X-Git-Url: https://git.ao2.it/flexagon-toolkit.git/blobdiff_plain/3c262fada99001bdfe050581a708d1416b0926f2..refs/heads/master:/src/diagram/diagram.py?ds=inline diff --git a/src/diagram/diagram.py b/src/diagram/diagram.py index 43e3a93..e6c51c4 100755 --- a/src/diagram/diagram.py +++ b/src/diagram/diagram.py @@ -127,6 +127,66 @@ class Diagram(object): return fmod(theta, 2 * pi) / (2 * pi) @staticmethod + def calc_rotate_translate_transform(src_x, src_y, dest_x, dest_y, theta): + """Calculate the transformation matrix resulting from a rotation and + a translation. + + Return the matrix as a list of values sorted in row-major order.""" + + # A rotate-translate transformation is composed by these steps: + # + # 1. rotate by 'theta' around (src_x, src_y); + # 2. move to (dest_x, dest_y). + # + # Step 1 can be expressed by these sub-steps: + # + # 1a. translate by (-src_x, -src_y) + # 1b. rotate by 'theta' + # 1c. translate by (src_x, src_y) + # + # Step 2. can be expressed by a translation like: + # + # 2a. translate by (dest_x - src_x, dest_y - src_y) + # + # The consecutive translations 1c and 2a can be easily combined, so + # the final steps are: + # + # T1 -> translate by (-src_x, -src_y) + # R -> rotate by 'theta' + # T2 -> translate by (dest_x, dest_y) + # + # Using affine transformations these are expressed as: + # + # | 1 0 -src_x | + # T1 = | 0 1 -src_y | + # | 0 0 1 | + # + # | cos(theta) -sin(theta) 0 | + # R = | sin(theta) cos(theta) 0 | + # | 0 0 1 | + # + # | 1 0 dest_x | + # T2 = | 0 1 dest_y | + # | 0 0 1 | + # + # Composing these transformations into one is achieved by multiplying + # the matrices from right to left: + # + # T = T2 * R * T1 + # + # NOTE: To remember this think about composing functions: T2(R(T1())), + # the inner one is performed first. + # + # The resulting T matrix is the one below. + matrix = [ + cos(theta), -sin(theta), -src_x * cos(theta) + src_y * sin(theta) + dest_x, + sin(theta), cos(theta), -src_x * sin(theta) - src_y * cos(theta) + dest_y, + 0, 0, 1 + ] + + return matrix + + @staticmethod def get_regular_polygon(x, y, sides, r, theta0=0.0): """Calc the coordinates of the regular polygon.