#!BPY """ Name: 'VRM' Blender: 241 Group: 'Export' Tooltip: 'Vector Rendering Method Export Script 0.3' """ # --------------------------------------------------------------------- # Copyright (c) 2006 Antonio Ospite # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # # --------------------------------------------------------------------- # # NOTE: I do not know who is the original author of 'vrm'. # The present code is almost entirely rewritten from scratch, # but if I have to give credits to anyone, please let me know, # so I can update the copyright. # # --------------------------------------------------------------------- # # Additional credits: # Thanks to Emilio Aguirre for S2flender from which I took inspirations :) # Thanks to Anthony C. D'Agostino for the backface.py script # # --------------------------------------------------------------------- import Blender from Blender import Scene, Object, NMesh, Lamp, Camera from Blender.Mathutils import * from math import * # --------------------------------------------------------------------- # ## Projections classes # # --------------------------------------------------------------------- class Projector: """Calculate the projection of an object given the camera. A projector is useful to so some per-object transformation to obtain the projection of an object given the camera. The main method is #doProjection# see the method description for the parameter list. """ def __init__(self, cameraObj, obMesh, canvasSize): """Calculate the projection matrix. The projection matrix depends, in this case, on the camera settings, and also on object transformation matrix. """ self.size = canvasSize camera = cameraObj.getData() aspect = float(canvasSize[0])/float(canvasSize[1]) near = camera.clipStart far = camera.clipEnd fovy = atan(0.5/aspect/(camera.lens/32)) fovy = fovy * 360/pi # What projection do we want? if camera.type: m2 = self._calcOrthoMatrix(fovy, aspect, near, far, 17) #camera.scale) else: m2 = self._calcPerspectiveMatrix(fovy, aspect, near, far) # View transformation cam = Matrix(cameraObj.getInverseMatrix()) cam.transpose() m1 = Matrix(obMesh.getMatrix()) m1.transpose() mP = cam * m1 mP = m2 * mP self.projectionMatrix = mP ## # Public methods # def doProjection(self, v): """Project the point on the view plane. Given a vertex calculate the projection using the current projection matrix. """ # Note that we need the vertex expressed using homogeneous coordinates p = self.projectionMatrix * Vector([v[0], v[1], v[2], 1.0]) mW = self.size[0]/2 mH = self.size[1]/2 if p[3]<=0: p[0] = round(p[0]*mW)+mW p[1] = round(p[1]*mH)+mH else: p[0] = round((p[0]/p[3])*mW)+mW p[1] = round((p[1]/p[3])*mH)+mH # For now we want (0,0) in the top-left corner of the canvas # Mirror and translate along y p[1] *= -1 p[1] += self.size[1] return p ## # Private methods # def _calcPerspectiveMatrix(self, fovy, aspect, near, far): """Return a perspective projection matrix.""" top = near * tan(fovy * pi / 360.0) bottom = -top left = bottom*aspect right= top*aspect x = (2.0 * near) / (right-left) y = (2.0 * near) / (top-bottom) a = (right+left) / (right-left) b = (top+bottom) / (top - bottom) c = - ((far+near) / (far-near)) d = - ((2*far*near)/(far-near)) m = Matrix( [x, 0.0, a, 0.0], [0.0, y, b, 0.0], [0.0, 0.0, c, d], [0.0, 0.0, -1.0, 0.0]) return m def _calcOrthoMatrix(self, fovy, aspect , near, far, scale): """Return an orthogonal projection matrix.""" top = near * tan(fovy * pi / 360.0) * (scale * 10) bottom = -top left = bottom * aspect right= top * aspect rl = right-left tb = top-bottom fn = near-far tx = -((right+left)/rl) ty = -((top+bottom)/tb) tz = ((far+near)/fn) m = Matrix( [2.0/rl, 0.0, 0.0, tx], [0.0, 2.0/tb, 0.0, ty], [0.0, 0.0, 2.0/fn, tz], [0.0, 0.0, 0.0, 1.0]) return m # --------------------------------------------------------------------- # ## Mesh representation class # # --------------------------------------------------------------------- # TODO: a class to represent the needed properties of a 2D vector image # Just use a NMesh structure? # --------------------------------------------------------------------- # ## Vector Drawing Classes # # --------------------------------------------------------------------- ## A generic Writer class VectorWriter: """ A class for printing output in a vectorial format. Given a 2D representation of the 3D scene the class is responsible to write it is a vector format. Every subclasses of VectorWriter must have at last the following public methods: - printCanvas(mesh) --- where mesh is as specified before. """ def __init__(self, fileName, canvasSize): """Open the file named #fileName# and set the canvas size.""" self.file = open(fileName, "w") print "Outputting to: ", fileName self.canvasSize = canvasSize ## # Public Methods # def printCanvas(mesh): return ## # Private Methods # def _printHeader(): return def _printFooter(): return ## SVG Writer class SVGVectorWriter(VectorWriter): """A concrete class for writing SVG output. The class does not support animations, yet. Sorry. """ def __init__(self, file, canvasSize): """Simply call the parent Contructor.""" VectorWriter.__init__(self, file, canvasSize) ## # Public Methods # def printCanvas(self, scene): """Convert the scene representation to SVG.""" self._printHeader() Objects = scene.getChildren() for obj in Objects: self.file.write("\n") for face in obj.getData().faces: self._printPolygon(face) self.file.write("\n") self._printFooter() ## # Private Methods # def _printHeader(self): """Print SVG header.""" self.file.write("\n") self.file.write("\n\n" % self.canvasSize) def _printFooter(self): """Print the SVG footer.""" self.file.write("\n\n") self.file.close() def _printPolygon(self, face): """Print our primitive, finally. """ wireframe = False stroke_width=0.5 self.file.write("\n") # --------------------------------------------------------------------- # ## Rendering Classes # # --------------------------------------------------------------------- def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ): NewPoint = [] # Rotate X NewY = (PY * cos(AngleX))-(PZ * sin(AngleX)) NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX)) # Rotate Y PZ = NewZ PY = NewY NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY)) NewX = (PX * cos(AngleY))+(PZ * sin(AngleY)) PX = NewX PZ = NewZ # Rotate Z NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ)) NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ)) NewPoint.append(NewX) NewPoint.append(NewY) NewPoint.append(NewZ) return NewPoint class Renderer: """Render a scene viewed from a given camera. This class is responsible of the rendering process, hence transormation and projection of the ojects in the scene are invoked by the renderer. The user can optionally provide a specific camera for the rendering, see the #doRendering# method for more informations. """ def __init__(self): """Set the canvas size to a defaulr value. The only instance attribute here is the canvas size, which can be queryed to the renderer by other entities. """ self.canvasSize = (0.0, 0.0) ## # Public Methods # def getCanvasSize(self): """Return the current canvas size read from Blender rendering context""" return self.canvasSize def doRendering(self, scene, cameraObj=None): """Control the rendering process. Here we control the entire rendering process invoking the operation needed to transforma project the 3D scene in two dimensions. Parameters: scene --- the Blender Scene to render cameraObj --- the camera object to use for the viewing processing """ if cameraObj == None: cameraObj = scene.getCurrentCamera() context = scene.getRenderingContext() self.canvasSize = (context.imageSizeX(), context.imageSizeY()) Objects = scene.getChildren() # A structure to store the transformed scene newscene = Scene.New("flat"+scene.name) for obj in Objects: if (obj.getType() != "Mesh"): print "Type:", obj.getType(), "\tSorry, only mesh Object supported!" continue # Get a projector for this object proj = Projector(cameraObj, obj, self.canvasSize) # Let's store the transformed data transformed_mesh = NMesh.New("flat"+obj.name) transformed_mesh.hasVertexColours(1) # Store the materials materials = obj.getData().getMaterials() meshfaces = obj.getData().faces for face in meshfaces: # if the face is visible flatten it on the "picture plane" if self._isFaceVisible_old(face, obj, cameraObj): # Store transformed face newface = NMesh.Face() for vert in face: p = proj.doProjection(vert.co) tmp_vert = NMesh.Vert(p[0], p[1], p[2]) # Add the vert to the mesh transformed_mesh.verts.append(tmp_vert) newface.v.append(tmp_vert) # Per-face color calculation # code taken mostly from the original vrm script # TODO: understand the code and rewrite it clearly ambient = -150 fakelight = Object.Get("Lamp").loc if fakelight == None: fakelight = [1.0, 1.0, -0.3] norm = Vector(face.no) vektori = (norm[0]*fakelight[0]+norm[1]*fakelight[1]+norm[2]*fakelight[2]) vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(fakelight[0],2)+pow(fakelight[1],2)+pow(fakelight[2],2))) intensity = floor(ambient + 200*acos(vektori/vduzine))/200 if intensity < 0: intensity = 0 if materials: tmp_col = materials[face.mat].getRGBCol() else: tmp_col = [0.5, 0.5, 0.5] tmp_col = [ (c>intensity) and int(round((c-intensity)*10)*25.5) for c in tmp_col ] vcol = NMesh.Col(tmp_col[0], tmp_col[1], tmp_col[2]) newface.col = [vcol, vcol, vcol, 255] transformed_mesh.addFace(newface) # at the end of the loop on obj transformed_obj = Object.New(obj.getType(), "flat"+obj.name) transformed_obj.link(transformed_mesh) transformed_obj.loc = obj.loc newscene.link(transformed_obj) return newscene ## # Private Methods # def _isFaceVisible_old(self, face, obj, cameraObj): """Determine if the face is visible from the current camera. The following code is taken basicly from the original vrm script. """ camera = cameraObj numvert = len(face) # backface culling # translate and rotate according to the object matrix # and then translate according to the camera position #m = obj.getMatrix() #m.transpose() #a = m*Vector(face[0]) - Vector(cameraObj.loc) #b = m*Vector(face[1]) - Vector(cameraObj.loc) #c = m*Vector(face[numvert-1]) - Vector(cameraObj.loc) a = [] a.append(face[0][0]) a.append(face[0][1]) a.append(face[0][2]) a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ) a[0] += obj.LocX - camera.LocX a[1] += obj.LocY - camera.LocY a[2] += obj.LocZ - camera.LocZ b = [] b.append(face[1][0]) b.append(face[1][1]) b.append(face[1][2]) b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ) b[0] += obj.LocX - camera.LocX b[1] += obj.LocY - camera.LocY b[2] += obj.LocZ - camera.LocZ c = [] c.append(face[numvert-1][0]) c.append(face[numvert-1][1]) c.append(face[numvert-1][2]) c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ) c[0] += obj.LocX - camera.LocX c[1] += obj.LocY - camera.LocY c[2] += obj.LocZ - camera.LocZ norm = [0, 0, 0] norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2]) norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2])) norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1]) d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2] #d = DotVecs(Vector(norm), Vector(a)) return (d<0) def _isFaceVisible(self, face, obj, cameraObj): """Determine if the face is visible from the current camera. The following code is taken basicly from the original vrm script. """ camera = cameraObj numvert = len(face) # backface culling # translate and rotate according to the object matrix # and then translate according to the camera position m = obj.getMatrix() m.transpose() a = m*Vector(face[0]) - Vector(cameraObj.loc) b = m*Vector(face[1]) - Vector(cameraObj.loc) c = m*Vector(face[numvert-1]) - Vector(cameraObj.loc) norm = m*Vector(face.no) d = DotVecs(norm, a) return (d<0) def _doClipping(face): return # --------------------------------------------------------------------- # ## Main Program # # --------------------------------------------------------------------- # FIXME: really hackish code, just to test if the other parts work def depthSorting(scene): cameraObj = Scene.GetCurrent().getCurrentCamera() Objects = scene.getChildren() Objects.sort(lambda obj1, obj2: cmp(Vector(Vector(cameraObj.loc) - Vector(obj1.loc)).length, Vector(Vector(cameraObj.loc) - Vector(obj2.loc)).length ) ) # hackish sorting of faces according to the max z value of a vertex for o in Objects: mesh = o.data mesh.faces.sort( lambda f1, f2: # Sort faces according to the min z coordinate in a face #cmp(min([v[2] for v in f1]), min([v[2] for v in f2]))) # Sort faces according to the max z coordinate in a face cmp(max([v[2] for v in f1]), max([v[2] for v in f2]))) # Sort faces according to the avg z coordinate in a face #cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2))) mesh.faces.reverse() mesh.update() # update the scene for o in scene.getChildren(): scene.unlink(o) for o in Objects: scene.link(o) def vectorize(filename): print "Filename: %s" % filename scene = Scene.GetCurrent() renderer = Renderer() flatScene = renderer.doRendering(scene) canvasSize = renderer.getCanvasSize() depthSorting(flatScene) writer = SVGVectorWriter(filename, canvasSize) writer.printCanvas(flatScene) Blender.Scene.unlink(flatScene) del flatScene # Here the main if __name__ == "__main__": try: Blender.Window.FileSelector (vectorize, 'Save SVG', "proba.svg") except: vectorize("proba.svg")