#!BPY
"""
Name: 'VRM'
Blender: 245
Group: 'Render'
Tooltip: 'Vector Rendering Method script'
"""
__author__ = "Antonio Ospite"
__url__ = ["http://vrm.ao2.it"]
__version__ = "0.3"
__bpydoc__ = """\
Render the scene and save the result in vector format.
"""
# ---------------------------------------------------------------------
# Copyright (c) 2006, 2007, 2008, 2009, 2012 Antonio Ospite
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#
# ---------------------------------------------------------------------
#
# Additional credits:
# Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
# Thanks to Nikola Radovanovic, the author of the original VRM script,
# the code you read here has been rewritten _almost_ entirely
# from scratch but Nikola gave me the idea, so I thank him publicly.
#
# ---------------------------------------------------------------------
#
# Things TODO for a next release:
# - Shadeless shader
# - FIX the issue with negative scales in object tranformations!
# - Use a better depth sorting algorithm
# - Review how selections are made (this script uses selection states of
# primitives to represent visibility infos)
# - Use a data structure other than Mesh to represent the 2D image?
# Think to a way to merge (adjacent) polygons that have the same color.
# Or a way to use paths for silhouettes and contours.
# - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
# not support SMIL for animations)
# - Switch to the Mesh structure, should be considerably faster
# (partially done, but with Mesh we cannot sort faces, yet)
# - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
# - Implement Shading Styles? (partially done, to make more flexible).
# - Add Vector Writers other than SVG.
# - set the background color!
# - Check memory use!!
#
# ---------------------------------------------------------------------
import Blender
from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
from Blender.Mathutils import *
from math import *
import sys
import time
try:
set()
except NameError:
from sets import Set as set
def uniq(alist):
tmpdict = dict()
return [tmpdict.setdefault(e, e) for e in alist if e not in tmpdict]
# in python > 2.4 we ca use the following
#return [ u for u in alist if u not in locals()['_[1]'] ]
# Constants
EPS = 10e-5
# We use a global progress Indicator Object
progress = None
# Config class for global settings
class config:
polygons = dict()
polygons['SHOW'] = True
polygons['SHADING'] = 'FLAT' # FLAT or TOON
polygons['HSR'] = 'PAINTER' # PAINTER or NEWELL
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
polygons['TOON_LEVELS'] = 2
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
output = dict()
output['FORMAT'] = 'SVG'
output['ANIMATION'] = False
output['JOIN_OBJECTS'] = True
def saveToRegistry():
registry = {}
for k, v in config.__dict__.iteritems():
# config class store settings in dictionaries
if v.__class__ == dict().__class__:
regkey_prefix = k.upper() + "_"
for opt_k, opt_v in v.iteritems():
regkey = regkey_prefix + opt_k
registry[regkey] = opt_v
Blender.Registry.SetKey('VRM', registry, True)
saveToRegistry = staticmethod(saveToRegistry)
def loadFromRegistry():
registry = Blender.Registry.GetKey('VRM', True)
if not registry:
return
for k, v in registry.iteritems():
k_tmp = k.split('_')
conf_attr = k_tmp[0].lower()
conf_key = str.join("_", k_tmp[1:])
conf_val = v
if conf_attr in config.__dict__:
config.__dict__[conf_attr][conf_key] = conf_val
loadFromRegistry = staticmethod(loadFromRegistry)
# Utility functions
print_debug = False
def dumpfaces(flist, filename):
"""Dump a single face to a file.
"""
if not print_debug:
return
class tmpmesh:
pass
m = tmpmesh()
m.faces = flist
writerobj = SVGVectorWriter(filename)
writerobj.open()
writerobj._printPolygons(m)
writerobj.close()
def debug(msg):
if print_debug:
sys.stderr.write(msg)
def EQ(v1, v2):
return (abs(v1[0] - v2[0]) < EPS and
abs(v1[1] - v2[1]) < EPS)
by_furthest_z = (lambda f1, f2:
cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
)
def sign(x):
if x < -EPS:
#if x < 0:
return -1
elif x > EPS:
#elif x > 0:
return 1
else:
return 0
# ---------------------------------------------------------------------
#
## HSR Utility class
#
# ---------------------------------------------------------------------
EPS = 10e-5
INF = 10e5
class HSR:
"""A utility class for HSR processing.
"""
def is_nonplanar_quad(face):
"""Determine if a quad is non-planar.
From: http://mathworld.wolfram.com/Coplanar.html
Geometric objects lying in a common plane are said to be coplanar.
Three noncollinear points determine a plane and so are trivially
coplanar. Four points are coplanar iff the volume of the tetrahedron
defined by them is 0,
| x_1 y_1 z_1 1 |
| x_2 y_2 z_2 1 |
| x_3 y_3 z_3 1 |
| x_4 y_4 z_4 1 | == 0
Coplanarity is equivalent to the statement that the pair of lines
determined by the four points are not skew, and can be equivalently
stated in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
An arbitrary number of n points x_1, ..., x_n can be tested for
coplanarity by finding the point-plane distances of the points
x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
and checking if they are all zero.
If so, the points are all coplanar.
We here check only for 4-point complanarity.
"""
n = len(face)
# assert(n>4)
if n < 3 or n > 4:
print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
raise AssertionError
elif n == 3:
# three points must be complanar
return False
else: # n == 4
x1 = Vector(face[0].co)
x2 = Vector(face[1].co)
x3 = Vector(face[2].co)
x4 = Vector(face[3].co)
v = (x3 - x1) * CrossVecs((x2 - x1), (x4 - x3))
if v != 0:
return True
return False
is_nonplanar_quad = staticmethod(is_nonplanar_quad)
def pointInPolygon(poly, v):
return False
pointInPolygon = staticmethod(pointInPolygon)
def edgeIntersection(s1, s2, do_perturbate=False):
(x1, y1) = s1[0].co[0], s1[0].co[1]
(x2, y2) = s1[1].co[0], s1[1].co[1]
(x3, y3) = s2[0].co[0], s2[0].co[1]
(x4, y4) = s2[1].co[0], s2[1].co[1]
#z1 = s1[0].co[2]
#z2 = s1[1].co[2]
#z3 = s2[0].co[2]
#z4 = s2[1].co[2]
# calculate delta values (vector components)
dx1 = x2 - x1
dx2 = x4 - x3
dy1 = y2 - y1
dy2 = y4 - y3
#dz1 = z2 - z1
#dz2 = z4 - z3
C = dy2 * dx1 - dx2 * dy1 # cross product
if C == 0: # parallel
return None
dx3 = x1 - x3 # combined origin offset vector
dy3 = y1 - y3
a1 = (dy3 * dx2 - dx3 * dy2) / C
a2 = (dy3 * dx1 - dx3 * dy1) / C
# check for degeneracies
#print_debug("\n")
#print_debug(str(a1)+"\n")
#print_debug(str(a2)+"\n\n")
if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
# Intersection on boundaries, we consider the point external?
return None
elif (a1 > 0.0 and a1 < 1.0 and a2 > 0.0 and a2 < 1.0): # lines cross
x = x1 + a1 * dx1
y = y1 + a1 * dy1
#z = z1 + a1 * dz1
z = 0
return (NMesh.Vert(x, y, z), a1, a2)
else:
# lines have intersections but not those segments
return None
edgeIntersection = staticmethod(edgeIntersection)
def isVertInside(self, v):
winding_number = 0
coincidence = False
# Create point at infinity
point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
for i in range(len(self.v)):
s1 = (point_at_infinity, v)
s2 = (self.v[i - 1], self.v[i])
if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
coincidence = True
if HSR.edgeIntersection(s1, s2, do_perturbate=False):
winding_number += 1
# Check even or odd
if (winding_number % 2) == 0:
return False
else:
if coincidence:
return False
return True
isVertInside = staticmethod(isVertInside)
def det(a, b, c):
return ((b[0] - a[0]) * (c[1] - a[1]) -
(b[1] - a[1]) * (c[0] - a[0]))
det = staticmethod(det)
def pointInPolygon(q, P):
is_in = False
point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
det = HSR.det
for i in range(len(P.v)):
p0 = P.v[i - 1]
p1 = P.v[i]
if (det(q.co, point_at_infinity.co, p0.co) < 0) != (det(q.co, point_at_infinity.co, p1.co) < 0):
if det(p0.co, p1.co, q.co) == 0:
#print "On Boundary"
return False
elif (det(p0.co, p1.co, q.co) < 0) != (det(p0.co, p1.co, point_at_infinity.co) < 0):
is_in = not is_in
return is_in
pointInPolygon = staticmethod(pointInPolygon)
def projectionsOverlap(f1, f2):
""" If you have nonconvex, but still simple polygons, an acceptable method
is to iterate over all vertices and perform the Point-in-polygon test[1].
The advantage of this method is that you can compute the exact
intersection point and collision normal that you will need to simulate
collision. When you have the point that lies inside the other polygon, you
just iterate over all edges of the second polygon again and look for edge
intersections. Note that this method detects collsion when it already
happens. This algorithm is fast enough to perform it hundreds of times per
sec. """
for i in range(len(f1.v)):
# If a point of f1 in inside f2, there is an overlap!
v1 = f1.v[i]
#if HSR.isVertInside(f2, v1):
if HSR.pointInPolygon(v1, f2):
return True
# If not the polygon can be ovelap as well, so we check for
# intersection between an edge of f1 and all the edges of f2
v0 = f1.v[i - 1]
for j in range(len(f2.v)):
v2 = f2.v[j - 1]
v3 = f2.v[j]
e1 = v0, v1
e2 = v2, v3
intrs = HSR.edgeIntersection(e1, e2)
if intrs:
#print_debug(str(v0.co) + " " + str(v1.co) + " " +
# str(v2.co) + " " + str(v3.co) )
#print_debug("\nIntersection\n")
return True
return False
projectionsOverlap = staticmethod(projectionsOverlap)
def midpoint(p1, p2):
"""Return the midpoint of two vertices.
"""
m = MidpointVecs(Vector(p1), Vector(p2))
mv = NMesh.Vert(m[0], m[1], m[2])
return mv
midpoint = staticmethod(midpoint)
def facesplit(P, Q, facelist, nmesh):
"""Split P or Q according to the strategy illustrated in the Newell's
paper.
"""
by_furthest_z = (lambda f1, f2:
cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
)
# Choose if split P on Q plane or vice-versa
n = 0
for Pi in P:
d = HSR.Distance(Vector(Pi), Q)
if d <= EPS:
n += 1
pIntersectQ = (n != len(P))
n = 0
for Qi in Q:
d = HSR.Distance(Vector(Qi), P)
if d >= -EPS:
n += 1
qIntersectP = (n != len(Q))
newfaces = []
# 1. If parts of P lie in both half-spaces of Q
# then splice P in two with the plane of Q
if pIntersectQ:
#print "We split P"
f = P
plane = Q
newfaces = HSR.splitOn(plane, f)
# 2. Else if parts of Q lie in both half-space of P
# then splice Q in two with the plane of P
if qIntersectP and newfaces == None:
#print "We split Q"
f = Q
plane = P
newfaces = HSR.splitOn(plane, f)
#print "After"
# 3. Else slice P in half through the mid-point of
# the longest pair of opposite sides
if newfaces == None:
print "We ignore P..."
facelist.remove(P)
return facelist
#f = P
#if len(P)==3:
# v1 = midpoint(f[0], f[1])
# v2 = midpoint(f[1], f[2])
#if len(P)==4:
# v1 = midpoint(f[0], f[1])
# v2 = midpoint(f[2], f[3])
#vec3 = (Vector(v2)+10*Vector(f.normal))
#
#v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
#plane = NMesh.Face([v1, v2, v3])
#
#newfaces = splitOn(plane, f)
if newfaces == None:
print "Big FAT problem, we weren't able to split POLYGONS!"
raise AssertionError
#print newfaces
if newfaces:
#for v in f:
# if v not in plane and v in nmesh.verts:
# nmesh.verts.remove(v)
for nf in newfaces:
nf.mat = f.mat
nf.sel = f.sel
nf.col = [f.col[0]] * len(nf.v)
nf.smooth = 0
for v in nf:
nmesh.verts.append(v)
# insert pieces in the list
facelist.append(nf)
facelist.remove(f)
# and resort the faces
facelist.sort(by_furthest_z)
facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
facelist.reverse()
#print [ f.smooth for f in facelist ]
return facelist
facesplit = staticmethod(facesplit)
def isOnSegment(v1, v2, p, extremes_internal=False):
"""Check if point p is in segment v1v2.
"""
l1 = (v1 - p).length
l2 = (v2 - p).length
# Should we consider extreme points as internal ?
# The test:
# if p == v1 or p == v2:
if l1 < EPS or l2 < EPS:
return extremes_internal
l = (v1 - v2).length
# if the sum of l1 and l2 is circa l, then the point is on segment,
if abs(l - (l1 + l2)) < EPS:
return True
else:
return False
isOnSegment = staticmethod(isOnSegment)
def Distance(point, face):
""" Calculate the distance between a point and a face.
An alternative but more expensive method can be:
ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
Vector(face.no), Vector(point), 0)
d = Vector(ip - point).length
See: http://mathworld.wolfram.com/Point-PlaneDistance.html
"""
p = Vector(point)
plNormal = Vector(face.no)
plVert0 = Vector(face.v[0])
d = (plVert0 * plNormal) - (p * plNormal)
#d = plNormal * (plVert0 - p)
#print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
return d
Distance = staticmethod(Distance)
def makeFaces(vl):
#
# make one or two new faces based on a list of vertex-indices
#
newfaces = []
if len(vl) <= 4:
nf = NMesh.Face()
for v in vl:
nf.v.append(v)
newfaces.append(nf)
else:
nf = NMesh.Face()
nf.v.append(vl[0])
nf.v.append(vl[1])
nf.v.append(vl[2])
nf.v.append(vl[3])
newfaces.append(nf)
nf = NMesh.Face()
nf.v.append(vl[3])
nf.v.append(vl[4])
nf.v.append(vl[0])
newfaces.append(nf)
return newfaces
makeFaces = staticmethod(makeFaces)
def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
"""Split P using the plane of Q.
Logic taken from the knife.py python script
"""
# Check if P and Q are parallel
u = CrossVecs(Vector(Q.no), Vector(P.no))
ax = abs(u[0])
ay = abs(u[1])
az = abs(u[2])
if (ax + ay + az) < EPS:
print "PARALLEL planes!!"
return
# The final aim is to find the intersection line between P
# and the plane of Q, and split P along this line
nP = len(P.v)
# Calculate point-plane Distance between vertices of P and plane Q
d = []
for i in range(0, nP):
d.append(HSR.Distance(P.v[i], Q))
newVertList = []
posVertList = []
negVertList = []
for i in range(nP):
d0 = d[i - 1]
V0 = P.v[i - 1]
d1 = d[i]
V1 = P.v[i]
#print "d0:", d0, "d1:", d1
# if the vertex lies in the cutplane
if abs(d1) < EPS:
#print "d1 On cutplane"
posVertList.append(V1)
negVertList.append(V1)
else:
# if the previous vertex lies in cutplane
if abs(d0) < EPS:
#print "d0 on Cutplane"
if d1 > 0:
#print "d1 on positive Halfspace"
posVertList.append(V1)
else:
#print "d1 on negative Halfspace"
negVertList.append(V1)
else:
# if they are on the same side of the plane
if (d1 * d0) > 0:
#print "On the same half-space"
if d1 > 0:
#print "d1 on positive Halfspace"
posVertList.append(V1)
else:
#print "d1 on negative Halfspace"
negVertList.append(V1)
# the vertices are not on the same side of the plane, so we have an intersection
else:
#print "Intersection"
e = Vector(V0), Vector(V1)
tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
inters = Intersect(tri[0], tri[1], tri[2], e[1] - e[0], e[0], 0)
if inters == None:
print "Split Break"
break
#print "Intersection", inters
nv = NMesh.Vert(inters[0], inters[1], inters[2])
newVertList.append(nv)
posVertList.append(nv)
negVertList.append(nv)
if d1 > 0:
posVertList.append(V1)
else:
negVertList.append(V1)
# uniq for python > 2.4
#posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
#negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
# a more portable way
posVertList = uniq(posVertList)
negVertList = uniq(negVertList)
# If vertex are all on the same half-space, return
#if len(posVertList) < 3:
# print "Problem, we created a face with less that 3 vertices??"
# posVertList = []
#if len(negVertList) < 3:
# print "Problem, we created a face with less that 3 vertices??"
# negVertList = []
if len(posVertList) < 3 or len(negVertList) < 3:
#print "RETURN NONE, SURE???"
return None
if not return_positive_faces:
posVertList = []
if not return_negative_faces:
negVertList = []
newfaces = HSR.addNewFaces(posVertList, negVertList)
return newfaces
splitOn = staticmethod(splitOn)
def addNewFaces(posVertList, negVertList):
# Create new faces resulting from the split
outfaces = []
if len(posVertList) or len(negVertList):
#newfaces = [posVertList] + [negVertList]
newfaces = ([[NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
[[NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]])
for nf in newfaces:
if nf and len(nf) > 2:
outfaces += HSR.makeFaces(nf)
return outfaces
addNewFaces = staticmethod(addNewFaces)
# ---------------------------------------------------------------------
#
## Mesh Utility class
#
# ---------------------------------------------------------------------
class MeshUtils:
def buildEdgeFaceUsersCache(me):
'''
Takes a mesh and returns a list aligned with the meshes edges.
Each item is a list of the faces that use the edge
would be the equiv for having ed.face_users as a property
Taken from .blender/scripts/bpymodules/BPyMesh.py,
thanks to ideasman_42.
'''
def sorted_edge_indicies(ed):
i1 = ed.v1.index
i2 = ed.v2.index
if i1 > i2:
i1, i2 = i2, i1
return i1, i2
face_edges_dict = dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
for f in me.faces:
fvi = [v.index for v in f.v] # face vert idx's
for i in xrange(len(f)):
i1 = fvi[i]
i2 = fvi[i - 1]
if i1 > i2:
i1, i2 = i2, i1
face_edges_dict[i1, i2][1].append(f)
face_edges = [None] * len(me.edges)
for ed_index, ed_faces in face_edges_dict.itervalues():
face_edges[ed_index] = ed_faces
return face_edges
def isMeshEdge(adjacent_faces):
"""Mesh edge rule.
A mesh edge is visible if _at_least_one_ of its adjacent faces is selected.
Note: if the edge has no adjacent faces we want to show it as well,
useful for "edge only" portion of objects.
"""
if len(adjacent_faces) == 0:
return True
selected_faces = [f for f in adjacent_faces if f.sel]
if len(selected_faces) != 0:
return True
else:
return False
def isSilhouetteEdge(adjacent_faces):
"""Silhuette selection rule.
An edge is a silhuette edge if it is shared by two faces with
different selection status or if it is a boundary edge of a selected
face.
"""
if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or
(len(adjacent_faces) == 2 and
adjacent_faces[0].sel != adjacent_faces[1].sel)
):
return True
else:
return False
buildEdgeFaceUsersCache = staticmethod(buildEdgeFaceUsersCache)
isMeshEdge = staticmethod(isMeshEdge)
isSilhouetteEdge = staticmethod(isSilhouetteEdge)
# ---------------------------------------------------------------------
#
## Shading Utility class
#
# ---------------------------------------------------------------------
class ShadingUtils:
shademap = None
def toonShadingMapSetup():
levels = config.polygons['TOON_LEVELS']
texels = 2 * levels - 1
tmp_shademap = [0.0] + [(i) / float(texels - 1) for i in xrange(1, texels - 1)] + [1.0]
return tmp_shademap
def toonShading(u):
shademap = ShadingUtils.shademap
if not shademap:
shademap = ShadingUtils.toonShadingMapSetup()
v = 1.0
for i in xrange(0, len(shademap) - 1):
pivot = (shademap[i] + shademap[i + 1]) / 2.0
j = int(u > pivot)
v = shademap[i + j]
if v < shademap[i + 1]:
return v
return v
toonShadingMapSetup = staticmethod(toonShadingMapSetup)
toonShading = staticmethod(toonShading)
# ---------------------------------------------------------------------
#
## Projections classes
#
# ---------------------------------------------------------------------
class Projector:
"""Calculate the projection of an object given the camera.
A projector is useful to so some per-object transformation to obtain the
projection of an object given the camera.
The main method is #doProjection# see the method description for the
parameter list.
"""
def __init__(self, cameraObj, canvasRatio):
"""Calculate the projection matrix.
The projection matrix depends, in this case, on the camera settings.
TAKE CARE: This projector expects vertices in World Coordinates!
"""
camera = cameraObj.getData()
aspect = float(canvasRatio[0]) / float(canvasRatio[1])
near = camera.clipStart
far = camera.clipEnd
scale = float(camera.scale)
fovy = atan(0.5 / aspect / (camera.lens / 32))
fovy = fovy * 360.0 / pi
if Blender.Get('version') < 243:
camPersp = 0
camOrtho = 1
else:
camPersp = 'persp'
camOrtho = 'ortho'
# What projection do we want?
if camera.type == camPersp:
mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
elif camera.type == camOrtho:
mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
# View transformation
cam = Matrix(cameraObj.getInverseMatrix())
cam.transpose()
mP = mP * cam
self.projectionMatrix = mP
##
# Public methods
#
def doProjection(self, v):
"""Project the point on the view plane.
Given a vertex calculate the projection using the current projection
matrix.
"""
# Note that we have to work on the vertex using homogeneous coordinates
# From blender 2.42+ we don't need to resize the vector to be 4d
# when applying a 4x4 matrix, but we do that anyway since we need the
# 4th coordinate later
p = self.projectionMatrix * Vector(v).resize4D()
# Perspective division
if p[3] != 0:
p[0] = p[0] / p[3]
p[1] = p[1] / p[3]
p[2] = p[2] / p[3]
# restore the size
p[3] = 1.0
p.resize3D()
return p
##
# Private methods
#
def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
"""Return a perspective projection matrix.
"""
top = near * tan(fovy * pi / 360.0)
bottom = -top
left = bottom * aspect
right = top * aspect
x = (2.0 * near) / (right - left)
y = (2.0 * near) / (top - bottom)
a = (right + left) / (right - left)
b = (top + bottom) / (top - bottom)
c = - ((far + near) / (far - near))
d = - ((2 * far * near) / (far - near))
m = Matrix(
[x, 0.0, a, 0.0],
[0.0, y, b, 0.0],
[0.0, 0.0, c, d],
[0.0, 0.0, -1.0, 0.0])
return m
def _calcOrthoMatrix(self, fovy, aspect, near, far, scale):
"""Return an orthogonal projection matrix.
"""
# The 11 in the formula was found emiprically
top = near * tan(fovy * pi / 360.0) * (scale * 11)
bottom = -top
left = bottom * aspect
right = top * aspect
rl = right - left
tb = top - bottom
fn = near - far
tx = -((right + left) / rl)
ty = -((top + bottom) / tb)
tz = ((far + near) / fn)
m = Matrix(
[2.0 / rl, 0.0, 0.0, tx],
[0.0, 2.0 / tb, 0.0, ty],
[0.0, 0.0, 2.0 / fn, tz],
[0.0, 0.0, 0.0, 1.0])
return m
# ---------------------------------------------------------------------
#
## Progress Indicator
#
# ---------------------------------------------------------------------
class Progress:
"""A model for a progress indicator.
Do the progress calculation calculation and
the view independent stuff of a progress indicator.
"""
def __init__(self, steps=0):
self.name = ""
self.steps = steps
self.completed = 0
self.progress = 0
def setSteps(self, steps):
"""Set the number of steps of the activity wich we want to track.
"""
self.steps = steps
def getSteps(self):
return self.steps
def setName(self, name):
"""Set the name of the activity wich we want to track.
"""
self.name = name
def getName(self):
return self.name
def getProgress(self):
return self.progress
def reset(self):
self.completed = 0
self.progress = 0
def update(self):
"""Update the model, call this method when one step is completed.
"""
if self.progress == 100:
return False
self.completed += 1
self.progress = (float(self.completed) / float(self.steps)) * 100
self.progress = int(self.progress)
return True
class ProgressIndicator:
"""An abstraction of a View for the Progress Model
"""
def __init__(self):
# Use a refresh rate so we do not show the progress at
# every update, but every 'self.refresh_rate' times.
self.refresh_rate = 10
self.shows_counter = 0
self.quiet = False
self.progressModel = None
def setQuiet(self, value):
self.quiet = value
def setActivity(self, name, steps):
"""Initialize the Model.
In a future version (with subactivities-progress support) this method
could only set the current activity.
"""
self.progressModel = Progress()
self.progressModel.setName(name)
self.progressModel.setSteps(steps)
def getActivity(self):
return self.progressModel
def update(self):
"""Update the model and show the actual progress.
"""
assert(self.progressModel)
if self.progressModel.update():
if self.quiet:
return
self.show(self.progressModel.getProgress(),
self.progressModel.getName())
# We return always True here so we can call the update() method also
# from lambda funcs (putting the call in logical AND with other ops)
return True
def show(self, progress, name=""):
self.shows_counter = (self.shows_counter + 1) % self.refresh_rate
if self.shows_counter != 0:
return
if progress == 100:
self.shows_counter = -1
class ConsoleProgressIndicator(ProgressIndicator):
"""Show a progress bar on stderr, a la wget.
"""
def __init__(self):
ProgressIndicator.__init__(self)
self.swirl_chars = ["-", "\\", "|", "/"]
self.swirl_count = -1
def show(self, progress, name):
ProgressIndicator.show(self, progress, name)
bar_length = 70
bar_progress = int((progress / 100.0) * bar_length)
bar = ("=" * bar_progress).ljust(bar_length)
self.swirl_count = (self.swirl_count + 1) % len(self.swirl_chars)
swirl_char = self.swirl_chars[self.swirl_count]
progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress)
sys.stderr.write(progress_bar + "\r")
if progress == 100:
sys.stderr.write("\n")
class GraphicalProgressIndicator(ProgressIndicator):
"""Interface to the Blender.Window.DrawProgressBar() method.
"""
def __init__(self):
ProgressIndicator.__init__(self)
#self.swirl_chars = ["-", "\\", "|", "/"]
# We have to use letters with the same width, for now!
# Blender progress bar considers the font widths when
# calculating the progress bar width.
self.swirl_chars = ["\\", "/"]
self.swirl_count = -1
def show(self, progress, name):
ProgressIndicator.show(self, progress)
self.swirl_count = (self.swirl_count + 1) % len(self.swirl_chars)
swirl_char = self.swirl_chars[self.swirl_count]
progress_text = "%s - %c %3d%%" % (name, swirl_char, progress)
# Finally draw the Progress Bar
Window.WaitCursor(1) # Maybe we can move that call in the constructor?
Window.DrawProgressBar(progress / 100.0, progress_text)
if progress == 100:
Window.DrawProgressBar(1, progress_text)
Window.WaitCursor(0)
# ---------------------------------------------------------------------
#
## 2D Object representation class
#
# ---------------------------------------------------------------------
# TODO: a class to represent the needed properties of a 2D vector image
# For now just using a [N]Mesh structure.
# ---------------------------------------------------------------------
#
## Vector Drawing Classes
#
# ---------------------------------------------------------------------
## A generic Writer
class VectorWriter:
"""
A class for printing output in a vectorial format.
Given a 2D representation of the 3D scene the class is responsible to
write it is a vector format.
Every subclasses of VectorWriter must have at last the following public
methods:
- open(self)
- close(self)
- printCanvas(self, scene,
doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
"""
def __init__(self, fileName):
"""Set the output file name and other properties"""
try:
config.writer
except:
config.writer = dict()
config.writer['SETTING'] = True
self.outputFileName = fileName
context = Scene.GetCurrent().getRenderingContext()
self.canvasSize = (context.imageSizeX(), context.imageSizeY())
self.fps = context.fps
self.startFrame = 1
self.endFrame = 1
self.animation = False
##
# Public Methods
#
def open(self, startFrame=1, endFrame=1):
if startFrame != endFrame:
self.startFrame = startFrame
self.endFrame = endFrame
self.animation = True
print "Outputting to: ", self.outputFileName
return
def close(self):
return
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
"""This is the interface for the needed printing routine.
"""
return
## SVG Writer
class SVGVectorWriter(VectorWriter):
"""A concrete class for writing SVG output.
"""
def __init__(self, fileName):
"""Simply call the parent Contructor.
"""
VectorWriter.__init__(self, fileName)
self.file = None
##
# Public Methods
#
def open(self, startFrame=1, endFrame=1):
"""Do some initialization operations.
"""
VectorWriter.open(self, startFrame, endFrame)
self.file = open(self.outputFileName, "w")
self._printHeader()
def close(self):
"""Do some finalization operation.
"""
self._printFooter()
if self.file:
self.file.close()
# remember to call the close method of the parent as last
VectorWriter.close(self)
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
"""Convert the scene representation to SVG.
"""
Objects = scene.objects
context = scene.getRenderingContext()
framenumber = context.currentFrame()
if self.animation:
framestyle = "display:none"
else:
framestyle = "display:block"
# Assign an id to this group so we can set properties on it using DOM
self.file.write("\n" %
(framenumber, framestyle))
for obj in Objects:
if obj.getType() != 'Mesh':
continue
self.file.write("\n" % obj.getName())
mesh = obj.getData(mesh=1)
if doPrintPolygons:
self._printPolygons(mesh)
if doPrintEdges:
self._printEdges(mesh, showHiddenEdges)
self.file.write("\n")
self.file.write("\n")
##
# Private Methods
#
def _calcCanvasCoord(self, v):
"""Convert vertex in scene coordinates to canvas coordinates.
"""
pt = Vector([0, 0, 0])
mW = float(self.canvasSize[0]) / 2.0
mH = float(self.canvasSize[1]) / 2.0
# rescale to canvas size
pt[0] = v.co[0] * mW + mW
pt[1] = v.co[1] * mH + mH
pt[2] = v.co[2]
# For now we want (0,0) in the top-left corner of the canvas.
# Mirror and translate along y
pt[1] *= -1
pt[1] += self.canvasSize[1]
return pt
def _printHeader(self):
"""Print SVG header."""
self.file.write("\n")
self.file.write("\n")
self.file.write("\n")
def _printPolygons(self, mesh):
"""Print the selected (visible) polygons.
"""
if len(mesh.faces) == 0:
return
self.file.write("\n")
for face in mesh.faces:
if not face.sel:
continue
self.file.write("\n")
self.file.write("\n")
def _printEdges(self, mesh, showHiddenEdges=False):
"""Print the wireframe using mesh edges.
"""
stroke_width = config.edges['WIDTH']
stroke_col = config.edges['COLOR']
self.file.write("\n")
for e in mesh.edges:
hidden_stroke_style = ""
if e.sel == 0:
if showHiddenEdges == False:
continue
else:
hidden_stroke_style = ";\n stroke-dasharray:3, 3"
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
self.file.write("\n")
self.file.write("\n")
## SWF Writer
try:
from ming import *
SWFSupported = True
except:
SWFSupported = False
class SWFVectorWriter(VectorWriter):
"""A concrete class for writing SWF output.
"""
def __init__(self, fileName):
"""Simply call the parent Contructor.
"""
VectorWriter.__init__(self, fileName)
self.movie = None
self.sprite = None
##
# Public Methods
#
def open(self, startFrame=1, endFrame=1):
"""Do some initialization operations.
"""
VectorWriter.open(self, startFrame, endFrame)
self.movie = SWFMovie()
self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
if self.animation:
self.movie.setRate(self.fps)
numframes = endFrame - startFrame + 1
self.movie.setFrames(numframes)
def close(self):
"""Do some finalization operation.
"""
self.movie.save(self.outputFileName)
# remember to call the close method of the parent
VectorWriter.close(self)
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
"""Convert the scene representation to SVG.
"""
context = scene.getRenderingContext()
framenumber = context.currentFrame()
Objects = scene.objects
if self.sprite:
self.movie.remove(self.sprite)
sprite = SWFSprite()
for obj in Objects:
if(obj.getType() != 'Mesh'):
continue
mesh = obj.getData(mesh=1)
if doPrintPolygons:
self._printPolygons(mesh, sprite)
if doPrintEdges:
self._printEdges(mesh, sprite, showHiddenEdges)
sprite.nextFrame()
i = self.movie.add(sprite)
# Remove the instance the next time
self.sprite = i
if self.animation:
self.movie.nextFrame()
##
# Private Methods
#
def _calcCanvasCoord(self, v):
"""Convert vertex in scene coordinates to canvas coordinates.
"""
pt = Vector([0, 0, 0])
mW = float(self.canvasSize[0]) / 2.0
mH = float(self.canvasSize[1]) / 2.0
# rescale to canvas size
pt[0] = v.co[0] * mW + mW
pt[1] = v.co[1] * mH + mH
pt[2] = v.co[2]
# For now we want (0,0) in the top-left corner of the canvas.
# Mirror and translate along y
pt[1] *= -1
pt[1] += self.canvasSize[1]
return pt
def _printPolygons(self, mesh, sprite):
"""Print the selected (visible) polygons.
"""
if len(mesh.faces) == 0:
return
for face in mesh.faces:
if not face.sel:
continue
if face.col:
fcol = face.col[0]
color = [fcol.r, fcol.g, fcol.b, fcol.a]
else:
color = [255, 255, 255, 255]
s = SWFShape()
f = s.addFill(color[0], color[1], color[2], color[3])
s.setRightFill(f)
# The starting point of the shape
p0 = self._calcCanvasCoord(face.verts[0])
s.movePenTo(p0[0], p0[1])
for v in face.verts[1:]:
p = self._calcCanvasCoord(v)
s.drawLineTo(p[0], p[1])
# Closing the shape
s.drawLineTo(p0[0], p0[1])
s.end()
sprite.add(s)
def _printEdges(self, mesh, sprite, showHiddenEdges=False):
"""Print the wireframe using mesh edges.
"""
stroke_width = config.edges['WIDTH']
stroke_col = config.edges['COLOR']
s = SWFShape()
for e in mesh.edges:
# Next, we set the line width and color for our shape.
s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
255)
if e.sel == 0:
if showHiddenEdges == False:
continue
else:
# SWF does not support dashed lines natively, so -for now-
# draw hidden lines thinner and half-trasparent
s.setLine(stroke_width / 2, stroke_col[0], stroke_col[1],
stroke_col[2], 128)
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
s.movePenTo(p1[0], p1[1])
s.drawLineTo(p2[0], p2[1])
s.end()
sprite.add(s)
## PDF Writer
try:
from reportlab.pdfgen import canvas
PDFSupported = True
except:
PDFSupported = False
class PDFVectorWriter(VectorWriter):
"""A concrete class for writing PDF output.
"""
def __init__(self, fileName):
"""Simply call the parent Contructor.
"""
VectorWriter.__init__(self, fileName)
self.canvas = None
##
# Public Methods
#
def open(self, startFrame=1, endFrame=1):
"""Do some initialization operations.
"""
VectorWriter.open(self, startFrame, endFrame)
size = (self.canvasSize[0], self.canvasSize[1])
self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
def close(self):
"""Do some finalization operation.
"""
self.canvas.save()
# remember to call the close method of the parent
VectorWriter.close(self)
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
"""Convert the scene representation to SVG.
"""
context = scene.getRenderingContext()
framenumber = context.currentFrame()
Objects = scene.objects
for obj in Objects:
if(obj.getType() != 'Mesh'):
continue
mesh = obj.getData(mesh=1)
if doPrintPolygons:
self._printPolygons(mesh)
if doPrintEdges:
self._printEdges(mesh, showHiddenEdges)
self.canvas.showPage()
##
# Private Methods
#
def _calcCanvasCoord(self, v):
"""Convert vertex in scene coordinates to canvas coordinates.
"""
pt = Vector([0, 0, 0])
mW = float(self.canvasSize[0]) / 2.0
mH = float(self.canvasSize[1]) / 2.0
# rescale to canvas size
pt[0] = v.co[0] * mW + mW
pt[1] = v.co[1] * mH + mH
pt[2] = v.co[2]
# For now we want (0,0) in the top-left corner of the canvas.
# Mirror and translate along y
pt[1] *= -1
pt[1] += self.canvasSize[1]
return pt
def _printPolygons(self, mesh):
"""Print the selected (visible) polygons.
"""
if len(mesh.faces) == 0:
return
for face in mesh.faces:
if not face.sel:
continue
if face.col:
fcol = face.col[0]
color = [fcol.r / 255.0, fcol.g / 255.0, fcol.b / 255.0,
fcol.a / 255.0]
else:
color = [1, 1, 1, 1]
self.canvas.setFillColorRGB(color[0], color[1], color[2])
# For debug
self.canvas.setStrokeColorRGB(0, 0, 0)
path = self.canvas.beginPath()
# The starting point of the path
p0 = self._calcCanvasCoord(face.verts[0])
path.moveTo(p0[0], p0[1])
for v in face.verts[1:]:
p = self._calcCanvasCoord(v)
path.lineTo(p[0], p[1])
# Closing the shape
path.close()
self.canvas.drawPath(path, stroke=0, fill=1)
def _printEdges(self, mesh, showHiddenEdges=False):
"""Print the wireframe using mesh edges.
"""
stroke_width = config.edges['WIDTH']
stroke_col = config.edges['COLOR']
self.canvas.setLineCap(1)
self.canvas.setLineJoin(1)
self.canvas.setLineWidth(stroke_width)
self.canvas.setStrokeColorRGB(stroke_col[0] / 255.0, stroke_col[1] / 255.0,
stroke_col[2] / 255)
for e in mesh.edges:
self.canvas.setLineWidth(stroke_width)
if e.sel == 0:
if showHiddenEdges == False:
continue
else:
# PDF does not support dashed lines natively, so -for now-
# draw hidden lines thinner
self.canvas.setLineWidth(stroke_width / 2.0)
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
self.canvas.line(p1[0], p1[1], p2[0], p2[1])
# ---------------------------------------------------------------------
#
## Rendering Classes
#
# ---------------------------------------------------------------------
# A dictionary to collect different shading style methods
shadingStyles = dict()
shadingStyles['FLAT'] = None
shadingStyles['TOON'] = None
# A dictionary to collect different edge style methods
edgeStyles = dict()
edgeStyles['MESH'] = MeshUtils.isMeshEdge
edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
# A dictionary to collect the supported output formats
outputWriters = dict()
outputWriters['SVG'] = SVGVectorWriter
if SWFSupported:
outputWriters['SWF'] = SWFVectorWriter
if PDFSupported:
outputWriters['PDF'] = PDFVectorWriter
class Renderer:
"""Render a scene viewed from the active camera.
This class is responsible of the rendering process, transformation and
projection of the objects in the scene are invoked by the renderer.
The rendering is done using the active camera for the current scene.
"""
def __init__(self):
"""Make the rendering process only for the current scene by default.
We will work on a copy of the scene, to be sure that the current scene do
not get modified in any way.
"""
# Render the current Scene, this should be a READ-ONLY property
self._SCENE = Scene.GetCurrent()
# Use the aspect ratio of the scene rendering context
context = self._SCENE.getRenderingContext()
aspect_ratio = float(context.imageSizeX()) / float(context.imageSizeY())
self.canvasRatio = (float(context.aspectRatioX()) * aspect_ratio,
float(context.aspectRatioY())
)
# Render from the currently active camera
#self.cameraObj = self._SCENE.objects.camera
self.lights = []
##
# Public Methods
#
def doRendering(self, outputWriter, animation=False):
"""Render picture or animation and write it out.
The parameters are:
- a Vector writer object that will be used to output the result.
- a flag to tell if we want to render an animation or only the
current frame.
"""
context = self._SCENE.getRenderingContext()
origCurrentFrame = context.currentFrame()
# Handle the animation case
if not animation:
startFrame = origCurrentFrame
endFrame = startFrame
outputWriter.open()
else:
startFrame = context.startFrame()
endFrame = context.endFrame()
outputWriter.open(startFrame, endFrame)
# Do the rendering process frame by frame
print "Start Rendering of %d frames" % (endFrame - startFrame + 1)
for f in xrange(startFrame, endFrame + 1):
print "\n\nFrame: %d" % f
# FIXME To get the correct camera position we have to use +1 here.
# Is there a bug somewhere in the Scene module?
context.currentFrame(f + 1)
self.cameraObj = self._SCENE.objects.camera
# Use some temporary workspace, a full copy of the scene
inputScene = self._SCENE.copy(2)
# To get the objects at this frame remove the +1 ...
ctx = inputScene.getRenderingContext()
ctx.currentFrame(f)
# Get a projector for this camera.
# NOTE: the projector wants object in world coordinates,
# so we should remember to apply modelview transformations
# _before_ we do projection transformations.
self.proj = Projector(self.cameraObj, self.canvasRatio)
try:
renderedScene = self.doRenderScene(inputScene)
except:
print "There was an error! Aborting."
import traceback
print traceback.print_exc()
self._SCENE.makeCurrent()
Scene.Unlink(inputScene)
del inputScene
return
outputWriter.printCanvas(renderedScene,
doPrintPolygons=config.polygons['SHOW'],
doPrintEdges=config.edges['SHOW'],
showHiddenEdges=config.edges['SHOW_HIDDEN'])
# delete the rendered scene
self._SCENE.makeCurrent()
Scene.Unlink(renderedScene)
del renderedScene
outputWriter.close()
print "Done!"
context.currentFrame(origCurrentFrame)
def doRenderScene(self, workScene):
"""Control the rendering process.
Here we control the entire rendering process invoking the operation
needed to transform and project the 3D scene in two dimensions.
"""
# global processing of the scene
self._filterHiddenObjects(workScene)
self._buildLightSetup(workScene)
self._doSceneClipping(workScene)
self._doConvertGeometricObjsToMesh(workScene)
if config.output['JOIN_OBJECTS']:
self._joinMeshObjectsInScene(workScene)
self._doSceneDepthSorting(workScene)
# Per object activities
Objects = workScene.objects
print "Total Objects: %d" % len(Objects)
for i, obj in enumerate(Objects):
print "\n\n-------"
print "Rendering Object: %d" % i
if obj.getType() != 'Mesh':
print "Only Mesh supported! - Skipping type:", obj.getType()
continue
print "Rendering: ", obj.getName()
mesh = obj.getData(mesh=1)
self._doModelingTransformation(mesh, obj.matrix)
self._doBackFaceCulling(mesh)
# When doing HSR with NEWELL we may want to flip all normals
# toward the viewer
if config.polygons['HSR'] == "NEWELL":
for f in mesh.faces:
f.sel = 1 - f.sel
mesh.flipNormals()
for f in mesh.faces:
f.sel = 1
self._doLighting(mesh)
# Do "projection" now so we perform further processing
# in Normalized View Coordinates
self._doProjection(mesh, self.proj)
self._doViewFrustumClipping(mesh)
self._doHiddenSurfaceRemoval(mesh)
self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
# Update the object data, important! :)
mesh.update()
return workScene
##
# Private Methods
#
# Utility methods
def _getObjPosition(self, obj):
"""Return the obj position in World coordinates.
"""
return obj.matrix.translationPart()
def _cameraViewVector(self):
"""Get the View Direction form the camera matrix.
"""
return Vector(self.cameraObj.matrix[2]).resize3D()
# Faces methods
def _isFaceVisible(self, face):
"""Determine if a face of an object is visible from the current camera.
The view vector is calculated from the camera location and one of the
vertices of the face (expressed in World coordinates, after applying
modelview transformations).
After those transformations we determine if a face is visible by
computing the angle between the face normal and the view vector, this
angle has to be between -90 and 90 degrees for the face to be visible.
This corresponds somehow to the dot product between the two, if it
results > 0 then the face is visible.
There is no need to normalize those vectors since we are only interested in
the sign of the cross product and not in the product value.
NOTE: here we assume the face vertices are in WorldCoordinates, so
please transform the object _before_ doing the test.
"""
normal = Vector(face.no)
camPos = self._getObjPosition(self.cameraObj)
view_vect = None
# View Vector in orthographics projections is the view Direction of
# the camera
if self.cameraObj.data.getType() == 1:
view_vect = self._cameraViewVector()
# View vector in perspective projections can be considered as
# the difference between the camera position and one point of
# the face, we choose the farthest point from the camera.
if self.cameraObj.data.getType() == 0:
vv = max([((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face])
view_vect = vv[1]
# if d > 0 the face is visible from the camera
d = view_vect * normal
if d > 0:
return True
else:
return False
# Scene methods
def _filterHiddenObjects(self, scene):
"""Discard object that are on hidden layers in the scene.
"""
Objects = scene.objects
visible_obj_list = [obj for obj in Objects if
set(obj.layers).intersection(set(scene.getLayers()))]
for o in Objects:
if o not in visible_obj_list:
scene.objects.unlink(o)
scene.update()
def _buildLightSetup(self, scene):
# Get the list of lighting sources
obj_lst = scene.objects
self.lights = [o for o in obj_lst if o.getType() == 'Lamp']
# When there are no lights we use a default lighting source
# that have the same position of the camera
if len(self.lights) == 0:
l = Lamp.New('Lamp')
lobj = Object.New('Lamp')
lobj.loc = self.cameraObj.loc
lobj.link(l)
self.lights.append(lobj)
def _doSceneClipping(self, scene):
"""Clip whole objects against the View Frustum.
For now clip away only objects according to their center position.
"""
cam_pos = self._getObjPosition(self.cameraObj)
view_vect = self._cameraViewVector()
near = self.cameraObj.data.clipStart
far = self.cameraObj.data.clipEnd
aspect = float(self.canvasRatio[0]) / float(self.canvasRatio[1])
fovy = atan(0.5 / aspect / (self.cameraObj.data.lens / 32))
fovy = fovy * 360.0 / pi
Objects = scene.objects
for o in Objects:
if o.getType() != 'Mesh':
continue
"""
obj_vect = Vector(cam_pos) - self._getObjPosition(o)
d = obj_vect*view_vect
theta = AngleBetweenVecs(obj_vect, view_vect)
# if the object is outside the view frustum, clip it away
if (d < near) or (d > far) or (theta > fovy):
scene.objects.unlink(o)
"""
# Use the object bounding box
# (whose points are already in WorldSpace Coordinate)
bb = o.getBoundBox()
points_outside = 0
for p in bb:
p_vect = Vector(cam_pos) - Vector(p)
d = p_vect * view_vect
theta = AngleBetweenVecs(p_vect, view_vect)
# Is this point outside the view frustum?
if (d < near) or (d > far) or (theta > fovy):
points_outside += 1
# If the bb is all outside the view frustum we clip the whole
# object away
if points_outside == len(bb):
scene.objects.unlink(o)
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
"""
geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
#geometricObjTypes = ['Mesh', 'Surf', 'Curve']
Objects = scene.objects
objList = [o for o in Objects if o.getType() in geometricObjTypes]
for obj in objList:
old_obj = obj
obj = self._convertToRawMeshObj(obj)
scene.objects.link(obj)
scene.objects.unlink(old_obj)
# XXX Workaround for Text and Curve which have some normals
# inverted when they are converted to Mesh, REMOVE that when
# blender will fix that!!
if old_obj.getType() in ['Curve', 'Text']:
me = obj.getData(mesh=1)
for f in me.faces:
f.sel = 1
for v in me.verts:
v.sel = 1
me.remDoubles(0)
me.triangleToQuad()
me.recalcNormals()
me.update()
def _doSceneDepthSorting(self, scene):
"""Sort objects in the scene.
The object sorting is done accordingly to the object centers.
"""
c = self._getObjPosition(self.cameraObj)
by_obj_center_pos = (lambda o1, o2:
(o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
cmp((self._getObjPosition(o1) - Vector(c)).length,
(self._getObjPosition(o2) - Vector(c)).length)
)
# Implement sorting by bounding box, the object with the bb
# nearest to the camera should be drawn as last.
by_nearest_bbox_point = (lambda o1, o2:
(o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
cmp(min([(Vector(p) - Vector(c)).length for p in o1.getBoundBox()]),
min([(Vector(p) - Vector(c)).length for p in o2.getBoundBox()])
)
)
Objects = list(scene.objects)
#Objects.sort(by_obj_center_pos)
Objects.sort(by_nearest_bbox_point)
# update the scene
for o in Objects:
scene.objects.unlink(o)
scene.objects.link(o)
def _joinMeshObjectsInScene(self, scene):
"""Merge all the Mesh Objects in a scene into a single Mesh Object.
"""
oList = [o for o in scene.objects if o.getType() == 'Mesh']
# FIXME: Object.join() do not work if the list contains 1 object
if len(oList) == 1:
return
mesh = Mesh.New('BigOne')
bigObj = Object.New('Mesh', 'BigOne')
bigObj.link(mesh)
scene.objects.link(bigObj)
try:
bigObj.join(oList)
except RuntimeError:
print "\nWarning! - Can't Join Objects\n"
scene.objects.unlink(bigObj)
return
except TypeError:
print "Objects Type error?"
for o in oList:
scene.objects.unlink(o)
scene.update()
# Per object/mesh methods
def _convertToRawMeshObj(self, object):
"""Convert geometry based object to a mesh object.
"""
me = Mesh.New('RawMesh_' + object.name)
me.getFromObject(object.name)
newObject = Object.New('Mesh', 'RawMesh_' + object.name)
newObject.link(me)
# If the object has no materials set a default material
if not me.materials:
me.materials = [Material.New()]
#for f in me.faces: f.mat = 0
newObject.setMatrix(object.getMatrix())
return newObject
def _doModelingTransformation(self, mesh, matrix):
"""Transform object coordinates to world coordinates.
This step is done simply applying to the object its tranformation
matrix and recalculating its normals.
"""
# XXX FIXME: blender do not transform normals in the right way when
# there are negative scale values
if matrix[0][0] < 0 or matrix[1][1] < 0 or matrix[2][2] < 0:
print "WARNING: Negative scales, expect incorrect results!"
mesh.transform(matrix, True)
def _doBackFaceCulling(self, mesh):
"""Simple Backface Culling routine.
At this level we simply do a visibility test face by face and then
select the vertices belonging to visible faces.
"""
# Select all vertices, so edges can be displayed even if there are no
# faces
for v in mesh.verts:
v.sel = 1
Mesh.Mode(Mesh.SelectModes['FACE'])
# Loop on faces
for f in mesh.faces:
f.sel = 0
if self._isFaceVisible(f):
f.sel = 1
def _doLighting(self, mesh):
"""Apply an Illumination and shading model to the object.
The model used is the Phong one, it may be inefficient,
but I'm just learning about rendering and starting from Phong seemed
the most natural way.
"""
# If the mesh has vertex colors already, use them,
# otherwise turn them on and do some calculations
if mesh.vertexColors:
return
mesh.vertexColors = 1
materials = mesh.materials
camPos = self._getObjPosition(self.cameraObj)
# We do per-face color calculation (FLAT Shading), we can easily turn
# to a per-vertex calculation if we want to implement some shading
# technique. For an example see:
# http://www.miralab.unige.ch/papers/368.pdf
for f in mesh.faces:
if not f.sel:
continue
mat = None
if materials:
mat = materials[f.mat]
# A new default material
if mat == None:
mat = Material.New('defMat')
# Check if it is a shadeless material
elif mat.getMode() & Material.Modes['SHADELESS']:
I = mat.getRGBCol()
# Convert to a value between 0 and 255
tmp_col = [int(c * 255.0) for c in I]
for c in f.col:
c.r = tmp_col[0]
c.g = tmp_col[1]
c.b = tmp_col[2]
#c.a = tmp_col[3]
continue
# do vertex color calculation
TotDiffSpec = Vector([0.0, 0.0, 0.0])
for l in self.lights:
light_obj = l
light_pos = self._getObjPosition(l)
light = light_obj.getData()
L = Vector(light_pos).normalize()
V = (Vector(camPos) - Vector(f.cent)).normalize()
N = Vector(f.no).normalize()
if config.polygons['SHADING'] == 'TOON':
NL = ShadingUtils.toonShading(N * L)
else:
NL = (N * L)
# Should we use NL instead of (N*L) here?
R = 2 * (N * L) * N - L
Ip = light.getEnergy()
# Diffuse co-efficient
kd = mat.getRef() * Vector(mat.getRGBCol())
for i in [0, 1, 2]:
kd[i] *= light.col[i]
Idiff = Ip * kd * max(0, NL)
# Specular component
ks = mat.getSpec() * Vector(mat.getSpecCol())
ns = mat.getHardness()
Ispec = Ip * ks * pow(max(0, (V * R)), ns)
TotDiffSpec += (Idiff + Ispec)
# Ambient component
Iamb = Vector(Blender.World.Get()[0].getAmb())
ka = mat.getAmb()
# Emissive component (convert to a triplet)
ki = Vector([mat.getEmit()] * 3)
#I = ki + Iamb + (Idiff + Ispec)
I = ki + (ka * Iamb) + TotDiffSpec
# Set Alpha component
I = list(I)
I.append(mat.getAlpha())
# Clamp I values between 0 and 1
I = [min(c, 1) for c in I]
I = [max(0, c) for c in I]
# Convert to a value between 0 and 255
tmp_col = [int(c * 255.0) for c in I]
for c in f.col:
c.r = tmp_col[0]
c.g = tmp_col[1]
c.b = tmp_col[2]
c.a = tmp_col[3]
def _doProjection(self, mesh, projector):
"""Apply Viewing and Projection tranformations.
"""
for v in mesh.verts:
p = projector.doProjection(v.co[:])
v.co[0] = p[0]
v.co[1] = p[1]
v.co[2] = p[2]
#mesh.recalcNormals()
#mesh.update()
# We could reeset Camera matrix, since now
# we are in Normalized Viewing Coordinates,
# but doung that would affect World Coordinate
# processing for other objects
#self.cameraObj.data.type = 1
#self.cameraObj.data.scale = 2.0
#m = Matrix().identity()
#self.cameraObj.setMatrix(m)
def _doViewFrustumClipping(self, mesh):
"""Clip faces against the View Frustum.
"""
# The Canonical View Volume, 8 vertices, and 6 faces,
# We consider its face normals pointing outside
v1 = NMesh.Vert(1, 1, -1)
v2 = NMesh.Vert(1, -1, -1)
v3 = NMesh.Vert(-1, -1, -1)
v4 = NMesh.Vert(-1, 1, -1)
v5 = NMesh.Vert(1, 1, 1)
v6 = NMesh.Vert(1, -1, 1)
v7 = NMesh.Vert(-1, -1, 1)
v8 = NMesh.Vert(-1, 1, 1)
cvv = []
f1 = NMesh.Face([v1, v4, v3, v2])
cvv.append(f1)
f2 = NMesh.Face([v5, v6, v7, v8])
cvv.append(f2)
f3 = NMesh.Face([v1, v2, v6, v5])
cvv.append(f3)
f4 = NMesh.Face([v2, v3, v7, v6])
cvv.append(f4)
f5 = NMesh.Face([v3, v4, v8, v7])
cvv.append(f5)
f6 = NMesh.Face([v4, v1, v5, v8])
cvv.append(f6)
nmesh = NMesh.GetRaw(mesh.name)
clippedfaces = nmesh.faces[:]
facelist = clippedfaces[:]
for clipface in cvv:
clippedfaces = []
for f in facelist:
#newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
newfaces = None
if not newfaces:
# Check if the face is all outside the view frustum
# TODO: Do this test before, it is more efficient
points_outside = 0
for v in f:
if abs(v[0]) > (1 - EPS) or abs(v[1]) > (1 - EPS) or abs(v[2]) > (1 - EPS):
points_outside += 1
if points_outside != len(f):
clippedfaces.append(f)
else:
for nf in newfaces:
for v in nf:
nmesh.verts.append(v)
nf.mat = f.mat
nf.sel = f.sel
nf.col = [f.col[0]] * len(nf.v)
clippedfaces.append(nf)
facelist = clippedfaces[:]
nmesh.faces = facelist
nmesh.update()
# HSR routines
def __simpleDepthSort(self, mesh):
"""Sort faces by the furthest vertex.
This simple mesthod is known also as the painter algorithm, and it
solves HSR correctly only for convex meshes.
"""
#global progress
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
progress.setActivity("HSR: Painter", n * log(n))
by_furthest_z = (lambda f1, f2: progress.update() and
cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
)
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
# remember that _higher_ z values mean further points
nmesh.faces.sort(by_furthest_z)
nmesh.faces.reverse()
nmesh.update()
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
"""
#global progress
# Find non planar quads and convert them to triangle
#for f in mesh.faces:
# f.sel = 0
# if is_nonplanar_quad(f.v):
# print "NON QUAD??"
# f.sel = 1
# Now reselect all faces
for f in mesh.faces:
f.sel = 1
mesh.quadToTriangle()
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
# remember that _higher_ z values mean further points
nmesh.faces.sort(by_furthest_z)
nmesh.faces.reverse()
# Begin depth sort tests
# use the smooth flag to set marked faces
for f in nmesh.faces:
f.smooth = 0
facelist = nmesh.faces[:]
maplist = []
# The steps are _at_least_ equal to len(facelist), we do not count the
# feces coming out from splitting!!
progress.setActivity("HSR: Newell", len(facelist))
#progress.setQuiet(True)
while len(facelist):
debug("\n----------------------\n")
debug("len(facelits): %d\n" % len(facelist))
P = facelist[0]
pSign = sign(P.normal[2])
# We can discard faces parallel to the view vector
#if P.normal[2] == 0:
# facelist.remove(P)
# continue
split_done = 0
face_marked = 0
for Q in facelist[1:]:
debug("P.smooth: " + str(P.smooth) + "\n")
debug("Q.smooth: " + str(Q.smooth) + "\n")
debug("\n")
qSign = sign(Q.normal[2])
# TODO: check also if Q is parallel??
# Test 0: We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
zP = [v.co[2] for v in P.v]
zQ = [v.co[2] for v in Q.v]
notZOverlap = min(zP) > max(zQ) + EPS
if notZOverlap:
debug("\nTest 0\n")
debug("NOT Z OVERLAP!\n")
if Q.smooth == 0:
# If Q is not marked then we can safely print P
break
else:
debug("met a marked face\n")
continue
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
#notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
notXOverlap = min(xQ) >= (max(xP) - EPS) or min(xP) >= (max(xQ) - EPS)
if notXOverlap:
debug("\nTest 1\n")
debug("NOT X OVERLAP!\n")
continue
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
#notYOverlap = max(yP) <= min(yQ) or max(yQ) <= min(yP)
notYOverlap = min(yQ) >= (max(yP) - EPS) or min(yP) >= (max(yQ) - EPS)
if notYOverlap:
debug("\nTest 2\n")
debug("NOT Y OVERLAP!\n")
continue
# Test 3: P vertices are all behind the plane of Q
n = 0
for Pi in P:
d = qSign * HSR.Distance(Vector(Pi), Q)
if d <= EPS:
n += 1
pVerticesBehindPlaneQ = (n == len(P))
if pVerticesBehindPlaneQ:
debug("\nTest 3\n")
debug("P BEHIND Q!\n")
continue
# Test 4: Q vertices in front of the plane of P
n = 0
for Qi in Q:
d = pSign * HSR.Distance(Vector(Qi), P)
if d >= -EPS:
n += 1
qVerticesInFrontPlaneP = (n == len(Q))
if qVerticesInFrontPlaneP:
debug("\nTest 4\n")
debug("Q IN FRONT OF P!\n")
continue
# Test 5: Check if projections of polygons effectively overlap,
# in previous tests we checked only bounding boxes.
#if not projectionsOverlap(P, Q):
if not (HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
debug("\nTest 5\n")
debug("Projections do not overlap!\n")
continue
# We still can't say if P obscures Q.
# But if Q is marked we do a face-split trying to resolve a
# difficulty (maybe a visibility cycle).
if Q.smooth == 1:
# Split P or Q
debug("Possibly a cycle detected!\n")
debug("Split here!!\n")
facelist = HSR.facesplit(P, Q, facelist, nmesh)
split_done = 1
break
# The question now is: Does Q obscure P?
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
d = pSign * HSR.Distance(Vector(Qi), P)
if d <= EPS:
n += 1
qVerticesBehindPlaneP = (n == len(Q))
if qVerticesBehindPlaneP:
debug("\nTest 3bis\n")
debug("Q BEHIND P!\n")
# Test 4bis: P vertices in front of the plane of Q
n = 0
for Pi in P:
d = qSign * HSR.Distance(Vector(Pi), Q)
if d >= -EPS:
n += 1
pVerticesInFrontPlaneQ = (n == len(P))
if pVerticesInFrontPlaneQ:
debug("\nTest 4bis\n")
debug("P IN FRONT OF Q!\n")
# We don't even know if Q does obscure P, so they should
# intersect each other, split one of them in two parts.
if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
debug("\nSimple Intersection?\n")
debug("Test 3bis or 4bis failed\n")
debug("Split here!!2\n")
facelist = HSR.facesplit(P, Q, facelist, nmesh)
split_done = 1
break
facelist.remove(Q)
facelist.insert(0, Q)
Q.smooth = 1
face_marked = 1
debug("Q marked!\n")
break
# Write P!
if split_done == 0 and face_marked == 0:
facelist.remove(P)
maplist.append(P)
dumpfaces(maplist, "dump" + str(len(maplist)).zfill(4) + ".svg")
progress.update()
if len(facelist) == 870:
dumpfaces([P, Q], "loopdebug.svg")
#if facelist == None:
# maplist = [P, Q]
# print [v.co for v in P]
# print [v.co for v in Q]
# break
# end of while len(facelist)
nmesh.faces = maplist
#for f in nmesh.faces:
# f.sel = 1
nmesh.update()
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.
"""
if len(mesh.faces) == 0:
return
if config.polygons['HSR'] == 'PAINTER':
print "\nUsing the Painter algorithm for HSR."
self.__simpleDepthSort(mesh)
elif config.polygons['HSR'] == 'NEWELL':
print "\nUsing the Newell's algorithm for HSR."
self.__newellDepthSort(mesh)
def _doEdgesStyle(self, mesh, edgestyleSelect):
"""Process Mesh Edges accroding to a given selection style.
Examples of algorithms:
Contours:
given an edge if its adjacent faces have the same normal (that is
they are complanar), than deselect it.
Silhouettes:
given an edge if one its adjacent faces is frontfacing and the
other is backfacing, than select it, else deselect.
"""
Mesh.Mode(Mesh.SelectModes['EDGE'])
edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
for i, edge_faces in enumerate(edge_cache):
mesh.edges[i].sel = 0
if edgestyleSelect(edge_faces):
mesh.edges[i].sel = 1
"""
for e in mesh.edges:
e.sel = 0
if edgestyleSelect(e, mesh):
e.sel = 1
"""
#
# ---------------------------------------------------------------------
#
## GUI Class and Main Program
#
# ---------------------------------------------------------------------
from Blender import BGL, Draw
from Blender.BGL import *
class GUI:
def _init():
# Output Format menu
output_format = config.output['FORMAT']
default_value = outputWriters.keys().index(output_format) + 1
GUI.outFormatMenu = Draw.Create(default_value)
GUI.evtOutFormatMenu = 0
# Animation toggle button
GUI.animToggle = Draw.Create(config.output['ANIMATION'])
GUI.evtAnimToggle = 1
# Join Objects toggle button
GUI.joinObjsToggle = Draw.Create(config.output['JOIN_OBJECTS'])
GUI.evtJoinObjsToggle = 2
# Render filled polygons
GUI.polygonsToggle = Draw.Create(config.polygons['SHOW'])
# Shading Style menu
shading_style = config.polygons['SHADING']
default_value = shadingStyles.keys().index(shading_style) + 1
GUI.shadingStyleMenu = Draw.Create(default_value)
GUI.evtShadingStyleMenu = 21
GUI.evtPolygonsToggle = 3
# We hide the config.polygons['EXPANSION_TRICK'], for now
# Render polygon edges
GUI.showEdgesToggle = Draw.Create(config.edges['SHOW'])
GUI.evtShowEdgesToggle = 4
# Render hidden edges
GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN'])
GUI.evtShowHiddenEdgesToggle = 5
# Edge Style menu
edge_style = config.edges['STYLE']
default_value = edgeStyles.keys().index(edge_style) + 1
GUI.edgeStyleMenu = Draw.Create(default_value)
GUI.evtEdgeStyleMenu = 6
# Edge Width slider
GUI.edgeWidthSlider = Draw.Create(config.edges['WIDTH'])
GUI.evtEdgeWidthSlider = 7
# Edge Color Picker
c = config.edges['COLOR']
GUI.edgeColorPicker = Draw.Create(c[0] / 255.0, c[1] / 255.0, c[2] / 255.0)
GUI.evtEdgeColorPicker = 71
# Render Button
GUI.evtRenderButton = 8
# Exit Button
GUI.evtExitButton = 9
# Save default button
GUI.evtSaveDefaultButton = 99
def draw():
# initialize static members
GUI._init()
glClear(GL_COLOR_BUFFER_BIT)
glColor3f(0.0, 0.0, 0.0)
glRasterPos2i(10, 380)
Draw.Text("VRM: Vector Rendering Method script. Version %s." %
__version__)
glRasterPos2i(10, 365)
Draw.Text("%s (c) 2012" % __author__)
glRasterPos2i(10, 335)
Draw.Text("Press Q or ESC to quit.")
# Build the output format menu
glRasterPos2i(10, 310)
Draw.Text("Select the output Format:")
outMenuStruct = "Output Format %t"
for t in outputWriters.keys():
outMenuStruct = outMenuStruct + "|%s" % t
GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu,
10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
# Animation toggle
GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle,
10, 260, 160, 18, GUI.animToggle.val,
"Toggle rendering of animations")
# Join Objects toggle
GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle,
10, 235, 160, 18, GUI.joinObjsToggle.val,
"Join objects in the rendered file")
# Render Button
Draw.Button("Render", GUI.evtRenderButton, 10, 210 - 25, 75, 25 + 18,
"Start Rendering")
Draw.Button("Exit", GUI.evtExitButton, 95, 210 - 25, 75, 25 + 18, "Exit!")
Draw.Button("Save settings as default", GUI.evtSaveDefaultButton, 10, 210 - 50, 160, 18,
"Save settings as default")
# Rendering Styles
glRasterPos2i(200, 310)
Draw.Text("Rendering Style:")
# Render Polygons
GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle,
200, 285, 160, 18, GUI.polygonsToggle.val,
"Render filled polygons")
if GUI.polygonsToggle.val == 1:
# Polygon Shading Style
shadingStyleMenuStruct = "Shading Style %t"
for t in shadingStyles.keys():
shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower()
GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu,
200, 260, 160, 18, GUI.shadingStyleMenu.val,
"Choose the shading style")
# Render Edges
GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle,
200, 235, 160, 18, GUI.showEdgesToggle.val,
"Render polygon edges")
if GUI.showEdgesToggle.val == 1:
# Edge Style
edgeStyleMenuStruct = "Edge Style %t"
for t in edgeStyles.keys():
edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower()
GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu,
200, 210, 160, 18, GUI.edgeStyleMenu.val,
"Choose the edge style")
# Edge size
GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider,
200, 185, 140, 18, GUI.edgeWidthSlider.val,
0.0, 10.0, 0, "Change Edge Width")
# Edge Color
GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker,
342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
# Show Hidden Edges
GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges",
GUI.evtShowHiddenEdgesToggle,
200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
"Render hidden edges as dashed lines")
def event(evt, val):
if evt == Draw.ESCKEY or evt == Draw.QKEY:
Draw.Exit()
else:
return
Draw.Redraw(1)
def button_event(evt):
if evt == GUI.evtExitButton:
Draw.Exit()
elif evt == GUI.evtOutFormatMenu:
i = GUI.outFormatMenu.val - 1
config.output['FORMAT'] = outputWriters.keys()[i]
# Set the new output file
global outputfile
outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
elif evt == GUI.evtAnimToggle:
config.output['ANIMATION'] = bool(GUI.animToggle.val)
elif evt == GUI.evtJoinObjsToggle:
config.output['JOIN_OBJECTS'] = bool(GUI.joinObjsToggle.val)
elif evt == GUI.evtPolygonsToggle:
config.polygons['SHOW'] = bool(GUI.polygonsToggle.val)
elif evt == GUI.evtShadingStyleMenu:
i = GUI.shadingStyleMenu.val - 1
config.polygons['SHADING'] = shadingStyles.keys()[i]
elif evt == GUI.evtShowEdgesToggle:
config.edges['SHOW'] = bool(GUI.showEdgesToggle.val)
elif evt == GUI.evtShowHiddenEdgesToggle:
config.edges['SHOW_HIDDEN'] = bool(GUI.showHiddenEdgesToggle.val)
elif evt == GUI.evtEdgeStyleMenu:
i = GUI.edgeStyleMenu.val - 1
config.edges['STYLE'] = edgeStyles.keys()[i]
elif evt == GUI.evtEdgeWidthSlider:
config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val)
elif evt == GUI.evtEdgeColorPicker:
config.edges['COLOR'] = [int(c * 255.0) for c in GUI.edgeColorPicker.val]
elif evt == GUI.evtRenderButton:
label = "Save %s" % config.output['FORMAT']
# Show the File Selector
global outputfile
Blender.Window.FileSelector(vectorize, label, outputfile)
elif evt == GUI.evtSaveDefaultButton:
config.saveToRegistry()
else:
print "Event: %d not handled!" % evt
if evt:
Draw.Redraw(1)
#GUI.conf_debug()
def conf_debug():
from pprint import pprint
print "\nConfig"
pprint(config.output)
pprint(config.polygons)
pprint(config.edges)
_init = staticmethod(_init)
draw = staticmethod(draw)
event = staticmethod(event)
button_event = staticmethod(button_event)
conf_debug = staticmethod(conf_debug)
# A wrapper function for the vectorizing process
def vectorize(filename):
"""The vectorizing process is as follows:
- Instanciate the writer and the renderer
- Render!
"""
if filename == "":
print "\nERROR: invalid file name!"
return
from Blender import Window
editmode = Window.EditMode()
if editmode:
Window.EditMode(0)
actualWriter = outputWriters[config.output['FORMAT']]
writer = actualWriter(filename)
renderer = Renderer()
renderer.doRendering(writer, config.output['ANIMATION'])
if editmode:
Window.EditMode(1)
# Here the main
if __name__ == "__main__":
global progress
config.loadFromRegistry()
# initialize writer setting also here to configure writer specific
# settings on startup
actualWriter = outputWriters[config.output['FORMAT']]
writer = actualWriter("")
outputfile = ""
basename = Blender.sys.basename(Blender.Get('filename'))
if basename != "":
outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
if Blender.mode == 'background':
progress = ConsoleProgressIndicator()
vectorize(outputfile)
else:
progress = GraphicalProgressIndicator()
Draw.Register(GUI.draw, GUI.event, GUI.button_event)