# ---------------------------------------------------------------------
import Blender
-from Blender import Scene, Object, NMesh, Lamp, Camera
+from Blender import Scene, Object, Mesh, NMesh, Lamp, Camera
from Blender.Mathutils import *
from math import *
parameter list.
"""
- def __init__(self, cameraObj, obMesh, canvasSize):
+ def __init__(self, cameraObj, canvasRatio):
"""Calculate the projection matrix.
The projection matrix depends, in this case, on the camera settings,
and also on object transformation matrix.
"""
- self.size = canvasSize
-
camera = cameraObj.getData()
- aspect = float(canvasSize[0])/float(canvasSize[1])
+ aspect = float(canvasRatio[0])/float(canvasRatio[1])
near = camera.clipStart
far = camera.clipEnd
# View transformation
cam = Matrix(cameraObj.getInverseMatrix())
cam.transpose()
-
- m1 = Matrix(obMesh.getMatrix())
- m1.transpose()
- mP = cam * m1
+ # FIXME: remove the commented part, we used to pass object in local
+ # coordinates, but this is not very clean, we should apply modelview
+ # tranformations _before_ (at some other level).
+ #m1 = Matrix(obMesh.getMatrix())
+ #m1.transpose()
+
+ #mP = cam * m1
+ mP = cam
mP = m2 * mP
self.projectionMatrix = mP
"""
# Note that we need the vertex expressed using homogeneous coordinates
- p = self.projectionMatrix * Vector([v[0], v[1], v[2], 1.0])
-
- mW = self.size[0]/2
- mH = self.size[1]/2
-
- if p[3]<=0:
- p[0] = round(p[0]*mW)+mW
- p[1] = round(p[1]*mH)+mH
- else:
- p[0] = round((p[0]/p[3])*mW)+mW
- p[1] = round((p[1]/p[3])*mH)+mH
-
- # For now we want (0,0) in the top-left corner of the canvas
- # Mirror and translate along y
- p[1] *= -1
- p[1] += self.size[1]
-
+ p = self.projectionMatrix * Vector(v).resize4D()
+
+ if p[3]>0:
+ p[0] = p[0]/p[3]
+ p[1] = p[1]/p[3]
+
return p
##
- printCanvas(mesh) --- where mesh is as specified before.
"""
- def __init__(self, fileName, canvasSize):
+ def __init__(self, fileName):
"""Open the file named #fileName# and set the canvas size."""
self.file = open(fileName, "w")
print "Outputting to: ", fileName
- self.canvasSize = canvasSize
+
+ context = Scene.GetCurrent().getRenderingContext()
+ self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
##
Sorry.
"""
- def __init__(self, file, canvasSize):
+ def __init__(self, file):
"""Simply call the parent Contructor."""
- VectorWriter.__init__(self, file, canvasSize)
+ VectorWriter.__init__(self, file)
##
# Public Methods
#
-
- def printCanvas(self, scene):
- """Convert the scene representation to SVG."""
+ def open(self):
self._printHeader()
+
+ def close(self):
+ self._printFooter()
+
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
+ """Convert the scene representation to SVG."""
+
Objects = scene.getChildren()
for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+ #
+
self.file.write("<g>\n")
+
- for face in obj.getData().faces:
- self._printPolygon(face)
+ if doPrintPolygons:
+ for face in obj.getData().faces:
+ self._printPolygon(face)
- self._printWireframe(obj.getData())
+ if doPrintEdges:
+ self._printEdges(obj.getData(), showHiddenEdges)
self.file.write("</g>\n")
- self._printFooter()
##
# Private Methods
self.file.write("\n</svg>\n")
self.file.close()
- def _printWireframe(self, mesh):
+ def _printEdges(self, mesh, showHiddenEdges=False):
"""Print the wireframe using mesh edges... is this the correct way?
"""
- print mesh.edges
- print
- print mesh.verts
-
stroke_width=0.5
stroke_col = [0, 0, 0]
self.file.write("<g>\n")
for e in mesh.edges:
+
+ hidden_stroke_style = ""
+
+ # And edge is selected if both vertives are selected
+ if e.v1.sel == 0 or e.v2.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
- % ( e.v1[0], e.v1[1], e.v2[0], e.v2[1] ) )
+ % ( p1[0], p1[1], p2[0], p2[1] ) )
self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
self.file.write(" stroke-width:"+str(stroke_width)+";\n")
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+ self.file.write(hidden_stroke_style)
self.file.write("\"/>\n")
self.file.write("</g>\n")
def _printPolygon(self, face):
"""Print our primitive, finally.
"""
-
+
wireframe = False
stroke_width=0.5
self.file.write("<polygon points=\"")
for v in face:
- self.file.write("%g,%g " % (v[0], v[1]))
+ p = self._calcCanvasCoord(v)
+ self.file.write("%g,%g " % (p[0], p[1]))
self.file.seek(-1,1) # get rid of the last space
self.file.write("\"\n")
#take as face color the first vertex color
- fcol = face.col[0]
- color = [fcol.r, fcol.g, fcol.b]
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r, fcol.g, fcol.b]
+ else:
+ color = [ 255, 255, 255]
stroke_col = [0, 0, 0]
if not wireframe:
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
self.file.write("\"/>\n")
+ def _calcCanvasCoord(self, v):
+
+ pt = Vector([0, 0, 0])
+
+ mW = self.canvasSize[0]/2
+ mH = self.canvasSize[1]/2
+
+ # rescale to canvas size
+ pt[0] = round(v[0]*mW)+mW
+ pt[1] = round(v[1]*mH)+mH
+
+ # For now we want (0,0) in the top-left corner of the canvas
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
# ---------------------------------------------------------------------
#
#
# ---------------------------------------------------------------------
-def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
-
- NewPoint = []
- # Rotate X
- NewY = (PY * cos(AngleX))-(PZ * sin(AngleX))
- NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX))
- # Rotate Y
- PZ = NewZ
- PY = NewY
- NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY))
- NewX = (PX * cos(AngleY))+(PZ * sin(AngleY))
- PX = NewX
- PZ = NewZ
- # Rotate Z
- NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ))
- NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ))
- NewPoint.append(NewX)
- NewPoint.append(NewY)
- NewPoint.append(NewZ)
- return NewPoint
-
class Renderer:
"""Render a scene viewed from a given camera.
- This class is responsible of the rendering process, hence transormation
+ This class is responsible of the rendering process, hence transformation
and projection of the ojects in the scene are invoked by the renderer.
The user can optionally provide a specific camera for the rendering, see
"""
def __init__(self):
- """Set the canvas size to a defaulr value.
-
- The only instance attribute here is the canvas size, which can be
- queryed to the renderer by other entities.
+ """Make the rendering process only for the current scene by default.
"""
- self.canvasSize = (0.0, 0.0)
+
+ # Render the current Scene set as a READ-ONLY property
+ self._SCENE = Scene.GetCurrent()
+
+ # Use the aspect ratio of the scene rendering context
+ context = self._SCENE.getRenderingContext()
+ self.canvasRatio = (context.aspectRatioX(), context.aspectRatioY())
+
+ # Render from the currently active camera
+ self.camera = self._SCENE.getCurrentCamera()
##
# Public Methods
#
- def getCanvasSize(self):
- """Return the current canvas size read from Blender rendering context"""
- return self.canvasSize
+ def doRendering(self, outputWriter, animation=0):
+ """Render picture or animation and write it out.
- def doRendering(self, scene, cameraObj=None):
+ The parameters are:
+ - a Vector writer object than will be used to output the result.
+ - a flag to tell if we want to render an animation or the only
+ current frame.
+ """
+
+ context = self._SCENE.getRenderingContext()
+ currentFrame = context.currentFrame()
+
+ # Handle the animation case
+ if animation == 0:
+ startFrame = currentFrame
+ endFrame = startFrame
+ else:
+ startFrame = context.startFrame()
+ endFrame = context.endFrame()
+
+ # Do the rendering process frame by frame
+ print "Start Rendering!"
+ for f in range(startFrame, endFrame+1):
+ context.currentFrame(f)
+ renderedScene = self.doRenderScene(self._SCENE)
+ outputWriter.printCanvas(renderedScene,
+ doPrintPolygons=False, doPrintEdges=True, showHiddenEdges=True)
+
+ # clear the rendered scene
+ self._SCENE.makeCurrent()
+ Scene.unlink(renderedScene)
+ del renderedScene
+
+ print "Done!"
+ context.currentFrame(currentFrame)
+
+
+
+ def doRenderScene(self, inputScene):
"""Control the rendering process.
Here we control the entire rendering process invoking the operation
- needed to transforma project the 3D scene in two dimensions.
-
- Parameters:
- scene --- the Blender Scene to render
- cameraObj --- the camera object to use for the viewing processing
+ needed to transform and project the 3D scene in two dimensions.
"""
+
+ # Use some temporary workspace, a full copy of the scene
+ workScene = inputScene.copy(2)
- if cameraObj == None:
- cameraObj = scene.getCurrentCamera()
+ # Get a projector for this scene.
+ # NOTE: the projector wants object in world coordinates,
+ # so we should apply modelview transformations _before_
+ # projection transformations
+ proj = Projector(self.camera, self.canvasRatio)
+
+ # global processing of the scene
+ self._doDepthSorting(workScene)
- context = scene.getRenderingContext()
- self.canvasSize = (context.imageSizeX(), context.imageSizeY())
+ # Per object activities
+ Objects = workScene.getChildren()
- Objects = scene.getChildren()
+ for obj in Objects:
+
+ if (obj.getType() != 'Mesh'):
+ print "Type:", obj.getType(), "\tSorry, only mesh Object supported!"
+ continue
+ #
+
+ self._doModelViewTransformations(obj)
+
+ self._doBackFaceCulling(obj)
+
+ self._doColorAndLighting(obj)
+
+ # 'style' can be a function that determine
+ # if an edge should be showed?
+ self._doEdgesStyle(obj, style=None)
+
+ self._doProjection(obj, proj)
+
+ return workScene
+
+
+ def oldRenderScene(scene):
- # A structure to store the transformed scene
- newscene = Scene.New("flat"+scene.name)
+ # Per object activities
+ Objects = workScene.getChildren()
for obj in Objects:
- if (obj.getType() != "Mesh"):
+ if (obj.getType() != 'Mesh'):
print "Type:", obj.getType(), "\tSorry, only mesh Object supported!"
continue
-
+
# Get a projector for this object
- proj = Projector(cameraObj, obj, self.canvasSize)
+ proj = Projector(self.camera, obj, self.canvasSize)
# Let's store the transformed data
transformed_mesh = NMesh.New("flat"+obj.name)
transformed_mesh.hasVertexColours(1)
# process Edges
+ self._doProcessEdges(obj)
+
for v in obj.getData().verts:
transformed_mesh.verts.append(v)
transformed_mesh.edges = self._processEdges(obj.getData().edges)
- print transformed_mesh.edges
+ #print transformed_mesh.edges
# Store the materials
for face in meshfaces:
# if the face is visible flatten it on the "picture plane"
- if self._isFaceVisible_old(face, obj, cameraObj):
+ if self._isFaceVisible(face, obj, cameraObj):
# Store transformed face
newface = NMesh.Face()
newscene.link(transformed_obj)
- return newscene
+ return workScene
##
# Private Methods
#
- def _isFaceVisible_old(self, face, obj, cameraObj):
- """Determine if the face is visible from the current camera.
+ # Faces methods
- The following code is taken basicly from the original vrm script.
- """
+ def _isFaceVisible(self, face, obj, camObj):
+ """Determine if a face of an object is visible from a given camera.
+
+ The normals need to be transformed, but note that we should apply only the
+ rotation part of the tranformation matrix, since the normals are
+ normalized and they can be intended as starting from the origin.
- camera = cameraObj
-
- numvert = len(face)
-
- # backface culling
-
- # translate and rotate according to the object matrix
- # and then translate according to the camera position
- #m = obj.getMatrix()
- #m.transpose()
-
- #a = m*Vector(face[0]) - Vector(cameraObj.loc)
- #b = m*Vector(face[1]) - Vector(cameraObj.loc)
- #c = m*Vector(face[numvert-1]) - Vector(cameraObj.loc)
-
- a = []
- a.append(face[0][0])
- a.append(face[0][1])
- a.append(face[0][2])
- a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
- a[0] += obj.LocX - camera.LocX
- a[1] += obj.LocY - camera.LocY
- a[2] += obj.LocZ - camera.LocZ
- b = []
- b.append(face[1][0])
- b.append(face[1][1])
- b.append(face[1][2])
- b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
- b[0] += obj.LocX - camera.LocX
- b[1] += obj.LocY - camera.LocY
- b[2] += obj.LocZ - camera.LocZ
- c = []
- c.append(face[numvert-1][0])
- c.append(face[numvert-1][1])
- c.append(face[numvert-1][2])
- c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
- c[0] += obj.LocX - camera.LocX
- c[1] += obj.LocY - camera.LocY
- c[2] += obj.LocZ - camera.LocZ
-
- norm = [0, 0, 0]
- norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
- norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
- norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
-
- d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
- #d = DotVecs(Vector(norm), Vector(a))
-
- return (d<0)
-
- def _isFaceVisible(self, face, obj, cameraObj):
- """Determine if the face is visible from the current camera.
+ The view vector is calculated from the camera location and one of the
+ vertices of the face (expressed in World coordinates, after applying
+ modelview transformations).
- The following code is taken basicly from the original vrm script.
+ After those transformations we determine if a face is visible by computing
+ the angle between the face normal and the view vector, this angle
+ corresponds somehow to the dot product between the two. If the product
+ results <= 0 then the angle between the two vectors is less that 90
+ degrees and then the face is visible.
+
+ There is no need to normalize those vectors since we are only interested in
+ the sign of the cross product and not in the product value.
"""
- camera = cameraObj
+ # The transformation matrix of the object
+ mObj = Matrix(obj.getMatrix())
+ mObj.transpose()
- numvert = len(face)
+ # The normal after applying the current object rotation
+ #normal = mObj.rotationPart() * Vector(face.no)
+ normal = Vector(face.no)
- # backface culling
+ # View vector in orthographics projections can be considered simply s the
+ # camera position
+ #view_vect = Vector(camObj.loc)
- # translate and rotate according to the object matrix
- # and then translate according to the camera position
- m = obj.getMatrix()
- m.transpose()
+ # View vector as in perspective projections
+ # it is the dofference between the camera position and
+ # one point of the face, we choose the first point,
+ # but maybe a better choice may be the farthest point from the camera.
+ point = Vector(face[0].co)
+ #point = mObj * point.resize4D()
+ #point.resize3D()
+ view_vect = Vector(camObj.loc) - point
- a = m*Vector(face[0]) - Vector(cameraObj.loc)
- b = m*Vector(face[1]) - Vector(cameraObj.loc)
- c = m*Vector(face[numvert-1]) - Vector(cameraObj.loc)
-
- norm = m*Vector(face.no)
- d = DotVecs(norm, a)
+ # if d <= 0 the face is visible from the camera
+ d = view_vect * normal
+
+ if d <= 0:
+ return False
+ else:
+ return True
- return (d<0)
+ # Scene methods
def _doClipping():
return
+ def _doDepthSorting(self, scene):
+
+ cameraObj = self.camera
+ Objects = scene.getChildren()
+
+ Objects.sort(lambda obj1, obj2:
+ cmp(Vector(Vector(cameraObj.loc) - Vector(obj1.loc)).length,
+ Vector(Vector(cameraObj.loc) - Vector(obj2.loc)).length
+ )
+ )
+
+ # hackish sorting of faces according to the max z value of a vertex
+ for o in Objects:
+
+ if (o.getType() != 'Mesh'):
+ continue
+ #
+
+ mesh = o.data
+ mesh.faces.sort(
+ lambda f1, f2:
+ # Sort faces according to the min z coordinate in a face
+ #cmp(min([v[2] for v in f1]), min([v[2] for v in f2])))
+
+ # Sort faces according to the max z coordinate in a face
+ cmp(max([v[2] for v in f1]), max([v[2] for v in f2])))
+
+ # Sort faces according to the avg z coordinate in a face
+ #cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2)))
+ mesh.faces.reverse()
+ mesh.update()
+
+ # update the scene
+ # FIXME: check if it is correct
+ scene.update()
+ #for o in scene.getChildren():
+ # scene.unlink(o)
+ #for o in Objects:
+ # scene.link(o)
# Per object methods
- def _doVisibleSurfaceDetermination(object):
- return
+ def _doModelViewTransformations(self, object):
+ if(object.getType() != 'Mesh'):
+ return
+
+ matMV = object.matrix
+ mesh = object.data
+ mesh.transform(matMV, True)
+ mesh.update()
+
+
+ def _doBackFaceCulling(self, object):
+ if(object.getType() != 'Mesh'):
+ return
+
+ print "doing Backface Culling"
+ mesh = object.data
+
+ # Select all vertices, so edges without faces can be displayed
+ for v in mesh.verts:
+ v.sel = 1
+
+ Mesh.Mode(Mesh.SelectModes['FACE'])
+ # Loop on faces
+ for f in mesh.faces:
+ f.sel = 0
+ if self._isFaceVisible(f, object, self.camera):
+ f.sel = 1
+
+ for f in mesh.faces:
+ if not f.sel:
+ for v in f:
+ v.sel = 0
+
+ for f in mesh.faces:
+ if f.sel:
+ for v in f:
+ v.sel = 1
- def _doColorizing(object):
+ mesh.update()
+
+
+
+ #Mesh.Mode(Mesh.SelectModes['VERTEX'])
+
+ def _doColorAndLighting(self, object):
return
- def _doStylizingEdges(self, object, style):
+ def _doEdgesStyle(self, object, style):
"""Process Mesh Edges. (For now copy the edge data, in next version it
can be a place where recognize silouhettes and/or contours).
"""
return
+ def _doProjection(self, object, projector):
+
+ if(object.getType() != 'Mesh'):
+ return
+
+ mesh = object.data
+ for v in mesh.verts:
+ p = projector.doProjection(v.co)
+ v[0] = p[0]
+ v[1] = p[1]
+ v[2] = p[2]
+ mesh.update()
+
# ---------------------------------------------------------------------
# FIXME: really hackish code, just to test if the other parts work
-def depthSorting(scene):
-
- cameraObj = Scene.GetCurrent().getCurrentCamera()
- Objects = scene.getChildren()
-
- Objects.sort(lambda obj1, obj2:
- cmp(Vector(Vector(cameraObj.loc) - Vector(obj1.loc)).length,
- Vector(Vector(cameraObj.loc) - Vector(obj2.loc)).length
- )
- )
-
- # hackish sorting of faces according to the max z value of a vertex
- for o in Objects:
-
- mesh = o.data
- mesh.faces.sort(
- lambda f1, f2:
- # Sort faces according to the min z coordinate in a face
- #cmp(min([v[2] for v in f1]), min([v[2] for v in f2])))
-
- # Sort faces according to the max z coordinate in a face
- cmp(max([v[2] for v in f1]), max([v[2] for v in f2])))
-
- # Sort faces according to the avg z coordinate in a face
- #cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2)))
- mesh.faces.reverse()
- mesh.update()
-
- # update the scene
- for o in scene.getChildren():
- scene.unlink(o)
- for o in Objects:
- scene.link(o)
def vectorize(filename):
"""The vectorizing process is as follows:
repeated for any frame, and the frame number should be passed to the
renderer.
"""
-
- print "Filename: %s" % filename
+ writer = SVGVectorWriter(filename)
- scene = Scene.GetCurrent()
- renderer = Renderer()
+ writer.open()
- flatScene = renderer.doRendering(scene)
- canvasSize = renderer.getCanvasSize()
-
- depthSorting(flatScene)
+ renderer = Renderer()
+ renderer.doRendering(writer)
- writer = SVGVectorWriter(filename, canvasSize)
- writer.printCanvas(flatScene)
+ writer.close()
- Blender.Scene.unlink(flatScene)
- del flatScene
# Here the main
if __name__ == "__main__":
# with this trick we can run the script in batch mode
try:
Blender.Window.FileSelector (vectorize, 'Save SVG', "proba.svg")
+ Blender.Redraw()
except:
+ from Blender import Window
+ editmode = Window.EditMode()
+ if editmode: Window.EditMode(0)
+
vectorize("proba.svg")
+ if editmode: Window.EditMode(1)
+
+