3 # A generic model for a tri-hexaflexagon
5 # Copyright (C) 2018 Antonio Ospite <ao2@ao2.it>
7 # This program is free software: you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation, either version 3 of the License, or
10 # (at your option) any later version.
12 # This program is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
17 # You should have received a copy of the GNU General Public License
18 # along with this program. If not, see <http://www.gnu.org/licenses/>.
20 from math import cos, sin, pi
23 class Triangle(object):
24 def __init__(self, hexagon, index):
25 self.hexagon = hexagon
29 def calc_plan_coordinates(radius, i, j):
30 apothem = radius * cos(pi / 3.)
31 side = 2. * radius * sin(pi / 3.)
35 xoffset = (j + 1) * width / 2.
36 yoffset = (i + (((i + j + 1) % 2) + 1) / 3.) * height
38 return xoffset, yoffset
40 def get_angle_in_plan(self):
41 """The angle of a triangle in the hexaflexagon plan."""
42 return - ((self.index + 1) % 2) * pi / 3.
44 def get_angle_in_plan_relative_to_hexagon(self):
45 """"Get the angle of the triangle in the plan relative to the rotation
46 of the same triangle in the hexagon."""
47 return ((self.index + 4) % 6 // 2) * pi * 2. / 3.
49 def get_angle_in_hexagon(self):
50 """Get the angle of the triangle in the hexagons.
52 NOTE: the angle is rotated by pi to have the first triangle with the
53 base on the bottom."""
54 return pi + self.index * pi / 3.
57 return "%d,%d" % (self.hexagon.index, self.index)
60 class Hexagon(object):
61 def __init__(self, index):
65 triangle = Triangle(self, i)
66 self.triangles.append(triangle)
71 output += str(self.triangles[i])
77 class TriHexaflexagon(object):
82 self.hexagons.append(hexagon)
84 # A plan is described by a mapping of the triangles in the hexagons,
85 # repositioned on a 2d grid.
87 # In the map below, the grid has two rows, each element of the grid is
88 # a pair (h, t), where 'h' is the index of the hexagon, and 't' is the
89 # index of the triangle in that hexagon.
91 [(0, 0), (1, 5), (1, 4), (2, 3), (2, 2), (0, 3), (0, 2), (1, 1), (1, 0)],
92 [(2, 5), (2, 4), (0, 5), (0, 4), (1, 3), (1, 2), (2, 1), (2, 0), (0, 1)]
95 # Preallocate a bi-dimensional array for an inverse mapping, this is
96 # useful to retrieve the position in the plan given a triangle.
97 self.plan_map_inv = [[-1 for t in h.triangles] for h in self.hexagons]
100 for i, plan_map_row in enumerate(plan_map):
102 for j, mapping in enumerate(plan_map_row):
103 hexagon_index, triangle_index = mapping
104 hexagon = self.hexagons[hexagon_index]
105 triangle = hexagon.triangles[triangle_index]
106 plan_row.append(triangle)
108 self.plan_map_inv[hexagon_index][triangle_index] = (i, j)
110 self.plan.append(plan_row)
112 def get_triangle_plan_position(self, triangle):
113 return self.plan_map_inv[triangle.hexagon.index][triangle.index]
118 for row in self.plan:
120 output += "%s\t" % str(triangle)
127 trihexaflexagon = TriHexaflexagon()
128 print(trihexaflexagon)
131 if __name__ == "__main__":