#!/usr/bin/env python
#
-# An class to draw hexaflexagons
+# A class to draw hexaflexagons
#
# Copyright (C) 2018 Antonio Ospite <ao2@ao2.it>
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
-from math import sin, cos, pi
+from math import cos, pi
from .trihexaflexagon import TriHexaflexagon
self.plan_origin = (self.x_border * 2. + self.hexagon_radius / 2.,
self.x_border + self.triangle_radius / 3.)
+ # The offset of the backfaces relative to the first hexagon
+ self.backfaces_offsets = (0,
+ (self.hexagon_radius + self.x_border) * 2)
+
self.hexagons_color_map = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
def _init_centers(self):
def get_triangle_center(self, triangle):
return self.triangles_centers[triangle.hexagon.index][triangle.index]
+ def get_triangle_center_in_backfaces(self, triangle):
+ """Get the center of this triangle but in the backface"""
+ x0, y0 = self.backfaces_offsets
+
+ backface_triangle_index = triangle.get_backface_index()
+ x, y = self.triangles_centers[triangle.hexagon.index][backface_triangle_index]
+
+ return x0 + x, y0 + y
+
def get_triangle_center_in_plan(self, triangle):
x0, y0 = self.plan_origin
i, j = self.hexaflexagon.get_triangle_plan_position(triangle)
dest_x, dest_y = self.get_triangle_center_in_plan(triangle)
theta = triangle.get_angle_in_plan_relative_to_hexagon()
- # The transformation from a triangle in the hexagon to the correspondent
- # triangle in the plan is composed by these steps:
- #
- # 1. rotate by 'theta' around (src_x, src_y);
- # 2. move to (dest_x, dest_y).
- #
- # Step 1 can be expressed by these sub-steps:
- #
- # 1a. translate by (-src_x, -src_y)
- # 1b. rotate by 'theta'
- # 1c. translate by (src_x, src_y)
- #
- # Step 2. can be expressed by a translation like:
- #
- # 2a. translate by (dest_x - src_x, dest_y - src_y)
- #
- # The consecutive translations 1c and 2a can be easily combined, so
- # the final steps are:
- #
- # T1 -> translate by (-src_x, -src_y)
- # R -> rotate by 'theta'
- # T2 -> translate by (dest_x, dest_y)
- #
- # Using affine transformations these are expressed as:
- #
- # | 1 0 -src_x |
- # T1 = | 0 1 -src_y |
- # | 0 0 1 |
- #
- # | cos(theta) -sin(theta) 0 |
- # R = | sin(theta) con(theta) 0 |
- # | 0 0 1 |
- #
- # | 1 0 dest_x |
- # T2 = | 0 1 dest_y |
- # | 0 0 1 |
- #
- # Composing these transformations into one is achieved by multiplying
- # the matrices from right to left:
- #
- # T = T2 * R * T1
- #
- # NOTE: To remember this think about composing functions: T2(R(T1())),
- # the inner one is performed first.
- #
- # The resulting T matrix is the one below.
- matrix = [
- cos(theta), -sin(theta), -src_x * cos(theta) + src_y * sin(theta) + dest_x,
- sin(theta), cos(theta), -src_x * sin(theta) - src_y * cos(theta) + dest_y,
- 0, 0, 1
- ]
-
- return matrix
+ return self.backend.calc_rotate_translate_transform(src_x, src_y,
+ dest_x, dest_y, theta)
+
+ def get_triangle_backfaces_transform(self, triangle):
+ """Calculate the transformation matrix from a triangle in an hexagon to
+ the correspondent triangle in a backface.
+
+ Return the matrix as a list of values sorted in row-major order."""
+ src_x, src_y = self.get_triangle_center(triangle)
+ dest_x, dest_y = self.get_triangle_center_in_backfaces(triangle)
+ theta = triangle.get_angle_in_backface_relative_to_hexagon()
+
+ return self.backend.calc_rotate_translate_transform(src_x, src_y,
+ dest_x, dest_y, theta)
def draw_hexagon_template(self, hexagon):
for triangle in hexagon.triangles: