_map_row in enumerate(plan_map):
117 for j, mapping in enumerate(plan_map_row):
118 hexagon_index, triangle_index = mapping
119 hexagon = self.hexagons[hexagon_index]
120 triangle = hexagon.triangles[triangle_index]
121 plan_row.append(triangle)
123 self.plan_map_inv[hexagon_index][triangle_index] = (i, j)
125 self.plan.append(plan_row)
127 def get_triangle_plan_position(self, triangle):
128 return self.plan_map_inv[triangle.hexagon.index][triangle.index]
133 for row in self.plan:
135 output += "%s\t" % str(triangle)
142 trihexaflexagon = TriHexaflexagon()
143 print(trihexaflexagon)
146 if __name__ == "__main__":