#!BPY """ Name: 'VRM' Blender: 242 Group: 'Render' Tooltip: 'Vector Rendering Method script' """ __author__ = "Antonio Ospite" __url__ = ["http://projects.blender.org/projects/vrm"] __version__ = "0.3.beta" __bpydoc__ = """\ Render the scene and save the result in vector format. """ # --------------------------------------------------------------------- # Copyright (c) 2006 Antonio Ospite # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # # --------------------------------------------------------------------- # # Additional credits: # Thanks to Emilio Aguirre for S2flender from which I took inspirations :) # Thanks to Nikola Radovanovic, the author of the original VRM script, # the code you read here has been rewritten _almost_ entirely # from scratch but Nikola gave me the idea, so I thank him publicly. # # --------------------------------------------------------------------- # # Things TODO for a next release: # - FIX the issue with negative scales in object tranformations! # - Use a better depth sorting algorithm # - Review how selections are made (this script uses selection states of # primitives to represent visibility infos) # - Use a data structure other than Mesh to represent the 2D image? # Think to a way to merge (adjacent) polygons that have the same color. # Or a way to use paths for silhouettes and contours. # - Consider SMIL for animation handling instead of ECMA Script? (Firefox do # not support SMIL for animations) # - Switch to the Mesh structure, should be considerably faster # (partially done, but with Mesh we cannot sort faces, yet) # - Implement Edge Styles (silhouettes, contours, etc.) (partially done). # - Implement Shading Styles? (partially done, to make more flexible). # - Add Vector Writers other than SVG. # - set the background color! # - Check memory use!! # # --------------------------------------------------------------------- # # Changelog: # # vrm-0.3.py - ... # * First release after code restucturing. # Now the script offers a useful set of functionalities # and it can render animations, too. # * Optimization in Renderer.doEdgeStyle(), build a topology cache # so to speed up the lookup of adjacent faces of an edge. # Thanks ideasman42. # * The SVG output is now SVG 1.0 valid. # Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html # * Progress indicator during HSR. # * Initial SWF output support (using ming) # * Fixed a bug in the animation code, now the projection matrix is # recalculated at each frame! # * PDF output (using reportlab) # * Fixed another problem in the animation code the current frame was off # by one in the case of camera movement. # * Use fps as specified in blender when VectorWriter handles animation # * Remove the real file opening in the abstract VectorWriter # * View frustum clipping # * Scene clipping done using bounding box instead of object center # * Fix camera type selection for blender>2.43 (Thanks to Thomas Lachmann) # * Compatibility with python 2.3 # # --------------------------------------------------------------------- import Blender from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window from Blender.Mathutils import * from math import * import sys, time def uniq(alist): tmpdict = dict() return [tmpdict.setdefault(e,e) for e in alist if e not in tmpdict] # in python > 2.4 we ca use the following #return [ u for u in alist if u not in locals()['_[1]'] ] # Constants EPS = 10e-5 # We use a global progress Indicator Object progress = None # Some global settings class config: polygons = dict() polygons['SHOW'] = True polygons['SHADING'] = 'FLAT' # FLAT or TOON polygons['HSR'] = 'NEWELL' # PAINTER or NEWELL # Hidden to the user for now polygons['EXPANSION_TRICK'] = True polygons['TOON_LEVELS'] = 2 edges = dict() edges['SHOW'] = False edges['SHOW_HIDDEN'] = False edges['STYLE'] = 'MESH' # MESH or SILHOUETTE edges['WIDTH'] = 2 edges['COLOR'] = [0, 0, 0] output = dict() output['FORMAT'] = 'SVG' output['ANIMATION'] = False output['JOIN_OBJECTS'] = True # Utility functions print_debug = False def dumpfaces(flist, filename): """Dump a single face to a file. """ if not print_debug: return class tmpmesh: pass m = tmpmesh() m.faces = flist writerobj = SVGVectorWriter(filename) writerobj.open() writerobj._printPolygons(m) writerobj.close() def debug(msg): if print_debug: sys.stderr.write(msg) def EQ(v1, v2): return (abs(v1[0]-v2[0]) < EPS and abs(v1[1]-v2[1]) < EPS ) by_furthest_z = (lambda f1, f2: cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) ) def sign(x): if x < -EPS: #if x < 0: return -1 elif x > EPS: #elif x > 0: return 1 else: return 0 # --------------------------------------------------------------------- # ## HSR Utility class # # --------------------------------------------------------------------- EPS = 10e-5 INF = 10e5 class HSR: """A utility class for HSR processing. """ def is_nonplanar_quad(face): """Determine if a quad is non-planar. From: http://mathworld.wolfram.com/Coplanar.html Geometric objects lying in a common plane are said to be coplanar. Three noncollinear points determine a plane and so are trivially coplanar. Four points are coplanar iff the volume of the tetrahedron defined by them is 0, | x_1 y_1 z_1 1 | | x_2 y_2 z_2 1 | | x_3 y_3 z_3 1 | | x_4 y_4 z_4 1 | == 0 Coplanarity is equivalent to the statement that the pair of lines determined by the four points are not skew, and can be equivalently stated in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0. An arbitrary number of n points x_1, ..., x_n can be tested for coplanarity by finding the point-plane distances of the points x_4, ..., x_n from the plane determined by (x_1,x_2,x_3) and checking if they are all zero. If so, the points are all coplanar. We here check only for 4-point complanarity. """ n = len(face) # assert(n>4) if n < 3 or n > 4: print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3" raise AssertionError elif n == 3: # three points must be complanar return False else: # n == 4 x1 = Vector(face[0].co) x2 = Vector(face[1].co) x3 = Vector(face[2].co) x4 = Vector(face[3].co) v = (x3-x1) * CrossVecs((x2-x1), (x4-x3)) if v != 0: return True return False is_nonplanar_quad = staticmethod(is_nonplanar_quad) def pointInPolygon(poly, v): return False pointInPolygon = staticmethod(pointInPolygon) def edgeIntersection(s1, s2, do_perturbate=False): (x1, y1) = s1[0].co[0], s1[0].co[1] (x2, y2) = s1[1].co[0], s1[1].co[1] (x3, y3) = s2[0].co[0], s2[0].co[1] (x4, y4) = s2[1].co[0], s2[1].co[1] #z1 = s1[0].co[2] #z2 = s1[1].co[2] #z3 = s2[0].co[2] #z4 = s2[1].co[2] # calculate delta values (vector components) dx1 = x2 - x1; dx2 = x4 - x3; dy1 = y2 - y1; dy2 = y4 - y3; #dz1 = z2 - z1; #dz2 = z4 - z3; C = dy2 * dx1 - dx2 * dy1 # /* cross product */ if C == 0: #/* parallel */ return None dx3 = x1 - x3 # /* combined origin offset vector */ dy3 = y1 - y3 a1 = (dy3 * dx2 - dx3 * dy2) / C; a2 = (dy3 * dx1 - dx3 * dy1) / C; # check for degeneracies #print_debug("\n") #print_debug(str(a1)+"\n") #print_debug(str(a2)+"\n\n") if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1): # Intersection on boundaries, we consider the point external? return None elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): # /* lines cross */ x = x1 + a1*dx1 y = y1 + a1*dy1 #z = z1 + a1*dz1 z = 0 return (NMesh.Vert(x, y, z), a1, a2) else: # lines have intersections but not those segments return None edgeIntersection = staticmethod(edgeIntersection) def isVertInside(self, v): winding_number = 0 coincidence = False # Create point at infinity point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF) for i in range(len(self.v)): s1 = (point_at_infinity, v) s2 = (self.v[i-1], self.v[i]) if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co): coincidence = True if HSR.edgeIntersection(s1, s2, do_perturbate=False): winding_number += 1 # Check even or odd if winding_number % 2 == 0 : return False else: if coincidence: return False return True isVertInside = staticmethod(isVertInside) def det(a, b, c): return ((b[0] - a[0]) * (c[1] - a[1]) - (b[1] - a[1]) * (c[0] - a[0]) ) det = staticmethod(det) def pointInPolygon(q, P): is_in = False point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF) det = HSR.det for i in range(len(P.v)): p0 = P.v[i-1] p1 = P.v[i] if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0): if det(p0.co, p1.co, q.co) == 0 : #print "On Boundary" return False elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0): is_in = not is_in return is_in pointInPolygon = staticmethod(pointInPolygon) def projectionsOverlap(f1, f2): """ If you have nonconvex, but still simple polygons, an acceptable method is to iterate over all vertices and perform the Point-in-polygon test[1]. The advantage of this method is that you can compute the exact intersection point and collision normal that you will need to simulate collision. When you have the point that lies inside the other polygon, you just iterate over all edges of the second polygon again and look for edge intersections. Note that this method detects collsion when it already happens. This algorithm is fast enough to perform it hundreds of times per sec. """ for i in range(len(f1.v)): # If a point of f1 in inside f2, there is an overlap! v1 = f1.v[i] #if HSR.isVertInside(f2, v1): if HSR.pointInPolygon(v1, f2): return True # If not the polygon can be ovelap as well, so we check for # intersection between an edge of f1 and all the edges of f2 v0 = f1.v[i-1] for j in range(len(f2.v)): v2 = f2.v[j-1] v3 = f2.v[j] e1 = v0, v1 e2 = v2, v3 intrs = HSR.edgeIntersection(e1, e2) if intrs: #print_debug(str(v0.co) + " " + str(v1.co) + " " + # str(v2.co) + " " + str(v3.co) ) #print_debug("\nIntersection\n") return True return False projectionsOverlap = staticmethod(projectionsOverlap) def midpoint(p1, p2): """Return the midpoint of two vertices. """ m = MidpointVecs(Vector(p1), Vector(p2)) mv = NMesh.Vert(m[0], m[1], m[2]) return mv midpoint = staticmethod(midpoint) def facesplit(P, Q, facelist, nmesh): """Split P or Q according to the strategy illustrated in the Newell's paper. """ by_furthest_z = (lambda f1, f2: cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) ) # Choose if split P on Q plane or vice-versa n = 0 for Pi in P: d = HSR.Distance(Vector(Pi), Q) if d <= EPS: n += 1 pIntersectQ = (n != len(P)) n = 0 for Qi in Q: d = HSR.Distance(Vector(Qi), P) if d >= -EPS: n += 1 qIntersectP = (n != len(Q)) newfaces = [] # 1. If parts of P lie in both half-spaces of Q # then splice P in two with the plane of Q if pIntersectQ: #print "We split P" f = P plane = Q newfaces = HSR.splitOn(plane, f) # 2. Else if parts of Q lie in both half-space of P # then splice Q in two with the plane of P if qIntersectP and newfaces == None: #print "We split Q" f = Q plane = P newfaces = HSR.splitOn(plane, f) #print "After" # 3. Else slice P in half through the mid-point of # the longest pair of opposite sides if newfaces == None: print "We ignore P..." facelist.remove(P) return facelist #f = P #if len(P)==3: # v1 = midpoint(f[0], f[1]) # v2 = midpoint(f[1], f[2]) #if len(P)==4: # v1 = midpoint(f[0], f[1]) # v2 = midpoint(f[2], f[3]) #vec3 = (Vector(v2)+10*Vector(f.normal)) # #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2]) #plane = NMesh.Face([v1, v2, v3]) # #newfaces = splitOn(plane, f) if newfaces == None: print "Big FAT problem, we weren't able to split POLYGONS!" raise AssertionError #print newfaces if newfaces: #for v in f: # if v not in plane and v in nmesh.verts: # nmesh.verts.remove(v) for nf in newfaces: nf.mat = f.mat nf.sel = f.sel nf.col = [f.col[0]] * len(nf.v) nf.smooth = 0 for v in nf: nmesh.verts.append(v) # insert pieces in the list facelist.append(nf) facelist.remove(f) # and resort the faces facelist.sort(by_furthest_z) facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth)) facelist.reverse() #print [ f.smooth for f in facelist ] return facelist facesplit = staticmethod(facesplit) def isOnSegment(v1, v2, p, extremes_internal=False): """Check if point p is in segment v1v2. """ l1 = (v1-p).length l2 = (v2-p).length # Should we consider extreme points as internal ? # The test: # if p == v1 or p == v2: if l1 < EPS or l2 < EPS: return extremes_internal l = (v1-v2).length # if the sum of l1 and l2 is circa l, then the point is on segment, if abs(l - (l1+l2)) < EPS: return True else: return False isOnSegment = staticmethod(isOnSegment) def Distance(point, face): """ Calculate the distance between a point and a face. An alternative but more expensive method can be: ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]), Vector(face.no), Vector(point), 0) d = Vector(ip - point).length See: http://mathworld.wolfram.com/Point-PlaneDistance.html """ p = Vector(point) plNormal = Vector(face.no) plVert0 = Vector(face.v[0]) d = (plVert0 * plNormal) - (p * plNormal) #d = plNormal * (plVert0 - p) #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point)) return d Distance = staticmethod(Distance) def makeFaces(vl): # # make one or two new faces based on a list of vertex-indices # newfaces = [] if len(vl) <= 4: nf = NMesh.Face() for v in vl: nf.v.append(v) newfaces.append(nf) else: nf = NMesh.Face() nf.v.append(vl[0]) nf.v.append(vl[1]) nf.v.append(vl[2]) nf.v.append(vl[3]) newfaces.append(nf) nf = NMesh.Face() nf.v.append(vl[3]) nf.v.append(vl[4]) nf.v.append(vl[0]) newfaces.append(nf) return newfaces makeFaces = staticmethod(makeFaces) def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True): """Split P using the plane of Q. Logic taken from the knife.py python script """ # Check if P and Q are parallel u = CrossVecs(Vector(Q.no),Vector(P.no)) ax = abs(u[0]) ay = abs(u[1]) az = abs(u[2]) if (ax+ay+az) < EPS: print "PARALLEL planes!!" return # The final aim is to find the intersection line between P # and the plane of Q, and split P along this line nP = len(P.v) # Calculate point-plane Distance between vertices of P and plane Q d = [] for i in range(0, nP): d.append(HSR.Distance(P.v[i], Q)) newVertList = [] posVertList = [] negVertList = [] for i in range(nP): d0 = d[i-1] V0 = P.v[i-1] d1 = d[i] V1 = P.v[i] #print "d0:", d0, "d1:", d1 # if the vertex lies in the cutplane if abs(d1) < EPS: #print "d1 On cutplane" posVertList.append(V1) negVertList.append(V1) else: # if the previous vertex lies in cutplane if abs(d0) < EPS: #print "d0 on Cutplane" if d1 > 0: #print "d1 on positive Halfspace" posVertList.append(V1) else: #print "d1 on negative Halfspace" negVertList.append(V1) else: # if they are on the same side of the plane if d1*d0 > 0: #print "On the same half-space" if d1 > 0: #print "d1 on positive Halfspace" posVertList.append(V1) else: #print "d1 on negative Halfspace" negVertList.append(V1) # the vertices are not on the same side of the plane, so we have an intersection else: #print "Intersection" e = Vector(V0), Vector(V1) tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2]) inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0) if inters == None: print "Split Break" break #print "Intersection", inters nv = NMesh.Vert(inters[0], inters[1], inters[2]) newVertList.append(nv) posVertList.append(nv) negVertList.append(nv) if d1 > 0: posVertList.append(V1) else: negVertList.append(V1) # uniq for python > 2.4 #posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ] #negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ] # a more portable way posVertList = uniq(posVertList) negVertList = uniq(negVertList) # If vertex are all on the same half-space, return #if len(posVertList) < 3: # print "Problem, we created a face with less that 3 vertices??" # posVertList = [] #if len(negVertList) < 3: # print "Problem, we created a face with less that 3 vertices??" # negVertList = [] if len(posVertList) < 3 or len(negVertList) < 3: #print "RETURN NONE, SURE???" return None if not return_positive_faces: posVertList = [] if not return_negative_faces: negVertList = [] newfaces = HSR.addNewFaces(posVertList, negVertList) return newfaces splitOn = staticmethod(splitOn) def addNewFaces(posVertList, negVertList): # Create new faces resulting from the split outfaces = [] if len(posVertList) or len(negVertList): #newfaces = [posVertList] + [negVertList] newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] + [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] ) for nf in newfaces: if nf and len(nf)>2: outfaces += HSR.makeFaces(nf) return outfaces addNewFaces = staticmethod(addNewFaces) # --------------------------------------------------------------------- # ## Mesh Utility class # # --------------------------------------------------------------------- class MeshUtils: def buildEdgeFaceUsersCache(me): ''' Takes a mesh and returns a list aligned with the meshes edges. Each item is a list of the faces that use the edge would be the equiv for having ed.face_users as a property Taken from .blender/scripts/bpymodules/BPyMesh.py, thanks to ideasman_42. ''' def sorted_edge_indicies(ed): i1= ed.v1.index i2= ed.v2.index if i1>i2: i1,i2= i2,i1 return i1, i2 face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges]) for f in me.faces: fvi= [v.index for v in f.v]# face vert idx's for i in xrange(len(f)): i1= fvi[i] i2= fvi[i-1] if i1>i2: i1,i2= i2,i1 face_edges_dict[i1,i2][1].append(f) face_edges= [None] * len(me.edges) for ed_index, ed_faces in face_edges_dict.itervalues(): face_edges[ed_index]= ed_faces return face_edges def isMeshEdge(adjacent_faces): """Mesh edge rule. A mesh edge is visible if _at_least_one_ of its adjacent faces is selected. Note: if the edge has no adjacent faces we want to show it as well, useful for "edge only" portion of objects. """ if len(adjacent_faces) == 0: return True selected_faces = [f for f in adjacent_faces if f.sel] if len(selected_faces) != 0: return True else: return False def isSilhouetteEdge(adjacent_faces): """Silhuette selection rule. An edge is a silhuette edge if it is shared by two faces with different selection status or if it is a boundary edge of a selected face. """ if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or (len(adjacent_faces) == 2 and adjacent_faces[0].sel != adjacent_faces[1].sel) ): return True else: return False buildEdgeFaceUsersCache = staticmethod(buildEdgeFaceUsersCache) isMeshEdge = staticmethod(isMeshEdge) isSilhouetteEdge = staticmethod(isSilhouetteEdge) # --------------------------------------------------------------------- # ## Shading Utility class # # --------------------------------------------------------------------- class ShadingUtils: shademap = None def toonShadingMapSetup(): levels = config.polygons['TOON_LEVELS'] texels = 2*levels - 1 tmp_shademap = [0.0] + [(i)/float(texels-1) for i in xrange(1, texels-1) ] + [1.0] return tmp_shademap def toonShading(u): shademap = ShadingUtils.shademap if not shademap: shademap = ShadingUtils.toonShadingMapSetup() v = 1.0 for i in xrange(0, len(shademap)-1): pivot = (shademap[i]+shademap[i+1])/2.0 j = int(u>pivot) v = shademap[i+j] if v < shademap[i+1]: return v return v toonShadingMapSetup = staticmethod(toonShadingMapSetup) toonShading = staticmethod(toonShading) # --------------------------------------------------------------------- # ## Projections classes # # --------------------------------------------------------------------- class Projector: """Calculate the projection of an object given the camera. A projector is useful to so some per-object transformation to obtain the projection of an object given the camera. The main method is #doProjection# see the method description for the parameter list. """ def __init__(self, cameraObj, canvasRatio): """Calculate the projection matrix. The projection matrix depends, in this case, on the camera settings. TAKE CARE: This projector expects vertices in World Coordinates! """ camera = cameraObj.getData() aspect = float(canvasRatio[0])/float(canvasRatio[1]) near = camera.clipStart far = camera.clipEnd scale = float(camera.scale) fovy = atan(0.5/aspect/(camera.lens/32)) fovy = fovy * 360.0/pi if Blender.Get('version') < 243: camPersp = 0 camOrtho = 1 else: camPersp = 'persp' camOrtho = 'ortho' # What projection do we want? if camera.type == camPersp: mP = self._calcPerspectiveMatrix(fovy, aspect, near, far) elif camera.type == camOrtho: mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale) # View transformation cam = Matrix(cameraObj.getInverseMatrix()) cam.transpose() mP = mP * cam self.projectionMatrix = mP ## # Public methods # def doProjection(self, v): """Project the point on the view plane. Given a vertex calculate the projection using the current projection matrix. """ # Note that we have to work on the vertex using homogeneous coordinates # From blender 2.42+ we don't need to resize the vector to be 4d # when applying a 4x4 matrix, but we do that anyway since we need the # 4th coordinate later p = self.projectionMatrix * Vector(v).resize4D() # Perspective division if p[3] != 0: p[0] = p[0]/p[3] p[1] = p[1]/p[3] p[2] = p[2]/p[3] # restore the size p[3] = 1.0 p.resize3D() return p ## # Private methods # def _calcPerspectiveMatrix(self, fovy, aspect, near, far): """Return a perspective projection matrix. """ top = near * tan(fovy * pi / 360.0) bottom = -top left = bottom*aspect right= top*aspect x = (2.0 * near) / (right-left) y = (2.0 * near) / (top-bottom) a = (right+left) / (right-left) b = (top+bottom) / (top - bottom) c = - ((far+near) / (far-near)) d = - ((2*far*near)/(far-near)) m = Matrix( [x, 0.0, a, 0.0], [0.0, y, b, 0.0], [0.0, 0.0, c, d], [0.0, 0.0, -1.0, 0.0]) return m def _calcOrthoMatrix(self, fovy, aspect , near, far, scale): """Return an orthogonal projection matrix. """ # The 11 in the formula was found emiprically top = near * tan(fovy * pi / 360.0) * (scale * 11) bottom = -top left = bottom * aspect right= top * aspect rl = right-left tb = top-bottom fn = near-far tx = -((right+left)/rl) ty = -((top+bottom)/tb) tz = ((far+near)/fn) m = Matrix( [2.0/rl, 0.0, 0.0, tx], [0.0, 2.0/tb, 0.0, ty], [0.0, 0.0, 2.0/fn, tz], [0.0, 0.0, 0.0, 1.0]) return m # --------------------------------------------------------------------- # ## Progress Indicator # # --------------------------------------------------------------------- class Progress: """A model for a progress indicator. Do the progress calculation calculation and the view independent stuff of a progress indicator. """ def __init__(self, steps=0): self.name = "" self.steps = steps self.completed = 0 self.progress = 0 def setSteps(self, steps): """Set the number of steps of the activity wich we want to track. """ self.steps = steps def getSteps(self): return self.steps def setName(self, name): """Set the name of the activity wich we want to track. """ self.name = name def getName(self): return self.name def getProgress(self): return self.progress def reset(self): self.completed = 0 self.progress = 0 def update(self): """Update the model, call this method when one step is completed. """ if self.progress == 100: return False self.completed += 1 self.progress = ( float(self.completed) / float(self.steps) ) * 100 self.progress = int(self.progress) return True class ProgressIndicator: """An abstraction of a View for the Progress Model """ def __init__(self): # Use a refresh rate so we do not show the progress at # every update, but every 'self.refresh_rate' times. self.refresh_rate = 10 self.shows_counter = 0 self.quiet = False self.progressModel = None def setQuiet(self, value): self.quiet = value def setActivity(self, name, steps): """Initialize the Model. In a future version (with subactivities-progress support) this method could only set the current activity. """ self.progressModel = Progress() self.progressModel.setName(name) self.progressModel.setSteps(steps) def getActivity(self): return self.progressModel def update(self): """Update the model and show the actual progress. """ assert(self.progressModel) if self.progressModel.update(): if self.quiet: return self.show(self.progressModel.getProgress(), self.progressModel.getName()) # We return always True here so we can call the update() method also # from lambda funcs (putting the call in logical AND with other ops) return True def show(self, progress, name=""): self.shows_counter = (self.shows_counter + 1) % self.refresh_rate if self.shows_counter != 0: return if progress == 100: self.shows_counter = -1 class ConsoleProgressIndicator(ProgressIndicator): """Show a progress bar on stderr, a la wget. """ def __init__(self): ProgressIndicator.__init__(self) self.swirl_chars = ["-", "\\", "|", "/"] self.swirl_count = -1 def show(self, progress, name): ProgressIndicator.show(self, progress, name) bar_length = 70 bar_progress = int( (progress/100.0) * bar_length ) bar = ("=" * bar_progress).ljust(bar_length) self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars) swirl_char = self.swirl_chars[self.swirl_count] progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress) sys.stderr.write(progress_bar+"\r") if progress == 100: sys.stderr.write("\n") class GraphicalProgressIndicator(ProgressIndicator): """Interface to the Blender.Window.DrawProgressBar() method. """ def __init__(self): ProgressIndicator.__init__(self) #self.swirl_chars = ["-", "\\", "|", "/"] # We have to use letters with the same width, for now! # Blender progress bar considers the font widths when # calculating the progress bar width. self.swirl_chars = ["\\", "/"] self.swirl_count = -1 def show(self, progress, name): ProgressIndicator.show(self, progress) self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars) swirl_char = self.swirl_chars[self.swirl_count] progress_text = "%s - %c %3d%%" % (name, swirl_char, progress) # Finally draw the Progress Bar Window.WaitCursor(1) # Maybe we can move that call in the constructor? Window.DrawProgressBar(progress/100.0, progress_text) if progress == 100: Window.DrawProgressBar(1, progress_text) Window.WaitCursor(0) # --------------------------------------------------------------------- # ## 2D Object representation class # # --------------------------------------------------------------------- # TODO: a class to represent the needed properties of a 2D vector image # For now just using a [N]Mesh structure. # --------------------------------------------------------------------- # ## Vector Drawing Classes # # --------------------------------------------------------------------- ## A generic Writer class VectorWriter: """ A class for printing output in a vectorial format. Given a 2D representation of the 3D scene the class is responsible to write it is a vector format. Every subclasses of VectorWriter must have at last the following public methods: - open(self) - close(self) - printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False): """ def __init__(self, fileName): """Set the output file name and other properties""" self.outputFileName = fileName context = Scene.GetCurrent().getRenderingContext() self.canvasSize = ( context.imageSizeX(), context.imageSizeY() ) self.fps = context.fps self.startFrame = 1 self.endFrame = 1 self.animation = False ## # Public Methods # def open(self, startFrame=1, endFrame=1): if startFrame != endFrame: self.startFrame = startFrame self.endFrame = endFrame self.animation = True print "Outputting to: ", self.outputFileName return def close(self): return def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False): """This is the interface for the needed printing routine. """ return ## SVG Writer class SVGVectorWriter(VectorWriter): """A concrete class for writing SVG output. """ def __init__(self, fileName): """Simply call the parent Contructor. """ VectorWriter.__init__(self, fileName) self.file = None ## # Public Methods # def open(self, startFrame=1, endFrame=1): """Do some initialization operations. """ VectorWriter.open(self, startFrame, endFrame) self.file = open(self.outputFileName, "w") self._printHeader() def close(self): """Do some finalization operation. """ self._printFooter() if self.file: self.file.close() # remember to call the close method of the parent as last VectorWriter.close(self) def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False): """Convert the scene representation to SVG. """ Objects = scene.getChildren() context = scene.getRenderingContext() framenumber = context.currentFrame() if self.animation: framestyle = "display:none" else: framestyle = "display:block" # Assign an id to this group so we can set properties on it using DOM self.file.write("\n" % (framenumber, framestyle) ) for obj in Objects: if(obj.getType() != 'Mesh'): continue self.file.write("\n" % obj.getName()) mesh = obj.getData(mesh=1) if doPrintPolygons: self._printPolygons(mesh) if doPrintEdges: self._printEdges(mesh, showHiddenEdges) self.file.write("\n") self.file.write("\n") ## # Private Methods # def _calcCanvasCoord(self, v): """Convert vertex in scene coordinates to canvas coordinates. """ pt = Vector([0, 0, 0]) mW = float(self.canvasSize[0])/2.0 mH = float(self.canvasSize[1])/2.0 # rescale to canvas size pt[0] = v.co[0]*mW + mW pt[1] = v.co[1]*mH + mH pt[2] = v.co[2] # For now we want (0,0) in the top-left corner of the canvas. # Mirror and translate along y pt[1] *= -1 pt[1] += self.canvasSize[1] return pt def _printHeader(self): """Print SVG header.""" self.file.write("\n") self.file.write("\n") self.file.write("\n\n" % self.canvasSize) if self.animation: delay = 1000/self.fps self.file.write("""\n\n \n""") def _printFooter(self): """Print the SVG footer.""" self.file.write("\n\n") def _printPolygons(self, mesh): """Print the selected (visible) polygons. """ if len(mesh.faces) == 0: return self.file.write("\n") for face in mesh.faces: if not face.sel: continue self.file.write("\n") self.file.write("\n") def _printEdges(self, mesh, showHiddenEdges=False): """Print the wireframe using mesh edges. """ stroke_width = config.edges['WIDTH'] stroke_col = config.edges['COLOR'] self.file.write("\n") for e in mesh.edges: hidden_stroke_style = "" if e.sel == 0: if showHiddenEdges == False: continue else: hidden_stroke_style = ";\n stroke-dasharray:3, 3" p1 = self._calcCanvasCoord(e.v1) p2 = self._calcCanvasCoord(e.v2) self.file.write("\n") self.file.write("\n") ## SWF Writer try: from ming import * SWFSupported = True except: SWFSupported = False class SWFVectorWriter(VectorWriter): """A concrete class for writing SWF output. """ def __init__(self, fileName): """Simply call the parent Contructor. """ VectorWriter.__init__(self, fileName) self.movie = None self.sprite = None ## # Public Methods # def open(self, startFrame=1, endFrame=1): """Do some initialization operations. """ VectorWriter.open(self, startFrame, endFrame) self.movie = SWFMovie() self.movie.setDimension(self.canvasSize[0], self.canvasSize[1]) if self.animation: self.movie.setRate(self.fps) numframes = endFrame - startFrame + 1 self.movie.setFrames(numframes) def close(self): """Do some finalization operation. """ self.movie.save(self.outputFileName) # remember to call the close method of the parent VectorWriter.close(self) def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False): """Convert the scene representation to SVG. """ context = scene.getRenderingContext() framenumber = context.currentFrame() Objects = scene.getChildren() if self.sprite: self.movie.remove(self.sprite) sprite = SWFSprite() for obj in Objects: if(obj.getType() != 'Mesh'): continue mesh = obj.getData(mesh=1) if doPrintPolygons: self._printPolygons(mesh, sprite) if doPrintEdges: self._printEdges(mesh, sprite, showHiddenEdges) sprite.nextFrame() i = self.movie.add(sprite) # Remove the instance the next time self.sprite = i if self.animation: self.movie.nextFrame() ## # Private Methods # def _calcCanvasCoord(self, v): """Convert vertex in scene coordinates to canvas coordinates. """ pt = Vector([0, 0, 0]) mW = float(self.canvasSize[0])/2.0 mH = float(self.canvasSize[1])/2.0 # rescale to canvas size pt[0] = v.co[0]*mW + mW pt[1] = v.co[1]*mH + mH pt[2] = v.co[2] # For now we want (0,0) in the top-left corner of the canvas. # Mirror and translate along y pt[1] *= -1 pt[1] += self.canvasSize[1] return pt def _printPolygons(self, mesh, sprite): """Print the selected (visible) polygons. """ if len(mesh.faces) == 0: return for face in mesh.faces: if not face.sel: continue if face.col: fcol = face.col[0] color = [fcol.r, fcol.g, fcol.b, fcol.a] else: color = [255, 255, 255, 255] s = SWFShape() f = s.addFill(color[0], color[1], color[2], color[3]) s.setRightFill(f) # The starting point of the shape p0 = self._calcCanvasCoord(face.verts[0]) s.movePenTo(p0[0], p0[1]) for v in face.verts[1:]: p = self._calcCanvasCoord(v) s.drawLineTo(p[0], p[1]) # Closing the shape s.drawLineTo(p0[0], p0[1]) s.end() sprite.add(s) def _printEdges(self, mesh, sprite, showHiddenEdges=False): """Print the wireframe using mesh edges. """ stroke_width = config.edges['WIDTH'] stroke_col = config.edges['COLOR'] s = SWFShape() for e in mesh.edges: # Next, we set the line width and color for our shape. s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2], 255) if e.sel == 0: if showHiddenEdges == False: continue else: # SWF does not support dashed lines natively, so -for now- # draw hidden lines thinner and half-trasparent s.setLine(stroke_width/2, stroke_col[0], stroke_col[1], stroke_col[2], 128) p1 = self._calcCanvasCoord(e.v1) p2 = self._calcCanvasCoord(e.v2) s.movePenTo(p1[0], p1[1]) s.drawLineTo(p2[0], p2[1]) s.end() sprite.add(s) ## PDF Writer try: from reportlab.pdfgen import canvas PDFSupported = True except: PDFSupported = False class PDFVectorWriter(VectorWriter): """A concrete class for writing PDF output. """ def __init__(self, fileName): """Simply call the parent Contructor. """ VectorWriter.__init__(self, fileName) self.canvas = None ## # Public Methods # def open(self, startFrame=1, endFrame=1): """Do some initialization operations. """ VectorWriter.open(self, startFrame, endFrame) size = (self.canvasSize[0], self.canvasSize[1]) self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0) def close(self): """Do some finalization operation. """ self.canvas.save() # remember to call the close method of the parent VectorWriter.close(self) def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False): """Convert the scene representation to SVG. """ context = scene.getRenderingContext() framenumber = context.currentFrame() Objects = scene.getChildren() for obj in Objects: if(obj.getType() != 'Mesh'): continue mesh = obj.getData(mesh=1) if doPrintPolygons: self._printPolygons(mesh) if doPrintEdges: self._printEdges(mesh, showHiddenEdges) self.canvas.showPage() ## # Private Methods # def _calcCanvasCoord(self, v): """Convert vertex in scene coordinates to canvas coordinates. """ pt = Vector([0, 0, 0]) mW = float(self.canvasSize[0])/2.0 mH = float(self.canvasSize[1])/2.0 # rescale to canvas size pt[0] = v.co[0]*mW + mW pt[1] = v.co[1]*mH + mH pt[2] = v.co[2] # For now we want (0,0) in the top-left corner of the canvas. # Mirror and translate along y pt[1] *= -1 pt[1] += self.canvasSize[1] return pt def _printPolygons(self, mesh): """Print the selected (visible) polygons. """ if len(mesh.faces) == 0: return for face in mesh.faces: if not face.sel: continue if face.col: fcol = face.col[0] color = [fcol.r/255.0, fcol.g/255.0, fcol.b/255.0, fcol.a/255.0] else: color = [1, 1, 1, 1] self.canvas.setFillColorRGB(color[0], color[1], color[2]) # For debug self.canvas.setStrokeColorRGB(0, 0, 0) path = self.canvas.beginPath() # The starting point of the path p0 = self._calcCanvasCoord(face.verts[0]) path.moveTo(p0[0], p0[1]) for v in face.verts[1:]: p = self._calcCanvasCoord(v) path.lineTo(p[0], p[1]) # Closing the shape path.close() self.canvas.drawPath(path, stroke=0, fill=1) def _printEdges(self, mesh, showHiddenEdges=False): """Print the wireframe using mesh edges. """ stroke_width = config.edges['WIDTH'] stroke_col = config.edges['COLOR'] self.canvas.setLineCap(1) self.canvas.setLineJoin(1) self.canvas.setLineWidth(stroke_width) self.canvas.setStrokeColorRGB(stroke_col[0]/255.0, stroke_col[1]/255.0, stroke_col[2]/255) for e in mesh.edges: self.canvas.setLineWidth(stroke_width) if e.sel == 0: if showHiddenEdges == False: continue else: # PDF does not support dashed lines natively, so -for now- # draw hidden lines thinner self.canvas.setLineWidth(stroke_width/2.0) p1 = self._calcCanvasCoord(e.v1) p2 = self._calcCanvasCoord(e.v2) self.canvas.line(p1[0], p1[1], p2[0], p2[1]) # --------------------------------------------------------------------- # ## Rendering Classes # # --------------------------------------------------------------------- # A dictionary to collect different shading style methods shadingStyles = dict() shadingStyles['FLAT'] = None shadingStyles['TOON'] = None # A dictionary to collect different edge style methods edgeStyles = dict() edgeStyles['MESH'] = MeshUtils.isMeshEdge edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge # A dictionary to collect the supported output formats outputWriters = dict() outputWriters['SVG'] = SVGVectorWriter if SWFSupported: outputWriters['SWF'] = SWFVectorWriter if PDFSupported: outputWriters['PDF'] = PDFVectorWriter class Renderer: """Render a scene viewed from the active camera. This class is responsible of the rendering process, transformation and projection of the objects in the scene are invoked by the renderer. The rendering is done using the active camera for the current scene. """ def __init__(self): """Make the rendering process only for the current scene by default. We will work on a copy of the scene, to be sure that the current scene do not get modified in any way. """ # Render the current Scene, this should be a READ-ONLY property self._SCENE = Scene.GetCurrent() # Use the aspect ratio of the scene rendering context context = self._SCENE.getRenderingContext() aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY()) self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio, float(context.aspectRatioY()) ) # Render from the currently active camera #self.cameraObj = self._SCENE.getCurrentCamera() # Get the list of lighting sources obj_lst = self._SCENE.getChildren() self.lights = [ o for o in obj_lst if o.getType() == 'Lamp'] # When there are no lights we use a default lighting source # that have the same position of the camera if len(self.lights) == 0: l = Lamp.New('Lamp') lobj = Object.New('Lamp') lobj.loc = self.cameraObj.loc lobj.link(l) self.lights.append(lobj) ## # Public Methods # def doRendering(self, outputWriter, animation=False): """Render picture or animation and write it out. The parameters are: - a Vector writer object that will be used to output the result. - a flag to tell if we want to render an animation or only the current frame. """ context = self._SCENE.getRenderingContext() origCurrentFrame = context.currentFrame() # Handle the animation case if not animation: startFrame = origCurrentFrame endFrame = startFrame outputWriter.open() else: startFrame = context.startFrame() endFrame = context.endFrame() outputWriter.open(startFrame, endFrame) # Do the rendering process frame by frame print "Start Rendering of %d frames" % (endFrame-startFrame+1) for f in xrange(startFrame, endFrame+1): print "\n\nFrame: %d" % f # FIXME To get the correct camera position we have to use +1 here. # Is there a bug somewhere in the Scene module? context.currentFrame(f+1) self.cameraObj = self._SCENE.getCurrentCamera() # Use some temporary workspace, a full copy of the scene inputScene = self._SCENE.copy(2) # To get the objects at this frame remove the +1 ... ctx = inputScene.getRenderingContext() ctx.currentFrame(f) # Get a projector for this camera. # NOTE: the projector wants object in world coordinates, # so we should remember to apply modelview transformations # _before_ we do projection transformations. self.proj = Projector(self.cameraObj, self.canvasRatio) try: renderedScene = self.doRenderScene(inputScene) except : print "There was an error! Aborting." import traceback print traceback.print_exc() self._SCENE.makeCurrent() Scene.unlink(inputScene) del inputScene return outputWriter.printCanvas(renderedScene, doPrintPolygons = config.polygons['SHOW'], doPrintEdges = config.edges['SHOW'], showHiddenEdges = config.edges['SHOW_HIDDEN']) # delete the rendered scene self._SCENE.makeCurrent() Scene.unlink(renderedScene) del renderedScene outputWriter.close() print "Done!" context.currentFrame(origCurrentFrame) def doRenderScene(self, workScene): """Control the rendering process. Here we control the entire rendering process invoking the operation needed to transform and project the 3D scene in two dimensions. """ # global processing of the scene self._doSceneClipping(workScene) self._doConvertGeometricObjsToMesh(workScene) if config.output['JOIN_OBJECTS']: self._joinMeshObjectsInScene(workScene) self._doSceneDepthSorting(workScene) # Per object activities Objects = workScene.getChildren() print "Total Objects: %d" % len(Objects) for i,obj in enumerate(Objects): print "\n\n-------" print "Rendering Object: %d" % i if obj.getType() != 'Mesh': print "Only Mesh supported! - Skipping type:", obj.getType() continue print "Rendering: ", obj.getName() mesh = obj.getData(mesh=1) self._doModelingTransformation(mesh, obj.matrix) self._doBackFaceCulling(mesh) # When doing HSR with NEWELL we may want to flip all normals # toward the viewer if config.polygons['HSR'] == "NEWELL": for f in mesh.faces: f.sel = 1-f.sel mesh.flipNormals() for f in mesh.faces: f.sel = 1 self._doLighting(mesh) # Do "projection" now so we perform further processing # in Normalized View Coordinates self._doProjection(mesh, self.proj) self._doViewFrustumClipping(mesh) self._doHiddenSurfaceRemoval(mesh) self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']]) # Update the object data, important! :) mesh.update() return workScene ## # Private Methods # # Utility methods def _getObjPosition(self, obj): """Return the obj position in World coordinates. """ return obj.matrix.translationPart() def _cameraViewVector(self): """Get the View Direction form the camera matrix. """ return Vector(self.cameraObj.matrix[2]).resize3D() # Faces methods def _isFaceVisible(self, face): """Determine if a face of an object is visible from the current camera. The view vector is calculated from the camera location and one of the vertices of the face (expressed in World coordinates, after applying modelview transformations). After those transformations we determine if a face is visible by computing the angle between the face normal and the view vector, this angle has to be between -90 and 90 degrees for the face to be visible. This corresponds somehow to the dot product between the two, if it results > 0 then the face is visible. There is no need to normalize those vectors since we are only interested in the sign of the cross product and not in the product value. NOTE: here we assume the face vertices are in WorldCoordinates, so please transform the object _before_ doing the test. """ normal = Vector(face.no) camPos = self._getObjPosition(self.cameraObj) view_vect = None # View Vector in orthographics projections is the view Direction of # the camera if self.cameraObj.data.getType() == 1: view_vect = self._cameraViewVector() # View vector in perspective projections can be considered as # the difference between the camera position and one point of # the face, we choose the farthest point from the camera. if self.cameraObj.data.getType() == 0: vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] ) view_vect = vv[1] # if d > 0 the face is visible from the camera d = view_vect * normal if d > 0: return True else: return False # Scene methods def _doSceneClipping(self, scene): """Clip whole objects against the View Frustum. For now clip away only objects according to their center position. """ cam_pos = self._getObjPosition(self.cameraObj) view_vect = self._cameraViewVector() near = self.cameraObj.data.clipStart far = self.cameraObj.data.clipEnd aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1]) fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32)) fovy = fovy * 360.0/pi Objects = scene.getChildren() for o in Objects: if o.getType() != 'Mesh': continue; """ obj_vect = Vector(cam_pos) - self._getObjPosition(o) d = obj_vect*view_vect theta = AngleBetweenVecs(obj_vect, view_vect) # if the object is outside the view frustum, clip it away if (d < near) or (d > far) or (theta > fovy): scene.unlink(o) """ # Use the object bounding box # (whose points are already in WorldSpace Coordinate) bb = o.getBoundBox() points_outside = 0 for p in bb: p_vect = Vector(cam_pos) - Vector(p) d = p_vect * view_vect theta = AngleBetweenVecs(p_vect, view_vect) # Is this point outside the view frustum? if (d < near) or (d > far) or (theta > fovy): points_outside += 1 # If the bb is all outside the view frustum we clip the whole # object away if points_outside == len(bb): scene.unlink(o) def _doConvertGeometricObjsToMesh(self, scene): """Convert all "geometric" objects to mesh ones. """ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text'] #geometricObjTypes = ['Mesh', 'Surf', 'Curve'] Objects = scene.getChildren() objList = [ o for o in Objects if o.getType() in geometricObjTypes ] for obj in objList: old_obj = obj obj = self._convertToRawMeshObj(obj) scene.link(obj) scene.unlink(old_obj) # XXX Workaround for Text and Curve which have some normals # inverted when they are converted to Mesh, REMOVE that when # blender will fix that!! if old_obj.getType() in ['Curve', 'Text']: me = obj.getData(mesh=1) for f in me.faces: f.sel = 1; for v in me.verts: v.sel = 1; me.remDoubles(0) me.triangleToQuad() me.recalcNormals() me.update() def _doSceneDepthSorting(self, scene): """Sort objects in the scene. The object sorting is done accordingly to the object centers. """ c = self._getObjPosition(self.cameraObj) by_obj_center_pos = (lambda o1, o2: (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and cmp((self._getObjPosition(o1) - Vector(c)).length, (self._getObjPosition(o2) - Vector(c)).length) ) # Implement sorting by bounding box, the object with the bb # nearest to the camera should be drawn as last. by_nearest_bbox_point = (lambda o1, o2: (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and cmp( min( [(Vector(p) - Vector(c)).length for p in o1.getBoundBox()] ), min( [(Vector(p) - Vector(c)).length for p in o2.getBoundBox()] ) ) ) Objects = scene.getChildren() #Objects.sort(by_obj_center_pos) Objects.sort(by_nearest_bbox_point) # update the scene for o in Objects: scene.unlink(o) scene.link(o) def _joinMeshObjectsInScene(self, scene): """Merge all the Mesh Objects in a scene into a single Mesh Object. """ oList = [o for o in scene.getChildren() if o.getType()=='Mesh'] # FIXME: Object.join() do not work if the list contains 1 object if len(oList) == 1: return mesh = Mesh.New('BigOne') bigObj = Object.New('Mesh', 'BigOne') bigObj.link(mesh) scene.link(bigObj) try: bigObj.join(oList) except RuntimeError: print "\nWarning! - Can't Join Objects\n" scene.unlink(bigObj) return except TypeError: print "Objects Type error?" for o in oList: scene.unlink(o) scene.update() # Per object/mesh methods def _convertToRawMeshObj(self, object): """Convert geometry based object to a mesh object. """ me = Mesh.New('RawMesh_'+object.name) me.getFromObject(object.name) newObject = Object.New('Mesh', 'RawMesh_'+object.name) newObject.link(me) # If the object has no materials set a default material if not me.materials: me.materials = [Material.New()] #for f in me.faces: f.mat = 0 newObject.setMatrix(object.getMatrix()) return newObject def _doModelingTransformation(self, mesh, matrix): """Transform object coordinates to world coordinates. This step is done simply applying to the object its tranformation matrix and recalculating its normals. """ # XXX FIXME: blender do not transform normals in the right way when # there are negative scale values if matrix[0][0] < 0 or matrix[1][1] < 0 or matrix[2][2] < 0: print "WARNING: Negative scales, expect incorrect results!" mesh.transform(matrix, True) def _doBackFaceCulling(self, mesh): """Simple Backface Culling routine. At this level we simply do a visibility test face by face and then select the vertices belonging to visible faces. """ # Select all vertices, so edges can be displayed even if there are no # faces for v in mesh.verts: v.sel = 1 Mesh.Mode(Mesh.SelectModes['FACE']) # Loop on faces for f in mesh.faces: f.sel = 0 if self._isFaceVisible(f): f.sel = 1 def _doLighting(self, mesh): """Apply an Illumination and shading model to the object. The model used is the Phong one, it may be inefficient, but I'm just learning about rendering and starting from Phong seemed the most natural way. """ # If the mesh has vertex colors already, use them, # otherwise turn them on and do some calculations if mesh.vertexColors: return mesh.vertexColors = 1 materials = mesh.materials camPos = self._getObjPosition(self.cameraObj) # We do per-face color calculation (FLAT Shading), we can easily turn # to a per-vertex calculation if we want to implement some shading # technique. For an example see: # http://www.miralab.unige.ch/papers/368.pdf for f in mesh.faces: if not f.sel: continue mat = None if materials: mat = materials[f.mat] # A new default material if mat == None: mat = Material.New('defMat') # Check if it is a shadeless material elif mat.getMode() & Material.Modes['SHADELESS']: I = mat.getRGBCol() # Convert to a value between 0 and 255 tmp_col = [ int(c * 255.0) for c in I] for c in f.col: c.r = tmp_col[0] c.g = tmp_col[1] c.b = tmp_col[2] #c.a = tmp_col[3] continue # do vertex color calculation TotDiffSpec = Vector([0.0, 0.0, 0.0]) for l in self.lights: light_obj = l light_pos = self._getObjPosition(l) light = light_obj.getData() L = Vector(light_pos).normalize() V = (Vector(camPos) - Vector(f.cent)).normalize() N = Vector(f.no).normalize() if config.polygons['SHADING'] == 'TOON': NL = ShadingUtils.toonShading(N*L) else: NL = (N*L) # Should we use NL instead of (N*L) here? R = 2 * (N*L) * N - L Ip = light.getEnergy() # Diffuse co-efficient kd = mat.getRef() * Vector(mat.getRGBCol()) for i in [0, 1, 2]: kd[i] *= light.col[i] Idiff = Ip * kd * max(0, NL) # Specular component ks = mat.getSpec() * Vector(mat.getSpecCol()) ns = mat.getHardness() Ispec = Ip * ks * pow(max(0, (V*R)), ns) TotDiffSpec += (Idiff+Ispec) # Ambient component Iamb = Vector(Blender.World.Get()[0].getAmb()) ka = mat.getAmb() # Emissive component (convert to a triplet) ki = Vector([mat.getEmit()]*3) #I = ki + Iamb + (Idiff + Ispec) I = ki + (ka * Iamb) + TotDiffSpec # Set Alpha component I = list(I) I.append(mat.getAlpha()) # Clamp I values between 0 and 1 I = [ min(c, 1) for c in I] I = [ max(0, c) for c in I] # Convert to a value between 0 and 255 tmp_col = [ int(c * 255.0) for c in I] for c in f.col: c.r = tmp_col[0] c.g = tmp_col[1] c.b = tmp_col[2] c.a = tmp_col[3] def _doProjection(self, mesh, projector): """Apply Viewing and Projection tranformations. """ for v in mesh.verts: p = projector.doProjection(v.co[:]) v.co[0] = p[0] v.co[1] = p[1] v.co[2] = p[2] #mesh.recalcNormals() #mesh.update() # We could reeset Camera matrix, since now # we are in Normalized Viewing Coordinates, # but doung that would affect World Coordinate # processing for other objects #self.cameraObj.data.type = 1 #self.cameraObj.data.scale = 2.0 #m = Matrix().identity() #self.cameraObj.setMatrix(m) def _doViewFrustumClipping(self, mesh): """Clip faces against the View Frustum. """ # The Canonical View Volume, 8 vertices, and 6 faces, # We consider its face normals pointing outside v1 = NMesh.Vert(1, 1, -1) v2 = NMesh.Vert(1, -1, -1) v3 = NMesh.Vert(-1, -1, -1) v4 = NMesh.Vert(-1, 1, -1) v5 = NMesh.Vert(1, 1, 1) v6 = NMesh.Vert(1, -1, 1) v7 = NMesh.Vert(-1, -1, 1) v8 = NMesh.Vert(-1, 1, 1) cvv = [] f1 = NMesh.Face([v1, v4, v3, v2]) cvv.append(f1) f2 = NMesh.Face([v5, v6, v7, v8]) cvv.append(f2) f3 = NMesh.Face([v1, v2, v6, v5]) cvv.append(f3) f4 = NMesh.Face([v2, v3, v7, v6]) cvv.append(f4) f5 = NMesh.Face([v3, v4, v8, v7]) cvv.append(f5) f6 = NMesh.Face([v4, v1, v5, v8]) cvv.append(f6) nmesh = NMesh.GetRaw(mesh.name) clippedfaces = nmesh.faces[:] facelist = clippedfaces[:] for clipface in cvv: clippedfaces = [] for f in facelist: newfaces = HSR.splitOn(clipface, f, return_positive_faces=False) if not newfaces: # Check if the face is all outside the view frustum # TODO: Do this test before, it is more efficient points_outside = 0 for v in f: if abs(v[0]) > 1-EPS or abs(v[1]) > 1-EPS or abs(v[2]) > 1-EPS: points_outside += 1 if points_outside != len(f): clippedfaces.append(f) else: for nf in newfaces: for v in nf: nmesh.verts.append(v) nf.mat = f.mat nf.sel = f.sel nf.col = [f.col[0]] * len(nf.v) clippedfaces.append(nf) facelist = clippedfaces[:] nmesh.faces = facelist nmesh.update() # HSR routines def __simpleDepthSort(self, mesh): """Sort faces by the furthest vertex. This simple mesthod is known also as the painter algorithm, and it solves HSR correctly only for convex meshes. """ #global progress # The sorting requires circa n*log(n) steps n = len(mesh.faces) progress.setActivity("HSR: Painter", n*log(n)) by_furthest_z = (lambda f1, f2: progress.update() and cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) ) # FIXME: using NMesh to sort faces. We should avoid that! nmesh = NMesh.GetRaw(mesh.name) # remember that _higher_ z values mean further points nmesh.faces.sort(by_furthest_z) nmesh.faces.reverse() nmesh.update() def __newellDepthSort(self, mesh): """Newell's depth sorting. """ #global progress # Find non planar quads and convert them to triangle #for f in mesh.faces: # f.sel = 0 # if is_nonplanar_quad(f.v): # print "NON QUAD??" # f.sel = 1 # Now reselect all faces for f in mesh.faces: f.sel = 1 mesh.quadToTriangle() # FIXME: using NMesh to sort faces. We should avoid that! nmesh = NMesh.GetRaw(mesh.name) # remember that _higher_ z values mean further points nmesh.faces.sort(by_furthest_z) nmesh.faces.reverse() # Begin depth sort tests # use the smooth flag to set marked faces for f in nmesh.faces: f.smooth = 0 facelist = nmesh.faces[:] maplist = [] # The steps are _at_least_ equal to len(facelist), we do not count the # feces coming out from splitting!! progress.setActivity("HSR: Newell", len(facelist)) #progress.setQuiet(True) while len(facelist): debug("\n----------------------\n") debug("len(facelits): %d\n" % len(facelist)) P = facelist[0] pSign = sign(P.normal[2]) # We can discard faces parallel to the view vector #if P.normal[2] == 0: # facelist.remove(P) # continue split_done = 0 face_marked = 0 for Q in facelist[1:]: debug("P.smooth: " + str(P.smooth) + "\n") debug("Q.smooth: " + str(Q.smooth) + "\n") debug("\n") qSign = sign(Q.normal[2]) # TODO: check also if Q is parallel?? # Test 0: We need to test only those Qs whose furthest vertex # is closer to the observer than the closest vertex of P. zP = [v.co[2] for v in P.v] zQ = [v.co[2] for v in Q.v] notZOverlap = min(zP) > max(zQ) + EPS if notZOverlap: debug("\nTest 0\n") debug("NOT Z OVERLAP!\n") if Q.smooth == 0: # If Q is not marked then we can safely print P break else: debug("met a marked face\n") continue # Test 1: X extent overlapping xP = [v.co[0] for v in P.v] xQ = [v.co[0] for v in Q.v] #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP)) notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS) if notXOverlap: debug("\nTest 1\n") debug("NOT X OVERLAP!\n") continue # Test 2: Y extent Overlapping yP = [v.co[1] for v in P.v] yQ = [v.co[1] for v in Q.v] #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP)) notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS) if notYOverlap: debug("\nTest 2\n") debug("NOT Y OVERLAP!\n") continue # Test 3: P vertices are all behind the plane of Q n = 0 for Pi in P: d = qSign * HSR.Distance(Vector(Pi), Q) if d <= EPS: n += 1 pVerticesBehindPlaneQ = (n == len(P)) if pVerticesBehindPlaneQ: debug("\nTest 3\n") debug("P BEHIND Q!\n") continue # Test 4: Q vertices in front of the plane of P n = 0 for Qi in Q: d = pSign * HSR.Distance(Vector(Qi), P) if d >= -EPS: n += 1 qVerticesInFrontPlaneP = (n == len(Q)) if qVerticesInFrontPlaneP: debug("\nTest 4\n") debug("Q IN FRONT OF P!\n") continue # Test 5: Check if projections of polygons effectively overlap, # in previous tests we checked only bounding boxes. #if not projectionsOverlap(P, Q): if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)): debug("\nTest 5\n") debug("Projections do not overlap!\n") continue # We still can't say if P obscures Q. # But if Q is marked we do a face-split trying to resolve a # difficulty (maybe a visibility cycle). if Q.smooth == 1: # Split P or Q debug("Possibly a cycle detected!\n") debug("Split here!!\n") facelist = HSR.facesplit(P, Q, facelist, nmesh) split_done = 1 break # The question now is: Does Q obscure P? # Test 3bis: Q vertices are all behind the plane of P n = 0 for Qi in Q: d = pSign * HSR.Distance(Vector(Qi), P) if d <= EPS: n += 1 qVerticesBehindPlaneP = (n == len(Q)) if qVerticesBehindPlaneP: debug("\nTest 3bis\n") debug("Q BEHIND P!\n") # Test 4bis: P vertices in front of the plane of Q n = 0 for Pi in P: d = qSign * HSR.Distance(Vector(Pi), Q) if d >= -EPS: n += 1 pVerticesInFrontPlaneQ = (n == len(P)) if pVerticesInFrontPlaneQ: debug("\nTest 4bis\n") debug("P IN FRONT OF Q!\n") # We don't even know if Q does obscure P, so they should # intersect each other, split one of them in two parts. if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ: debug("\nSimple Intersection?\n") debug("Test 3bis or 4bis failed\n") debug("Split here!!2\n") facelist = HSR.facesplit(P, Q, facelist, nmesh) split_done = 1 break facelist.remove(Q) facelist.insert(0, Q) Q.smooth = 1 face_marked = 1 debug("Q marked!\n") break # Write P! if split_done == 0 and face_marked == 0: facelist.remove(P) maplist.append(P) dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg") progress.update() if len(facelist) == 870: dumpfaces([P, Q], "loopdebug.svg") #if facelist == None: # maplist = [P, Q] # print [v.co for v in P] # print [v.co for v in Q] # break # end of while len(facelist) nmesh.faces = maplist #for f in nmesh.faces: # f.sel = 1 nmesh.update() def _doHiddenSurfaceRemoval(self, mesh): """Do HSR for the given mesh. """ if len(mesh.faces) == 0: return if config.polygons['HSR'] == 'PAINTER': print "\nUsing the Painter algorithm for HSR." self.__simpleDepthSort(mesh) elif config.polygons['HSR'] == 'NEWELL': print "\nUsing the Newell's algorithm for HSR." self.__newellDepthSort(mesh) def _doEdgesStyle(self, mesh, edgestyleSelect): """Process Mesh Edges accroding to a given selection style. Examples of algorithms: Contours: given an edge if its adjacent faces have the same normal (that is they are complanar), than deselect it. Silhouettes: given an edge if one its adjacent faces is frontfacing and the other is backfacing, than select it, else deselect. """ Mesh.Mode(Mesh.SelectModes['EDGE']) edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh) for i,edge_faces in enumerate(edge_cache): mesh.edges[i].sel = 0 if edgestyleSelect(edge_faces): mesh.edges[i].sel = 1 """ for e in mesh.edges: e.sel = 0 if edgestyleSelect(e, mesh): e.sel = 1 """ # # --------------------------------------------------------------------- # ## GUI Class and Main Program # # --------------------------------------------------------------------- from Blender import BGL, Draw from Blender.BGL import * class GUI: def _init(): # Output Format menu output_format = config.output['FORMAT'] default_value = outputWriters.keys().index(output_format)+1 GUI.outFormatMenu = Draw.Create(default_value) GUI.evtOutFormatMenu = 0 # Animation toggle button GUI.animToggle = Draw.Create(config.output['ANIMATION']) GUI.evtAnimToggle = 1 # Join Objects toggle button GUI.joinObjsToggle = Draw.Create(config.output['JOIN_OBJECTS']) GUI.evtJoinObjsToggle = 2 # Render filled polygons GUI.polygonsToggle = Draw.Create(config.polygons['SHOW']) # Shading Style menu shading_style = config.polygons['SHADING'] default_value = shadingStyles.keys().index(shading_style)+1 GUI.shadingStyleMenu = Draw.Create(default_value) GUI.evtShadingStyleMenu = 21 GUI.evtPolygonsToggle = 3 # We hide the config.polygons['EXPANSION_TRICK'], for now # Render polygon edges GUI.showEdgesToggle = Draw.Create(config.edges['SHOW']) GUI.evtShowEdgesToggle = 4 # Render hidden edges GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN']) GUI.evtShowHiddenEdgesToggle = 5 # Edge Style menu edge_style = config.edges['STYLE'] default_value = edgeStyles.keys().index(edge_style)+1 GUI.edgeStyleMenu = Draw.Create(default_value) GUI.evtEdgeStyleMenu = 6 # Edge Width slider GUI.edgeWidthSlider = Draw.Create(config.edges['WIDTH']) GUI.evtEdgeWidthSlider = 7 # Edge Color Picker c = config.edges['COLOR'] GUI.edgeColorPicker = Draw.Create(c[0]/255.0, c[1]/255.0, c[2]/255.0) GUI.evtEdgeColorPicker = 71 # Render Button GUI.evtRenderButton = 8 # Exit Button GUI.evtExitButton = 9 def draw(): # initialize static members GUI._init() glClear(GL_COLOR_BUFFER_BIT) glColor3f(0.0, 0.0, 0.0) glRasterPos2i(10, 350) Draw.Text("VRM: Vector Rendering Method script. Version %s." % __version__) glRasterPos2i(10, 335) Draw.Text("Press Q or ESC to quit.") # Build the output format menu glRasterPos2i(10, 310) Draw.Text("Select the output Format:") outMenuStruct = "Output Format %t" for t in outputWriters.keys(): outMenuStruct = outMenuStruct + "|%s" % t GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu, 10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format") # Animation toggle GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle, 10, 260, 160, 18, GUI.animToggle.val, "Toggle rendering of animations") # Join Objects toggle GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle, 10, 235, 160, 18, GUI.joinObjsToggle.val, "Join objects in the rendered file") # Render Button Draw.Button("Render", GUI.evtRenderButton, 10, 210-25, 75, 25+18, "Start Rendering") Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!") # Rendering Styles glRasterPos2i(200, 310) Draw.Text("Rendering Style:") # Render Polygons GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle, 200, 285, 160, 18, GUI.polygonsToggle.val, "Render filled polygons") if GUI.polygonsToggle.val == 1: # Polygon Shading Style shadingStyleMenuStruct = "Shading Style %t" for t in shadingStyles.keys(): shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower() GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu, 200, 260, 160, 18, GUI.shadingStyleMenu.val, "Choose the shading style") # Render Edges GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle, 200, 235, 160, 18, GUI.showEdgesToggle.val, "Render polygon edges") if GUI.showEdgesToggle.val == 1: # Edge Style edgeStyleMenuStruct = "Edge Style %t" for t in edgeStyles.keys(): edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower() GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu, 200, 210, 160, 18, GUI.edgeStyleMenu.val, "Choose the edge style") # Edge size GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider, 200, 185, 140, 18, GUI.edgeWidthSlider.val, 0.0, 10.0, 0, "Change Edge Width") # Edge Color GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker, 342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color") # Show Hidden Edges GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges", GUI.evtShowHiddenEdgesToggle, 200, 160, 160, 18, GUI.showHiddenEdgesToggle.val, "Render hidden edges as dashed lines") glRasterPos2i(10, 160) Draw.Text("%s (c) 2006" % __author__) def event(evt, val): if evt == Draw.ESCKEY or evt == Draw.QKEY: Draw.Exit() else: return Draw.Redraw(1) def button_event(evt): if evt == GUI.evtExitButton: Draw.Exit() elif evt == GUI.evtOutFormatMenu: i = GUI.outFormatMenu.val - 1 config.output['FORMAT']= outputWriters.keys()[i] # Set the new output file global outputfile outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower() elif evt == GUI.evtAnimToggle: config.output['ANIMATION'] = bool(GUI.animToggle.val) elif evt == GUI.evtJoinObjsToggle: config.output['JOIN_OBJECTS'] = bool(GUI.joinObjsToggle.val) elif evt == GUI.evtPolygonsToggle: config.polygons['SHOW'] = bool(GUI.polygonsToggle.val) elif evt == GUI.evtShadingStyleMenu: i = GUI.shadingStyleMenu.val - 1 config.polygons['SHADING'] = shadingStyles.keys()[i] elif evt == GUI.evtShowEdgesToggle: config.edges['SHOW'] = bool(GUI.showEdgesToggle.val) elif evt == GUI.evtShowHiddenEdgesToggle: config.edges['SHOW_HIDDEN'] = bool(GUI.showHiddenEdgesToggle.val) elif evt == GUI.evtEdgeStyleMenu: i = GUI.edgeStyleMenu.val - 1 config.edges['STYLE'] = edgeStyles.keys()[i] elif evt == GUI.evtEdgeWidthSlider: config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val) elif evt == GUI.evtEdgeColorPicker: config.edges['COLOR'] = [int(c*255.0) for c in GUI.edgeColorPicker.val] elif evt == GUI.evtRenderButton: label = "Save %s" % config.output['FORMAT'] # Show the File Selector global outputfile Blender.Window.FileSelector(vectorize, label, outputfile) else: print "Event: %d not handled!" % evt if evt: Draw.Redraw(1) #GUI.conf_debug() def conf_debug(): from pprint import pprint print "\nConfig" pprint(config.output) pprint(config.polygons) pprint(config.edges) _init = staticmethod(_init) draw = staticmethod(draw) event = staticmethod(event) button_event = staticmethod(button_event) conf_debug = staticmethod(conf_debug) # A wrapper function for the vectorizing process def vectorize(filename): """The vectorizing process is as follows: - Instanciate the writer and the renderer - Render! """ if filename == "": print "\nERROR: invalid file name!" return from Blender import Window editmode = Window.EditMode() if editmode: Window.EditMode(0) actualWriter = outputWriters[config.output['FORMAT']] writer = actualWriter(filename) renderer = Renderer() renderer.doRendering(writer, config.output['ANIMATION']) if editmode: Window.EditMode(1) # Here the main if __name__ == "__main__": global progress outputfile = "" basename = Blender.sys.basename(Blender.Get('filename')) if basename != "": outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower() if Blender.mode == 'background': progress = ConsoleProgressIndicator() vectorize(outputfile) else: progress = GraphicalProgressIndicator() Draw.Register(GUI.draw, GUI.event, GUI.button_event)