#!BPY """ Name: 'VRM' Blender: 241 Group: 'Export' Tooltip: 'Vector Rendering Method Export Script 0.3' """ # --------------------------------------------------------------------- # Copyright (c) 2006 Antonio Ospite # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # # --------------------------------------------------------------------- # # NOTE: I do not know who is the original author of 'vrm'. # The present code is almost entirely rewritten from scratch, # but if I have to give credits to anyone, please let me know, # so I can update the copyright. # # --------------------------------------------------------------------- # # Additional credits: # Thanks to Emilio Aguirre for S2flender from which I took inspirations :) # Thanks to Anthony C. D'Agostino for the backface.py script # # --------------------------------------------------------------------- import Blender from Blender import Scene, Object, NMesh, Lamp, Camera from Blender.Mathutils import * from math import * # --------------------------------------------------------------------- # ## Projections classes # # --------------------------------------------------------------------- class Projection: def __init__(self): print "New projection" class PerspectiveProjection(Projection): def __init___(self): Projection.__init__(self) print "Perspective" def doProjection(): print "do a perspective projection!!" def Perspective(fovy, aspect, near, far): top = near * tan(fovy * pi / 360.0) bottom = -top left = bottom*aspect right= top*aspect x = (2.0 * near) / (right-left) y = (2.0 * near) / (top-bottom) a = (right+left) / (right-left) b = (top+bottom) / (top - bottom) c = - ((far+near) / (far-near)) d = - ((2*far*near)/(far-near)) return Matrix([x,0.0,a,0.0],[0.0,y,b,0.0],[0.0,0.0,c,d],[0.0,0.0,-1.0,0.0]) def flatten_new(v, cameraObj, canvasSize, obMesh): cam = cameraObj.getInverseMatrix() cam.transpose() # Changing the view mode cmra = cameraObj.getData() #if cmra.type: # print "Ortho" #m2 = Ortho(fovy,float(w*ax)/float(h*ay),cmra.clipStart, cmra.clipEnd,17) #cmra.scale) #else: # print "Perspective" #Create Frustum #frustum = _Frustum(cam,m2) m1 = Matrix() mP = Matrix() fovy = atan(0.5/(float(canvasSize[0])/float(canvasSize[1]))/(cmra.lens/32)) fovy = fovy * 360/pi m2 = Perspective(fovy,float(canvasSize[0])/float(canvasSize[1]),cmra.clipStart, cmra.clipEnd) m1 = obMesh.matrixWorld #mat m1.transpose() mP = cam * m1 mP = m2 * mP #Transform the vertices to global coordinates p = mP*Vector([v.co[0],v.co[1],v.co[2],1.0]) #tf.append(p) #p = m1*Vector([v.co[0],v.co[1],v.co[2],1.0]) #t2.append([p[0],p[1],p[2]]) mW = canvasSize[0]/2 mH = canvasSize[1]/2 if p[3]<=0: p[0] = int(p[0]*mW)+mW p[1] = int(p[1]*mH)+mH else: p[0] = int((p[0]/p[3])*mW)+mW p[1] = int((p[1]/p[3])*mH)+mH # Mirror and translate along y p[1] *= -1 p[1] += canvasSize[1] return p # distance from camera Z' def Distance(PX,PY,PZ): dist = sqrt(PX*PX+PY*PY+PZ*PZ) return dist def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ): NewPoint = [] # Rotate X NewY = (PY * cos(AngleX))-(PZ * sin(AngleX)) NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX)) # Rotate Y PZ = NewZ PY = NewY NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY)) NewX = (PX * cos(AngleY))+(PZ * sin(AngleY)) PX = NewX PZ = NewZ # Rotate Z NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ)) NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ)) NewPoint.append(NewX) NewPoint.append(NewY) NewPoint.append(NewZ) return NewPoint def flatten(vertx, verty, vertz, cameraObj, canvasSize): camera = cameraObj.getData() Lens = camera.getLens() # The Camera lens xres = canvasSize[0] # X res for output yres = canvasSize[1] # Y res for output ratio = xres/yres fov = atan(ratio * 16.0 / Lens) # Get fov stuff dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane screenxy=[0,0,vertz] x=-vertx y=verty z=vertz #---------------------------- # calculate x'=dist*x/z & y'=dist*x/z #---------------------------- screenxy[0]=int(xres/2.0+4*x*dist/z) screenxy[1]=int(yres/2.0+4*y*dist/z) return screenxy ## Backface culling routine # def isFaceVisible(face, obj, cameraObj): """ Determine if the face is visible from the current camera. """ numvert = len(face) # backface culling a = [] a.append(face[0][0]) a.append(face[0][1]) a.append(face[0][2]) a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ) a[0] += obj.LocX - cameraObj.LocX a[1] += obj.LocY - cameraObj.LocY a[2] += obj.LocZ - cameraObj.LocZ b = [] b.append(face[1][0]) b.append(face[1][1]) b.append(face[1][2]) b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ) b[0] += obj.LocX - cameraObj.LocX b[1] += obj.LocY - cameraObj.LocY b[2] += obj.LocZ - cameraObj.LocZ c = [] c.append(face[numvert-1][0]) c.append(face[numvert-1][1]) c.append(face[numvert-1][2]) c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ) c[0] += obj.LocX - cameraObj.LocX c[1] += obj.LocY - cameraObj.LocY c[2] += obj.LocZ - cameraObj.LocZ norm = [0,0,0] norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2]) norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2])) norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1]) d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2] return (d<0) # --------------------------------------------------------------------- # ## Mesh representation class # # --------------------------------------------------------------------- # TODO: a class to represent the needed properties of a 2D vector image # --------------------------------------------------------------------- # ## Vector Drawing Classes # # --------------------------------------------------------------------- ## A generic Writer class VectorWriter: """ A class for printing output in a vectorial format. Given a 2D representation of the 3D scene the class is responsible to write it is a vector format. Every subclasses of VectorWriter must have at last the following public methods: - printCanvas(mesh) --- where mesh is as specified before. """ def __init__(self, fileName, canvasSize): """Open the file named #fileName# and set the canvas size.""" self.file = open(fileName, "w") print "Outputting to: ", fileName self.canvasSize = canvasSize # Public Methods # def printCanvas(mesh): return # Private Methods # def _printHeader(): return def _printFooter(): return ## SVG Writer class SVGVectorWriter(VectorWriter): """A concrete class for writing SVG output. The class does not support animations, yet. Sorry. """ def __init__(self, file, canvasSize): """Simply call the parent Contructor.""" VectorWriter.__init__(self, file, canvasSize) # Public Methods # def printCanvas(self, mesh): """Convert the mesh representation to SVG.""" self._printHeader() for obj in mesh: for face in obj: self._printPolygon(face) self._printFooter() # Private Methods # def _printHeader(self): """Print SVG header.""" self.file.write("\n") self.file.write("\n\n" % self.canvasSize) def _printFooter(self): """Print the SVG footer.""" self.file.write("\n\n") self.file.close() def _printPolygon(self, face): """Print our primitive, finally. There is no color Handling for now, *FIX!* """ intensity = 128 stroke_width=1 self.file.write("\n") # --------------------------------------------------------------------- # ## Rendering Classes # # --------------------------------------------------------------------- class Renderer: """Render a scene viewed from a given camera. This class is responsible of the rendering process, hence transormation and projection of the ojects in the scene are invoked by the renderer. The user can optionally provide a specific camera for the rendering, see the #doRendering# method for more informations. """ def __init__(self): """Set the canvas size to a defaulr value. The only instance attribute here is the canvas size, which can be queryed to the renderer by other entities. """ self.canvasSize = (0.0, 0.0) # Public Methods # def getCanvasSize(self): """Return the current canvas size read from Blender rendering context""" return self.canvasSize def doRendering(self, scene, cameraObj=None): """Control the rendering process. Here we control the entire rendering process invoking the operation needed to transforma project the 3D scene in two dimensions. Parameters: scene --- the Blender Scene to render cameraObj --- the camera object to use for the viewing processing """ if cameraObj == None: cameraObj = scene.getCurrentCamera() # TODO: given the camera get the Wold-to-camera transform and the # projection matrix context = scene.getRenderingContext() self.canvasSize = (context.imageSizeX(), context.imageSizeY()) Objects = scene.getChildren() # A mesh to store the transformed geometrical structure mesh = [] for obj in Objects: if (obj.getType() != "Mesh"): print "Type:", obj.getType(), "\tSorry, only mesh Object supported!" continue OBJmesh = obj.getData() # Get the mesh data for the object meshfaces = OBJmesh.faces # The number of faces in the object transformed_object = [] for face in meshfaces: # TODO: per face color calculation # TODO: add/sorting in Z' direction (per face??) # if the face is visible flatten it on the "picture plane" if isFaceVisible(face, obj, cameraObj): # Store transformed face transformed_face = [] for vert in face: vertxyz = list(vert) p1 = flatten_new(vert, cameraObj, self.canvasSize, obj) transformed_face.append(p1) continue # rotate camera vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], cameraObj.RotX, cameraObj.RotY, cameraObj.RotZ) #-cameraObj.RotX, -cameraObj.RotY, -cameraObj.RotZ) # original setting for translate vertxyz[0] -= (obj.LocX - cameraObj.LocX) vertxyz[1] -= (obj.LocY - cameraObj.LocY) vertxyz[2] -= (obj.LocZ - cameraObj.LocZ) # rotate object vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], obj.RotX, obj.RotY, obj.RotZ) p1 = flatten(vertxyz[0], vertxyz[1], vertxyz[2], cameraObj, self.canvasSize) transformed_face.append(p1) # just some fake lighting... transformed_object.append(transformed_face) # at the end of the loop on obj mesh.append(transformed_object) return mesh # Private Methods # def _removehiddenFaces(obj): return def _testClipping(face): return # --------------------------------------------------------------------- # ## Main Program # # --------------------------------------------------------------------- scene = Scene.GetCurrent() renderer = Renderer() projectedMesh = renderer.doRendering(scene) canvasSize = renderer.getCanvasSize() # hackish sorting of faces according to the max z value of a vertex for o in projectedMesh: o.sort(lambda f1, f2: cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2))) o.reverse() writer = SVGVectorWriter("proba.svg", canvasSize) writer.printCanvas(projectedMesh)