Add a Point in Polygon routine
[vrm.git] / vrm.py
diff --git a/vrm.py b/vrm.py
index c7d7a87..da71fab 100755 (executable)
--- a/vrm.py
+++ b/vrm.py
@@ -7,8 +7,8 @@ Tooltip: 'Vector Rendering Method script'
 """
 
 __author__ = "Antonio Ospite"
-__url__ = ["http://vrm.projects.blender.org"]
-__version__ = "0.3"
+__url__ = ["http://projects.blender.org/projects/vrm"]
+__version__ = "0.3.beta"
 
 __bpydoc__ = """\
     Render the scene and save the result in vector format.
@@ -42,39 +42,56 @@ __bpydoc__ = """\
 # ---------------------------------------------------------------------
 # 
 # Things TODO for a next release:
-#   - Switch to the Mesh structure, should be considerably faster
-#    (partially done, but with Mesh we cannot sort faces, yet)
+#   - FIX the issue with negative scales in object tranformations!
 #   - Use a better depth sorting algorithm
+#   - Implement clipping of primitives and do handle object intersections.
+#     (for now only clipping away whole objects is supported).
 #   - Review how selections are made (this script uses selection states of
 #     primitives to represent visibility infos)
-#   - Implement clipping of primitives and do handle object intersections.
-#     (for now only clipping for whole objects is supported).
-#   - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
-#   - Use multiple lighting sources in color calculation
-#   - Implement Shading Styles? (for now we use Flat Shading).
 #   - Use a data structure other than Mesh to represent the 2D image? 
-#     Think to a way to merge adjacent polygons that have the same color.
+#     Think to a way to merge (adjacent) polygons that have the same color.
 #     Or a way to use paths for silhouettes and contours.
-#   - Add Vector Writers other that SVG.
 #   - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
 #     not support SMIL for animations)
-#   - FIX the issue with negative scales in object tranformations!
+#   - Switch to the Mesh structure, should be considerably faster
+#     (partially done, but with Mesh we cannot sort faces, yet)
+#   - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
+#   - Implement Shading Styles? (partially done, to make more flexible).
+#   - Add Vector Writers other than SVG.
+#   - set the background color!
+#   - Check memory use!!
 #
 # ---------------------------------------------------------------------
 #
 # Changelog:
 #
-#   vrm-0.3.py  -   2006-05-19
-#    * First release after code restucturing.
-#      Now the script offers a useful set of functionalities
-#      and it can render animations, too.
+#   vrm-0.3.py  - ...
+#     * First release after code restucturing.
+#       Now the script offers a useful set of functionalities
+#       and it can render animations, too.
+#     * Optimization in Renderer.doEdgeStyle(), build a topology cache
+#       so to speed up the lookup of adjacent faces of an edge.
+#       Thanks ideasman42.
+#     * The SVG output is now SVG 1.0 valid.
+#       Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
+#     * Progress indicator during HSR.
+#     * Initial SWF output support
+#     * Fixed a bug in the animation code, now the projection matrix is
+#       recalculated at each frame!
 #
 # ---------------------------------------------------------------------
 
 import Blender
-from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera
+from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
 from Blender.Mathutils import *
 from math import *
+import sys, time
+
+# Constants
+EPS = 10e-5
+
+# We use a global progress Indicator Object
+progress = None
 
 
 # Some global settings
@@ -82,14 +99,17 @@ from math import *
 class config:
     polygons = dict()
     polygons['SHOW'] = True
-    polygons['SHADING'] = 'TOON'
+    polygons['SHADING'] = 'FLAT' # FLAT or TOON
+    polygons['HSR'] = 'PAINTER' # PAINTER or NEWELL
     # Hidden to the user for now
     polygons['EXPANSION_TRICK'] = True
 
+    polygons['TOON_LEVELS'] = 2
+
     edges = dict()
-    edges['SHOW'] = True
+    edges['SHOW'] = False
     edges['SHOW_HIDDEN'] = False
-    edges['STYLE'] = 'SILHOUETTE'
+    edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
     edges['WIDTH'] = 2
     edges['COLOR'] = [0, 0, 0]
 
@@ -99,37 +119,660 @@ class config:
     output['JOIN_OBJECTS'] = True
 
 
+# Utility functions
+print_debug = False
+
+def dumpfaces(flist, filename):
+    """Dump a single face to a file.
+    """
+    if not print_debug:
+        return
+
+    class tmpmesh:
+        pass
+
+    m = tmpmesh()
+    m.faces = flist
+
+    writerobj = SVGVectorWriter(filename)
+
+    writerobj.open()
+    writerobj._printPolygons(m)
+
+    writerobj.close()
+
+def debug(msg):
+    if print_debug:
+        sys.stderr.write(msg)
+
+def EQ(v1, v2):
+    return (abs(v1[0]-v2[0]) < EPS and 
+            abs(v1[1]-v2[1]) < EPS )
+by_furthest_z = (lambda f1, f2:
+    cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+    )
+
+def sign(x):
+
+    if x < -EPS:
+    #if x < 0:
+        return -1
+    elif x > EPS:
+    #elif x > 0:
+        return 1
+    else:
+        return 0
+
 
 # ---------------------------------------------------------------------
 #
-## Utility Mesh class
+## HSR Utility class
 #
 # ---------------------------------------------------------------------
-class MeshUtils:
 
-    def getEdgeAdjacentFaces(edge, mesh):
-        """Get the faces adjacent to a given edge.
+EPS = 10e-5
+INF = 10e5
+
+class HSR:
+    """A utility class for HSR processing.
+    """
 
-        There can be 0, 1 or more (usually 2) faces adjacent to an edge.
+    def is_nonplanar_quad(face):
+        """Determine if a quad is non-planar.
+
+        From: http://mathworld.wolfram.com/Coplanar.html
+
+        Geometric objects lying in a common plane are said to be coplanar.
+        Three noncollinear points determine a plane and so are trivially coplanar.
+        Four points are coplanar iff the volume of the tetrahedron defined by them is
+        0, 
+        
+            | x_1 y_1 z_1 1 |
+            | x_2 y_2 z_2 1 |
+            | x_3 y_3 z_3 1 |
+            | x_4 y_4 z_4 1 | == 0
+
+        Coplanarity is equivalent to the statement that the pair of lines
+        determined by the four points are not skew, and can be equivalently stated
+        in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
+
+        An arbitrary number of n points x_1, ..., x_n can be tested for
+        coplanarity by finding the point-plane distances of the points
+        x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
+        and checking if they are all zero.
+        If so, the points are all coplanar.
+
+        We here check only for 4-point complanarity.
         """
-        adjface_list = []
+        n = len(face)
 
-        for f in mesh.faces:
-            if (edge.v1 in f.v) and (edge.v2 in f.v):
-                adjface_list.append(f)
+        # assert(n>4)
+        if n < 3 or n > 4:
+            print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
+            raise AssertionError
+
+        elif n == 3:
+            # three points must be complanar
+            return False
+        else: # n == 4
+            x1 = Vector(face[0].co)
+            x2 = Vector(face[1].co)
+            x3 = Vector(face[2].co)
+            x4 = Vector(face[3].co)
+
+            v = (x3-x1) * CrossVecs((x2-x1), (x4-x3))
+            if v != 0:
+                return True
+
+        return False
+
+    is_nonplanar_quad = staticmethod(is_nonplanar_quad)
+
+    def pointInPolygon(poly, v):
+        return False
+
+    pointInPolygon = staticmethod(pointInPolygon)
+
+    def edgeIntersection(s1, s2, do_perturbate=False):
+
+        (x1, y1) = s1[0].co[0], s1[0].co[1]
+        (x2, y2) = s1[1].co[0], s1[1].co[1]
+
+        (x3, y3) = s2[0].co[0], s2[0].co[1]
+        (x4, y4) = s2[1].co[0], s2[1].co[1]
+
+        #z1 = s1[0].co[2]
+        #z2 = s1[1].co[2]
+        #z3 = s2[0].co[2]
+        #z4 = s2[1].co[2]
+
+
+        # calculate delta values (vector components)
+        dx1 = x2 - x1;
+        dx2 = x4 - x3;
+        dy1 = y2 - y1;
+        dy2 = y4 - y3;
+
+        #dz1 = z2 - z1;
+        #dz2 = z4 - z3;
+
+        C = dy2 * dx1 - dx2 * dy1 #  /* cross product */
+        if C == 0:  #/* parallel */
+            return None
+
+        dx3 = x1 - x3 # /* combined origin offset vector */
+        dy3 = y1 - y3
+
+        a1 = (dy3 * dx2 - dx3 * dy2) / C;
+        a2 = (dy3 * dx1 - dx3 * dy1) / C;
+
+        # check for degeneracies
+        #print_debug("\n")
+        #print_debug(str(a1)+"\n")
+        #print_debug(str(a2)+"\n\n")
+
+        if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
+            # Intersection on boundaries, we consider the point external?
+            return None
+
+        elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): #  /* lines cross */
+            x = x1 + a1*dx1
+            y = y1 + a1*dy1
+
+            #z = z1 + a1*dz1
+            z = 0
+            return (NMesh.Vert(x, y, z), a1, a2)
+
+        else:
+            # lines have intersections but not those segments
+            return None
+
+    edgeIntersection = staticmethod(edgeIntersection)
+
+    def isVertInside(self, v):
+        winding_number = 0
+        coincidence = False
+
+        # Create point at infinity
+        point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
+
+        for i in range(len(self.v)):
+            s1 = (point_at_infinity, v)
+            s2 = (self.v[i-1], self.v[i])
+
+            if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
+                coincidence = True
+
+            if HSR.edgeIntersection(s1, s2, do_perturbate=False):
+                winding_number += 1
+
+        # Check even or odd
+        if winding_number % 2 == 0 :
+            return False
+        else:
+            if coincidence:
+                return False
+            return True
+
+    isVertInside = staticmethod(isVertInside)
+
+
+    def det(a, b, c):
+        return ((b[0] - a[0]) * (c[1] - a[1]) -
+                (b[1] - a[1]) * (c[0] - a[0]) )
+    
+    det = staticmethod(det)
+
+    def pointInPolygon(q, P):
+        is_in = False
+
+        point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
+
+        det = HSR.det
+
+        for i in range(len(P.v)):
+            p0 = P.v[i-1]
+            p1 = P.v[i]
+            if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0):
+                if det(p0.co, p1.co, q.co) == 0 :
+                    #print "On Boundary"
+                    return False
+                elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0):
+                    is_in = not is_in
+
+        return is_in
+
+    pointInPolygon = staticmethod(pointInPolygon)
+
+    def projectionsOverlap(f1, f2):
+        """ If you have nonconvex, but still simple polygons, an acceptable method
+        is to iterate over all vertices and perform the Point-in-polygon test[1].
+        The advantage of this method is that you can compute the exact
+        intersection point and collision normal that you will need to simulate
+        collision. When you have the point that lies inside the other polygon, you
+        just iterate over all edges of the second polygon again and look for edge
+        intersections. Note that this method detects collsion when it already
+        happens. This algorithm is fast enough to perform it hundreds of times per
+        sec.  """
+
+        for i in range(len(f1.v)):
+
+
+            # If a point of f1 in inside f2, there is an overlap!
+            v1 = f1.v[i]
+            #if HSR.isVertInside(f2, v1):
+            if HSR.pointInPolygon(v1, f2):
+                return True
+
+            # If not the polygon can be ovelap as well, so we check for
+            # intersection between an edge of f1 and all the edges of f2
+
+            v0 = f1.v[i-1]
+
+            for j in range(len(f2.v)):
+                v2 = f2.v[j-1]
+                v3 = f2.v[j]
+
+                e1 = v0, v1
+                e2 = v2, v3
+
+                intrs = HSR.edgeIntersection(e1, e2)
+                if intrs:
+                    #print_debug(str(v0.co) + " " + str(v1.co) + " " +
+                    #        str(v2.co) + " " + str(v3.co) )
+                    #print_debug("\nIntersection\n")
+
+                    return True
+
+        return False
+
+    projectionsOverlap = staticmethod(projectionsOverlap)
+
+    def midpoint(p1, p2):
+        """Return the midpoint of two vertices.
+        """
+        m = MidpointVecs(Vector(p1), Vector(p2))
+        mv = NMesh.Vert(m[0], m[1], m[2])
+
+        return mv
+
+    midpoint = staticmethod(midpoint)
+
+    def facesplit(P, Q, facelist, nmesh):
+        """Split P or Q according to the strategy illustrated in the Newell's
+        paper.
+        """
+
+        by_furthest_z = (lambda f1, f2:
+                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+                )
+
+        # Choose if split P on Q plane or vice-versa
+
+        n = 0
+        for Pi in P:
+            d = HSR.Distance(Vector(Pi), Q)
+            if d <= EPS:
+                n += 1
+        pIntersectQ = (n != len(P))
+
+        n = 0
+        for Qi in Q:
+            d = HSR.Distance(Vector(Qi), P)
+            if d >= -EPS:
+                n += 1
+        qIntersectP = (n != len(Q))
+
+        newfaces = []
+
+        # 1. If parts of P lie in both half-spaces of Q
+        # then splice P in two with the plane of Q
+        if pIntersectQ:
+            #print "We split P"
+            f = P
+            plane = Q
+
+            newfaces = HSR.splitOn(plane, f)
+
+        # 2. Else if parts of Q lie in both half-space of P
+        # then splice Q in two with the plane of P
+        if qIntersectP and newfaces == None:
+            #print "We split Q"
+            f = Q
+            plane = P
+
+            newfaces = HSR.splitOn(plane, f)
+            #print "After"
+
+        # 3. Else slice P in half through the mid-point of
+        # the longest pair of opposite sides
+        if newfaces == None:
+
+            print "We ignore P..."
+            facelist.remove(P)
+            return facelist
+
+            #f = P
+
+            #if len(P)==3:
+            #    v1 = midpoint(f[0], f[1])
+            #    v2 = midpoint(f[1], f[2])
+            #if len(P)==4:
+            #    v1 = midpoint(f[0], f[1])
+            #    v2 = midpoint(f[2], f[3])
+            #vec3 = (Vector(v2)+10*Vector(f.normal))
+            #
+            #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
+
+            #plane = NMesh.Face([v1, v2, v3])
+            #
+            #newfaces = splitOn(plane, f)
+
+        
+        if newfaces == None:
+            print "Big FAT problem, we weren't able to split POLYGONS!"
+            raise AssertionError
+
+        #print newfaces
+        if newfaces:
+            #for v in f:
+            #    if v not in plane and v in nmesh.verts:
+            #        nmesh.verts.remove(v)
+            for nf in newfaces:
+
+                nf.mat = f.mat
+                nf.sel = f.sel
+                nf.col = [f.col[0]] * len(nf.v)
+
+                nf.smooth = 0
+
+                for v in nf:
+                    nmesh.verts.append(v)
+                # insert pieces in the list
+                facelist.append(nf)
+
+            facelist.remove(f)
+
+        # and resort the faces
+        facelist.sort(by_furthest_z)
+        facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
+        facelist.reverse()
+
+        #print [ f.smooth for f in facelist ]
+
+        return facelist
+
+    facesplit = staticmethod(facesplit)
+
+    def isOnSegment(v1, v2, p, extremes_internal=False):
+        """Check if point p is in segment v1v2.
+        """
+
+        l1 = (v1-p).length
+        l2 = (v2-p).length
+
+        # Should we consider extreme points as internal ?
+        # The test:
+        # if p == v1 or p == v2:
+        if l1 < EPS or l2 < EPS:
+            return extremes_internal
 
-        return adjface_list
+        l = (v1-v2).length
 
-    def isMeshEdge(e, mesh):
+        # if the sum of l1 and l2 is circa l, then the point is on segment,
+        if abs(l - (l1+l2)) < EPS:
+            return True
+        else:
+            return False
+
+    isOnSegment = staticmethod(isOnSegment)
+
+    def Distance(point, face):
+        """ Calculate the distance between a point and a face.
+
+        An alternative but more expensive method can be:
+
+            ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
+                    Vector(face.no), Vector(point), 0)
+
+            d = Vector(ip - point).length
+
+        See: http://mathworld.wolfram.com/Point-PlaneDistance.html
+        """
+
+        p = Vector(point)
+        plNormal = Vector(face.no)
+        plVert0 = Vector(face.v[0])
+
+        d = (plVert0 * plNormal) - (p * plNormal)
+
+        #d = plNormal * (plVert0 - p)
+
+        #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
+
+        return d
+
+    Distance = staticmethod(Distance)
+
+    def makeFaces(vl):
+        #
+        # make one or two new faces based on a list of vertex-indices
+        #
+        newfaces = []
+
+        if len(vl) <= 4:
+            nf = NMesh.Face()
+
+            for v in vl:
+                nf.v.append(v)
+
+            newfaces.append(nf)
+
+        else:
+            nf = NMesh.Face()
+
+            nf.v.append(vl[0])
+            nf.v.append(vl[1])
+            nf.v.append(vl[2])
+            nf.v.append(vl[3])
+            newfaces.append(nf)
+
+            nf = NMesh.Face()
+            nf.v.append(vl[3])
+            nf.v.append(vl[4])
+            nf.v.append(vl[0])
+            newfaces.append(nf)
+
+        return newfaces
+
+    makeFaces = staticmethod(makeFaces)
+
+    def splitOn(Q, P):
+        """Split P using the plane of Q.
+        Logic taken from the knife.py python script
+        """
+
+        # Check if P and Q are parallel
+        u = CrossVecs(Vector(Q.no),Vector(P.no))
+        ax = abs(u[0])
+        ay = abs(u[1])
+        az = abs(u[2])
+
+        if (ax+ay+az) < EPS:
+            print "PARALLEL planes!!"
+            return
+
+
+        # The final aim is to find the intersection line between P
+        # and the plane of Q, and split P along this line
+
+        nP = len(P.v)
+
+        # Calculate point-plane Distance between vertices of P and plane Q
+        d = []
+        for i in range(0, nP):
+            d.append(HSR.Distance(P.v[i], Q))
+
+        newVertList = []
+
+        posVertList = []
+        negVertList = []
+        for i in range(nP):
+            d0 = d[i-1]
+            V0 = P.v[i-1]
+
+            d1 = d[i]
+            V1 = P.v[i]
+
+            #print "d0:", d0, "d1:", d1
+
+            # if the vertex lies in the cutplane                       
+            if abs(d1) < EPS:
+                #print "d1 On cutplane"
+                posVertList.append(V1)
+                negVertList.append(V1)
+            else:
+                # if the previous vertex lies in cutplane
+                if abs(d0) < EPS:
+                    #print "d0 on Cutplane"
+                    if d1 > 0:
+                        #print "d1 on positive Halfspace"
+                        posVertList.append(V1)
+                    else:
+                        #print "d1 on negative Halfspace"
+                        negVertList.append(V1)
+                else:
+                    # if they are on the same side of the plane
+                    if d1*d0 > 0:
+                        #print "On the same half-space"
+                        if d1 > 0:
+                            #print "d1 on positive Halfspace"
+                            posVertList.append(V1)
+                        else:
+                            #print "d1 on negative Halfspace"
+                            negVertList.append(V1)
+
+                    # the vertices are not on the same side of the plane, so we have an intersection
+                    else:
+                        #print "Intersection"
+
+                        e = Vector(V0), Vector(V1)
+                        tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
+
+                        inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0)
+                        if inters == None:
+                            print "Split Break"
+                            break
+
+                        #print "Intersection", inters
+
+                        nv = NMesh.Vert(inters[0], inters[1], inters[2])
+                        newVertList.append(nv)
+
+                        posVertList.append(nv)
+                        negVertList.append(nv)
+
+                        if d1 > 0:
+                            posVertList.append(V1)
+                        else:
+                            negVertList.append(V1)
+
+        
+        # uniq
+        posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
+        negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+
+        # If vertex are all on the same half-space, return
+        #if len(posVertList) < 3:
+        #    print "Problem, we created a face with less that 3 verteices??"
+        #    posVertList = []
+        #if len(negVertList) < 3:
+        #    print "Problem, we created a face with less that 3 verteices??"
+        #    negVertList = []
+
+        if len(posVertList) < 3 or len(negVertList) < 3:
+            print "RETURN NONE, SURE???"
+            return None
+
+
+        newfaces = HSR.addNewFaces(posVertList, negVertList)
+
+        return newfaces
+
+    splitOn = staticmethod(splitOn)
+
+    def addNewFaces(posVertList, negVertList):
+        # Create new faces resulting from the split
+        outfaces = []
+        if len(posVertList) or len(negVertList):
+
+            #newfaces = [posVertList] + [negVertList]
+            newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
+                    [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] )
+
+            for nf in newfaces:
+                if nf and len(nf)>2:
+                    outfaces += HSR.makeFaces(nf)
+
+        return outfaces
+
+
+    addNewFaces = staticmethod(addNewFaces)
+
+
+# ---------------------------------------------------------------------
+#
+## Mesh Utility class
+#
+# ---------------------------------------------------------------------
+
+class MeshUtils:
+
+    def buildEdgeFaceUsersCache(me):
+        ''' 
+        Takes a mesh and returns a list aligned with the meshes edges.
+        Each item is a list of the faces that use the edge
+        would be the equiv for having ed.face_users as a property
+
+        Taken from .blender/scripts/bpymodules/BPyMesh.py,
+        thanks to ideasman_42.
+        '''
+
+        def sorted_edge_indicies(ed):
+            i1= ed.v1.index
+            i2= ed.v2.index
+            if i1>i2:
+                i1,i2= i2,i1
+            return i1, i2
+
+       
+        face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
+        for f in me.faces:
+            fvi= [v.index for v in f.v]# face vert idx's
+            for i in xrange(len(f)):
+                i1= fvi[i]
+                i2= fvi[i-1]
+                
+                if i1>i2:
+                    i1,i2= i2,i1
+                
+                face_edges_dict[i1,i2][1].append(f)
+        
+        face_edges= [None] * len(me.edges)
+        for ed_index, ed_faces in face_edges_dict.itervalues():
+            face_edges[ed_index]= ed_faces
+        
+        return face_edges
+
+    def isMeshEdge(adjacent_faces):
         """Mesh edge rule.
 
-        A mesh edge is visible if _any_ of its adjacent faces is selected.
+        A mesh edge is visible if _at_least_one_ of its adjacent faces is selected.
         Note: if the edge has no adjacent faces we want to show it as well,
         useful for "edge only" portion of objects.
         """
 
-        adjacent_faces = MeshUtils.getEdgeAdjacentFaces(e, mesh)
-
         if len(adjacent_faces) == 0:
             return True
 
@@ -140,7 +783,7 @@ class MeshUtils:
         else:
             return False
 
-    def isSilhouetteEdge(e, mesh):
+    def isSilhouetteEdge(adjacent_faces):
         """Silhuette selection rule.
 
         An edge is a silhuette edge if it is shared by two faces with
@@ -148,8 +791,6 @@ class MeshUtils:
         face.
         """
 
-        adjacent_faces = MeshUtils.getEdgeAdjacentFaces(e, mesh)
-
         if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or
             (len(adjacent_faces) == 2 and
                 adjacent_faces[0].sel != adjacent_faces[1].sel)
@@ -157,33 +798,53 @@ class MeshUtils:
             return True
         else:
             return False
-    
-    def toonShading(u):
 
-        levels = 2
+    buildEdgeFaceUsersCache = staticmethod(buildEdgeFaceUsersCache)
+    isMeshEdge = staticmethod(isMeshEdge)
+    isSilhouetteEdge = staticmethod(isSilhouetteEdge)
+
+
+# ---------------------------------------------------------------------
+#
+## Shading Utility class
+#
+# ---------------------------------------------------------------------
+
+class ShadingUtils:
+
+    shademap = None
+
+    def toonShadingMapSetup():
+        levels = config.polygons['TOON_LEVELS']
+
         texels = 2*levels - 1
-        map = [0.0] + [(i)/float(texels-1) for i in range(1, texels-1) ] + [1.0]
-        
+        tmp_shademap = [0.0] + [(i)/float(texels-1) for i in xrange(1, texels-1) ] + [1.0]
+
+        return tmp_shademap
+
+    def toonShading(u):
+
+        shademap = ShadingUtils.shademap
+
+        if not shademap:
+            shademap = ShadingUtils.toonShadingMapSetup()
+
         v = 1.0
-        for i in range(0, len(map)-1):
-            pivot = (map[i]+map[i+1])/2.0
+        for i in xrange(0, len(shademap)-1):
+            pivot = (shademap[i]+shademap[i+1])/2.0
             j = int(u>pivot)
 
-            v = map[i+j]
+            v = shademap[i+j]
 
-            if v<map[i+1]:
+            if v < shademap[i+1]:
                 return v
 
         return v
 
-
-    getEdgeAdjacentFaces = staticmethod(getEdgeAdjacentFaces)
-    isMeshEdge = staticmethod(isMeshEdge)
-    isSilhouetteEdge = staticmethod(isSilhouetteEdge)
+    toonShadingMapSetup = staticmethod(toonShadingMapSetup)
     toonShading = staticmethod(toonShading)
 
 
-
 # ---------------------------------------------------------------------
 #
 ## Projections classes
@@ -219,11 +880,10 @@ class Projector:
         fovy = fovy * 360.0/pi
         
         # What projection do we want?
-        if camera.type:
-            #mP = self._calcOrthoMatrix(fovy, aspect, near, far, 17) #camera.scale) 
-            mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale) 
-        else:
+        if camera.type == 0:
             mP = self._calcPerspectiveMatrix(fovy, aspect, near, far) 
+        elif camera.type == 1:
+            mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale) 
         
         # View transformation
         cam = Matrix(cameraObj.getInverseMatrix())
@@ -245,11 +905,16 @@ class Projector:
         """
         
         # Note that we have to work on the vertex using homogeneous coordinates
+        # From blender 2.42+ we don't need to resize the vector to be 4d
+        # when applying a 4x4 matrix, but we do that anyway since we need the
+        # 4th coordinate later
         p = self.projectionMatrix * Vector(v).resize4D()
-
-        if p[3]>0:
+        
+        # Perspective division
+        if p[3] != 0:
             p[0] = p[0]/p[3]
             p[1] = p[1]/p[3]
+            p[2] = p[2]/p[3]
 
         # restore the size
         p[3] = 1.0
@@ -257,6 +922,7 @@ class Projector:
 
         return p
 
+
     ##
     # Private methods
     #
@@ -309,6 +975,171 @@ class Projector:
         return m
 
 
+# ---------------------------------------------------------------------
+#
+## Progress Indicator
+#
+# ---------------------------------------------------------------------
+
+class Progress:
+    """A model for a progress indicator.
+    
+    Do the progress calculation calculation and
+    the view independent stuff of a progress indicator.
+    """
+    def __init__(self, steps=0):
+        self.name = ""
+        self.steps = steps
+        self.completed = 0
+        self.progress = 0
+
+    def setSteps(self, steps):
+        """Set the number of steps of the activity wich we want to track.
+        """
+        self.steps = steps
+
+    def getSteps(self):
+        return self.steps
+
+    def setName(self, name):
+        """Set the name of the activity wich we want to track.
+        """
+        self.name = name
+
+    def getName(self):
+        return self.name
+
+    def getProgress(self):
+        return self.progress
+
+    def reset(self):
+        self.completed = 0
+        self.progress = 0
+
+    def update(self):
+        """Update the model, call this method when one step is completed.
+        """
+        if self.progress == 100:
+            return False
+
+        self.completed += 1
+        self.progress = ( float(self.completed) / float(self.steps) ) * 100
+        self.progress = int(self.progress)
+
+        return True
+
+
+class ProgressIndicator:
+    """An abstraction of a View for the Progress Model
+    """
+    def __init__(self):
+
+        # Use a refresh rate so we do not show the progress at
+        # every update, but every 'self.refresh_rate' times.
+        self.refresh_rate = 10
+        self.shows_counter = 0
+
+        self.quiet = False
+
+        self.progressModel = None
+
+    def setQuiet(self, value):
+        self.quiet = value
+
+    def setActivity(self, name, steps):
+        """Initialize the Model.
+
+        In a future version (with subactivities-progress support) this method
+        could only set the current activity.
+        """
+        self.progressModel = Progress()
+        self.progressModel.setName(name)
+        self.progressModel.setSteps(steps)
+
+    def getActivity(self):
+        return self.progressModel
+
+    def update(self):
+        """Update the model and show the actual progress.
+        """
+        assert(self.progressModel)
+
+        if self.progressModel.update():
+            if self.quiet:
+                return
+
+            self.show(self.progressModel.getProgress(),
+                    self.progressModel.getName())
+
+        # We return always True here so we can call the update() method also
+        # from lambda funcs (putting the call in logical AND with other ops)
+        return True
+
+    def show(self, progress, name=""):
+        self.shows_counter = (self.shows_counter + 1) % self.refresh_rate
+        if self.shows_counter != 0:
+            return
+
+        if progress == 100:
+            self.shows_counter = -1
+
+
+class ConsoleProgressIndicator(ProgressIndicator):
+    """Show a progress bar on stderr, a la wget.
+    """
+    def __init__(self):
+        ProgressIndicator.__init__(self)
+
+        self.swirl_chars = ["-", "\\", "|", "/"]
+        self.swirl_count = -1
+
+    def show(self, progress, name):
+        ProgressIndicator.show(self, progress, name)
+        
+        bar_length = 70
+        bar_progress = int( (progress/100.0) * bar_length )
+        bar = ("=" * bar_progress).ljust(bar_length)
+
+        self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+        swirl_char = self.swirl_chars[self.swirl_count]
+
+        progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress)
+
+        sys.stderr.write(progress_bar+"\r")
+        if progress == 100:
+            sys.stderr.write("\n")
+
+
+class GraphicalProgressIndicator(ProgressIndicator):
+    """Interface to the Blender.Window.DrawProgressBar() method.
+    """
+    def __init__(self):
+        ProgressIndicator.__init__(self)
+
+        #self.swirl_chars = ["-", "\\", "|", "/"]
+        # We have to use letters with the same width, for now!
+        # Blender progress bar considers the font widths when
+        # calculating the progress bar width.
+        self.swirl_chars = ["\\", "/"]
+        self.swirl_count = -1
+
+    def show(self, progress, name):
+        ProgressIndicator.show(self, progress)
+
+        self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+        swirl_char = self.swirl_chars[self.swirl_count]
+
+        progress_text = "%s - %c %3d%%" % (name, swirl_char, progress)
+
+        # Finally draw  the Progress Bar
+        Window.WaitCursor(1) # Maybe we can move that call in the constructor?
+        Window.DrawProgressBar(progress/100.0, progress_text)
+
+        if progress == 100:
+            Window.DrawProgressBar(1, progress_text)
+            Window.WaitCursor(0)
+
+
 
 # ---------------------------------------------------------------------
 #
@@ -373,7 +1204,8 @@ class VectorWriter:
         return
 
     def close(self):
-        self.file.close()
+        if self.file:
+            self.file.close()
         return
 
     def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
@@ -483,16 +1315,16 @@ class SVGVectorWriter(VectorWriter):
         """Print SVG header."""
 
         self.file.write("<?xml version=\"1.0\"?>\n")
-        self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n")
-        self.file.write("\t\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n")
-        self.file.write("<svg version=\"1.1\"\n")
+        self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\"\n")
+        self.file.write("\t\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n")
+        self.file.write("<svg version=\"1.0\"\n")
         self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
-        self.file.write("\twidth=\"%d\" height=\"%d\" streamable=\"true\">\n\n" %
+        self.file.write("\twidth=\"%d\" height=\"%d\">\n\n" %
                 self.canvasSize)
 
         if self.animation:
 
-            self.file.write("""\n<script><![CDATA[
+            self.file.write("""\n<script type="text/javascript"><![CDATA[
             globalStartFrame=%d;
             globalEndFrame=%d;
 
@@ -545,18 +1377,21 @@ class SVGVectorWriter(VectorWriter):
             if not face.sel:
                continue
 
-            self.file.write("<polygon points=\"")
+            self.file.write("<path d=\"")
+
+            #p = self._calcCanvasCoord(face.verts[0])
+            p = self._calcCanvasCoord(face.v[0])
+            self.file.write("M %g,%g L " % (p[0], p[1]))
 
-            for v in face:
+            for v in face.v[1:]:
                 p = self._calcCanvasCoord(v)
                 self.file.write("%g,%g " % (p[0], p[1]))
             
             # get rid of the last blank space, just cosmetics here.
             self.file.seek(-1, 1) 
-            self.file.write("\"\n")
+            self.file.write(" z\"\n")
             
             # take as face color the first vertex color
-            # TODO: the average of vetrex colors?
             if face.col:
                 fcol = face.col[0]
                 color = [fcol.r, fcol.g, fcol.b, fcol.a]
@@ -566,59 +1401,257 @@ class SVGVectorWriter(VectorWriter):
             # Convert the color to the #RRGGBB form
             str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
 
-            # use the stroke property to alleviate the "adjacent edges" problem,
-            # we simulate polygon expansion using borders,
-            # see http://www.antigrain.com/svg/index.html for more info
-            stroke_width = 0.5
-
             # Handle transparent polygons
             opacity_string = ""
             if color[3] != 255:
                 opacity = float(color[3])/255.0
                 opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+                #opacity_string = "opacity: %g;" % (opacity)
+
+            self.file.write("\tstyle=\"fill:" + str_col + ";")
+            self.file.write(opacity_string)
+
+            # use the stroke property to alleviate the "adjacent edges" problem,
+            # we simulate polygon expansion using borders,
+            # see http://www.antigrain.com/svg/index.html for more info
+            stroke_width = 1.0
+
+            # EXPANSION TRICK is not that useful where there is transparency
+            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+                # str_col = "#000000" # For debug
+                self.file.write(" stroke:%s;\n" % str_col)
+                self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+                self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+
+            self.file.write("\"/>\n")
+
+        self.file.write("</g>\n")
+
+    def _printEdges(self, mesh, showHiddenEdges=False):
+        """Print the wireframe using mesh edges.
+        """
+
+        stroke_width = config.edges['WIDTH']
+        stroke_col = config.edges['COLOR']
+        
+        self.file.write("<g>\n")
+
+        for e in mesh.edges:
+            
+            hidden_stroke_style = ""
+            
+            if e.sel == 0:
+                if showHiddenEdges == False:
+                    continue
+                else:
+                    hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+            p1 = self._calcCanvasCoord(e.v1)
+            p2 = self._calcCanvasCoord(e.v2)
+            
+            self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
+                    % ( p1[0], p1[1], p2[0], p2[1] ) )
+            self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
+            self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+            self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+            self.file.write(hidden_stroke_style)
+            self.file.write("\"/>\n")
+
+        self.file.write("</g>\n")
+
+
+## SWF Writer
+
+try:
+    from ming import *
+    SWFSupported = True
+except:
+    SWFSupported = False
+
+class SWFVectorWriter(VectorWriter):
+    """A concrete class for writing SWF output.
+    """
+
+    def __init__(self, fileName):
+        """Simply call the parent Contructor.
+        """
+        VectorWriter.__init__(self, fileName)
+
+        self.movie = None
+        self.sprite = None
+
+
+    ##
+    # Public Methods
+    #
+
+    def open(self, startFrame=1, endFrame=1):
+        """Do some initialization operations.
+        """
+        VectorWriter.open(self, startFrame, endFrame)
+        self.movie = SWFMovie()
+        self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+        # set fps
+        self.movie.setRate(25)
+        numframes = endFrame - startFrame + 1
+        self.movie.setFrames(numframes)
+
+    def close(self):
+        """Do some finalization operation.
+        """
+        self.movie.save(self.outputFileName)
+
+        # remember to call the close method of the parent
+        VectorWriter.close(self)
+
+    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+            showHiddenEdges=False):
+        """Convert the scene representation to SVG.
+        """
+        context = scene.getRenderingContext()
+        framenumber = context.currentFrame()
+
+        Objects = scene.getChildren()
+
+        if self.sprite:
+            self.movie.remove(self.sprite)
+
+        sprite = SWFSprite()
+
+        for obj in Objects:
+
+            if(obj.getType() != 'Mesh'):
+                continue
+
+            mesh = obj.getData(mesh=1)
+
+            if doPrintPolygons:
+                self._printPolygons(mesh, sprite)
+
+            if doPrintEdges:
+                self._printEdges(mesh, sprite, showHiddenEdges)
+            
+        sprite.nextFrame()
+        i = self.movie.add(sprite)
+        # Remove the instance the next time
+        self.sprite = i
+        if self.animation:
+            self.movie.nextFrame()
+
+    
+    ##  
+    # Private Methods
+    #
+    
+    def _calcCanvasCoord(self, v):
+        """Convert vertex in scene coordinates to canvas coordinates.
+        """
+
+        pt = Vector([0, 0, 0])
+        
+        mW = float(self.canvasSize[0])/2.0
+        mH = float(self.canvasSize[1])/2.0
+
+        # rescale to canvas size
+        pt[0] = v.co[0]*mW + mW
+        pt[1] = v.co[1]*mH + mH
+        pt[2] = v.co[2]
+         
+        # For now we want (0,0) in the top-left corner of the canvas.
+        # Mirror and translate along y
+        pt[1] *= -1
+        pt[1] += self.canvasSize[1]
+        
+        return pt
+                
+    def _printPolygons(self, mesh, sprite): 
+        """Print the selected (visible) polygons.
+        """
+
+        if len(mesh.faces) == 0:
+            return
+
+        for face in mesh.faces:
+            if not face.sel:
+               continue
+
+            if face.col:
+                fcol = face.col[0]
+                color = [fcol.r, fcol.g, fcol.b, fcol.a]
+            else:
+                color = [255, 255, 255, 255]
+
+            s = SWFShape()
+            f = s.addFill(color[0], color[1], color[2], color[3])
+            s.setRightFill(f)
+
+            # The starting point of the shape
+            p0 = self._calcCanvasCoord(face.verts[0])
+            s.movePenTo(p0[0], p0[1])
+
+
+            for v in face.verts[1:]:
+                p = self._calcCanvasCoord(v)
+                s.drawLineTo(p[0], p[1])
+            
+            # Closing the shape
+            s.drawLineTo(p0[0], p0[1])
+            s.end()
+            sprite.add(s)
+
 
-            self.file.write("\tstyle=\"fill:" + str_col + ";")
-            self.file.write(opacity_string)
-            if config.polygons['EXPANSION_TRICK']:
-                self.file.write(" stroke:" + str_col + ";")
+            """
+            # use the stroke property to alleviate the "adjacent edges" problem,
+            # we simulate polygon expansion using borders,
+            # see http://www.antigrain.com/svg/index.html for more info
+            stroke_width = 1.0
+
+            # EXPANSION TRICK is not that useful where there is transparency
+            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+                # str_col = "#000000" # For debug
+                self.file.write(" stroke:%s;\n" % str_col)
                 self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
                 self.file.write(" stroke-linecap:round;stroke-linejoin:round")
-            self.file.write("\"/>\n")
 
-        self.file.write("</g>\n")
+            """
 
-    def _printEdges(self, mesh, showHiddenEdges=False):
+    def _printEdges(self, mesh, sprite, showHiddenEdges=False):
         """Print the wireframe using mesh edges.
         """
 
         stroke_width = config.edges['WIDTH']
         stroke_col = config.edges['COLOR']
-        
-        self.file.write("<g>\n")
+
+        s = SWFShape()
 
         for e in mesh.edges:
-            
-            hidden_stroke_style = ""
+
+            #Next, we set the line width and color for our shape.
+            s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+            255)
             
             if e.sel == 0:
                 if showHiddenEdges == False:
                     continue
                 else:
-                    hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+                    # SWF does not support dashed lines natively, so -for now-
+                    # draw hidden lines thinner and half-trasparent
+                    s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
+                            stroke_col[2], 128)
 
             p1 = self._calcCanvasCoord(e.v1)
             p2 = self._calcCanvasCoord(e.v2)
-            
-            self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
-                    % ( p1[0], p1[1], p2[0], p2[1] ) )
-            self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
-            self.file.write(" stroke-width:"+str(stroke_width)+";\n")
-            self.file.write(" stroke-linecap:round;stroke-linejoin:round")
-            self.file.write(hidden_stroke_style)
-            self.file.write("\"/>\n")
 
-        self.file.write("</g>\n")
+            # FIXME: this is just a qorkaround, remove that after the
+            # implementation of propoer Viewport clipping
+            if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000:
+                s.movePenTo(p1[0], p1[1])
+                s.drawLineTo(p2[0], p2[1])
+            
 
+        s.end()
+        sprite.add(s)
+            
 
 
 # ---------------------------------------------------------------------
@@ -640,10 +1673,12 @@ edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
 # A dictionary to collect the supported output formats
 outputWriters = dict()
 outputWriters['SVG'] = SVGVectorWriter
+if SWFSupported:
+    outputWriters['SWF'] = SWFVectorWriter
 
 
 class Renderer:
-    """Render a scene viewed from a given camera.
+    """Render a scene viewed from the active camera.
     
     This class is responsible of the rendering process, transformation and
     projection of the objects in the scene are invoked by the renderer.
@@ -654,7 +1689,7 @@ class Renderer:
     def __init__(self):
         """Make the rendering process only for the current scene by default.
 
-        We will work on a copy of the scene, be sure that the current scene do
+        We will work on a copy of the scene, to be sure that the current scene do
         not get modified in any way.
         """
 
@@ -672,12 +1707,6 @@ class Renderer:
         # Render from the currently active camera 
         self.cameraObj = self._SCENE.getCurrentCamera()
 
-        # Get a projector for this camera.
-        # NOTE: the projector wants object in world coordinates,
-        # so we should remember to apply modelview transformations
-        # _before_ we do projection transformations.
-        self.proj = Projector(self.cameraObj, self.canvasRatio)
-
         # Get the list of lighting sources
         obj_lst = self._SCENE.getChildren()
         self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
@@ -719,12 +1748,21 @@ class Renderer:
             outputWriter.open(startFrame, endFrame)
         
         # Do the rendering process frame by frame
-        print "Start Rendering!"
-        for f in range(startFrame, endFrame+1):
+        print "Start Rendering of %d frames" % (endFrame-startFrame+1)
+        for f in xrange(startFrame, endFrame+1):
+            print "\n\nFrame: %d" % f
             context.currentFrame(f)
 
             # Use some temporary workspace, a full copy of the scene
             inputScene = self._SCENE.copy(2)
+            # And Set our camera accordingly
+            self.cameraObj = inputScene.getCurrentCamera()
+
+            # Get a projector for this camera.
+            # NOTE: the projector wants object in world coordinates,
+            # so we should remember to apply modelview transformations
+            # _before_ we do projection transformations.
+            self.proj = Projector(self.cameraObj, self.canvasRatio)
 
             try:
                 renderedScene = self.doRenderScene(inputScene)
@@ -743,7 +1781,7 @@ class Renderer:
                     doPrintEdges    = config.edges['SHOW'],
                     showHiddenEdges = config.edges['SHOW_HIDDEN'])
             
-            # clear the rendered scene
+            # delete the rendered scene
             self._SCENE.makeCurrent()
             Scene.unlink(renderedScene)
             del renderedScene
@@ -762,10 +1800,10 @@ class Renderer:
         
         # global processing of the scene
 
-        self._doConvertGeometricObjToMesh(workScene)
-
         self._doSceneClipping(workScene)
 
+        self._doConvertGeometricObjsToMesh(workScene)
+
         if config.output['JOIN_OBJECTS']:
             self._joinMeshObjectsInScene(workScene)
 
@@ -774,8 +1812,11 @@ class Renderer:
         # Per object activities
 
         Objects = workScene.getChildren()
-        for obj in Objects:
-            
+        print "Total Objects: %d" % len(Objects)
+        for i,obj in enumerate(Objects):
+            print "\n\n-------"
+            print "Rendering Object: %d" % i
+
             if obj.getType() != 'Mesh':
                 print "Only Mesh supported! - Skipping type:", obj.getType()
                 continue
@@ -784,18 +1825,32 @@ class Renderer:
 
             mesh = obj.getData(mesh=1)
 
-            self._doModelToWorldCoordinates(mesh, obj.matrix)
+            self._doModelingTransformation(mesh, obj.matrix)
 
-            self._doObjectDepthSorting(mesh)
-            
             self._doBackFaceCulling(mesh)
-            
-            self._doColorAndLighting(mesh)
 
-            self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
 
+            # When doing HSR with NEWELL we may want to flip all normals
+            # toward the viewer
+            if config.polygons['HSR'] == "NEWELL":
+                for f in mesh.faces:
+                    f.sel = 1-f.sel
+                mesh.flipNormals()
+                for f in mesh.faces:
+                    f.sel = 1
+
+            self._doLighting(mesh)
+
+            # Do "projection" now so we perform further processing
+            # in Normalized View Coordinates
             self._doProjection(mesh, self.proj)
-            
+
+            self._doViewFrustumClipping(mesh)
+
+            self._doHiddenSurfaceRemoval(mesh)
+
+            self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
+
             # Update the object data, important! :)
             mesh.update()
 
@@ -813,7 +1868,7 @@ class Renderer:
         """
         return obj.matrix.translationPart()
 
-    def _cameraViewDirection(self):
+    def _cameraViewVector(self):
         """Get the View Direction form the camera matrix.
         """
         return Vector(self.cameraObj.matrix[2]).resize3D()
@@ -848,7 +1903,7 @@ class Renderer:
         # View Vector in orthographics projections is the view Direction of
         # the camera
         if self.cameraObj.data.getType() == 1:
-            view_vect = self._cameraViewDirection()
+            view_vect = self._cameraViewVector()
 
         # View vector in perspective projections can be considered as
         # the difference between the camera position and one point of
@@ -857,6 +1912,7 @@ class Renderer:
             vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
             view_vect = vv[1]
 
+
         # if d > 0 the face is visible from the camera
         d = view_vect * normal
         
@@ -868,40 +1924,14 @@ class Renderer:
 
     # Scene methods
 
-    def _doConvertGeometricObjToMesh(self, scene):
-        """Convert all "geometric" objects to mesh ones.
-        """
-        geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
-
-        Objects = scene.getChildren()
-        objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
-        for obj in objList:
-            old_obj = obj
-            obj = self._convertToRawMeshObj(obj)
-            scene.link(obj)
-            scene.unlink(old_obj)
-
-
-            # XXX Workaround for Text and Curve which have some normals
-            # inverted when they are converted to Mesh, REMOVE that when
-            # blender will fix that!!
-            if old_obj.getType() in ['Curve', 'Text']:
-                me = obj.getData(mesh=1)
-                for f in me.faces: f.sel = 1;
-                for v in me.verts: v.sel = 1;
-                me.remDoubles(0)
-                me.triangleToQuad()
-                me.recalcNormals()
-                me.update()
-
     def _doSceneClipping(self, scene):
-        """Clip objects against the View Frustum.
+        """Clip whole objects against the View Frustum.
 
         For now clip away only objects according to their center position.
         """
 
         cpos = self._getObjPosition(self.cameraObj)
-        view_vect = self._cameraViewDirection()
+        view_vect = self._cameraViewVector()
 
         near = self.cameraObj.data.clipStart
         far  = self.cameraObj.data.clipEnd
@@ -923,6 +1953,34 @@ class Renderer:
             if (d < near) or (d > far) or (theta > fovy):
                 scene.unlink(o)
 
+    def _doConvertGeometricObjsToMesh(self, scene):
+        """Convert all "geometric" objects to mesh ones.
+        """
+        geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+        #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
+
+        Objects = scene.getChildren()
+        objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
+        for obj in objList:
+            old_obj = obj
+            obj = self._convertToRawMeshObj(obj)
+            scene.link(obj)
+            scene.unlink(old_obj)
+
+
+            # XXX Workaround for Text and Curve which have some normals
+            # inverted when they are converted to Mesh, REMOVE that when
+            # blender will fix that!!
+            if old_obj.getType() in ['Curve', 'Text']:
+                me = obj.getData(mesh=1)
+                for f in me.faces: f.sel = 1;
+                for v in me.verts: v.sel = 1;
+                me.remDoubles(0)
+                me.triangleToQuad()
+                me.recalcNormals()
+                me.update()
+
+
     def _doSceneDepthSorting(self, scene):
         """Sort objects in the scene.
 
@@ -953,10 +2011,6 @@ class Renderer:
         """Merge all the Mesh Objects in a scene into a single Mesh Object.
         """
 
-        if Blender.mode == 'background':
-            print "\nWARNING! Joining objects not supported in background mode!\n"
-            return
-
         oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
 
         # FIXME: Object.join() do not work if the list contains 1 object
@@ -972,7 +2026,7 @@ class Renderer:
         try:
             bigObj.join(oList)
         except RuntimeError:
-            print "Can't Join Objects"
+            print "\nWarning! - Can't Join Objects\n"
             scene.unlink(bigObj)
             return
         except TypeError:
@@ -984,7 +2038,7 @@ class Renderer:
         scene.update()
 
  
-    # Per object methods
+    # Per object/mesh methods
 
     def _convertToRawMeshObj(self, object):
         """Convert geometry based object to a mesh object.
@@ -1004,7 +2058,7 @@ class Renderer:
 
         return newObject
 
-    def _doModelToWorldCoordinates(self, mesh, matrix):
+    def _doModelingTransformation(self, mesh, matrix):
         """Transform object coordinates to world coordinates.
 
         This step is done simply applying to the object its tranformation
@@ -1017,48 +2071,6 @@ class Renderer:
 
         mesh.transform(matrix, True)
 
-    def _doObjectDepthSorting(self, mesh):
-        """Sort faces in an object.
-
-        The faces in the object are sorted following the distance of the
-        vertices from the camera position.
-        """
-        if len(mesh.faces) == 0:
-            return
-
-        c = self._getObjPosition(self.cameraObj)
-
-        # hackish sorting of faces
-
-        # Sort faces according to the max distance from the camera
-        by_max_vert_dist = (lambda f1, f2:
-                cmp(max([(Vector(v.co)-Vector(c)).length for v in f1]),
-                    max([(Vector(v.co)-Vector(c)).length for v in f2])))
-        
-        # Sort faces according to the min distance from the camera
-        by_min_vert_dist = (lambda f1, f2:
-                cmp(min([(Vector(v.co)-Vector(c)).length for v in f1]),
-                    min([(Vector(v.co)-Vector(c)).length for v in f2])))
-        
-        # Sort faces according to the avg distance from the camera
-        by_avg_vert_dist = (lambda f1, f2:
-                cmp(sum([(Vector(v.co)-Vector(c)).length for v in f1])/len(f1),
-                    sum([(Vector(v.co)-Vector(c)).length for v in f2])/len(f2)))
-
-
-        # FIXME: using NMesh to sort faces. We should avoid that!
-        nmesh = NMesh.GetRaw(mesh.name)
-        nmesh.faces.sort(by_max_vert_dist)
-        nmesh.faces.reverse()
-
-        mesh.faces.delete(1, range(0, len(mesh.faces)))
-
-        for i,f in enumerate(nmesh.faces):
-            fv = [v.index for v in f.v] 
-            mesh.faces.extend(fv)
-            mesh.faces[i].mat = f.mat
-
-
     def _doBackFaceCulling(self, mesh):
         """Simple Backface Culling routine.
         
@@ -1078,8 +2090,8 @@ class Renderer:
             if self._isFaceVisible(f):
                 f.sel = 1
 
-    def _doColorAndLighting(self, mesh):
-        """Apply an Illumination ans shading model to the object.
+    def _doLighting(self, mesh):
+        """Apply an Illumination and shading model to the object.
 
         The model used is the Phong one, it may be inefficient,
         but I'm just learning about rendering and starting from Phong seemed
@@ -1093,14 +2105,9 @@ class Renderer:
         mesh.vertexColors = 1
 
         materials = mesh.materials
-        
-        # TODO: use multiple lighting sources
-        light_obj = self.lights[0]
-        light_pos = self._getObjPosition(light_obj)
-        light = light_obj.data
 
         camPos = self._getObjPosition(self.cameraObj)
-        
+
         # We do per-face color calculation (FLAT Shading), we can easily turn
         # to a per-vertex calculation if we want to implement some shading
         # technique. For an example see:
@@ -1116,43 +2123,72 @@ class Renderer:
             # A new default material
             if mat == None:
                 mat = Material.New('defMat')
-            
-            L = Vector(light_pos).normalize()
 
-            V = (Vector(camPos) - Vector(f.cent)).normalize()
+            # Check if it is a shadeless material
+            elif mat.getMode() & Material.Modes['SHADELESS']:
+                I = mat.getRGBCol()
+                # Convert to a value between 0 and 255
+                tmp_col = [ int(c * 255.0) for c in I]
 
-            N = Vector(f.no).normalize()
+                for c in f.col:
+                    c.r = tmp_col[0]
+                    c.g = tmp_col[1]
+                    c.b = tmp_col[2]
+                    #c.a = tmp_col[3]
 
-            R = 2 * (N*L) * N - L
+                continue
 
-            # TODO: Attenuation factor (not used for now)
-            a0 = 1.0; a1 = 0.0; a2 = 1.0
-            d = (Vector(f.v[0].co) - Vector(light_pos)).length
-            fd = min(1, 1.0/(a0 + a1*d + a2*(d*d)))
 
-            # Ambient component
-            Ia = 1.0
-            ka = mat.getAmb() * Vector([0.1, 0.1, 0.1])
-            Iamb = Ia * ka
-            
-            # Diffuse component (add light.col for kd)
-            kd = mat.getRef() * Vector(mat.getRGBCol())
-            Ip = light.getEnergy()
+            # do vertex color calculation
+
+            TotDiffSpec = Vector([0.0, 0.0, 0.0])
+
+            for l in self.lights:
+                light_obj = l
+                light_pos = self._getObjPosition(l)
+                light = light_obj.getData()
             
-            if config.polygons['SHADING'] == 'FLAT':
-                Idiff = Ip * kd * (N*L)
-            elif config.polygons['SHADING'] == 'TOON':
-                Idiff = Ip * kd * MeshUtils.toonShading(N*L)
+                L = Vector(light_pos).normalize()
+
+                V = (Vector(camPos) - Vector(f.cent)).normalize()
 
-            # Specular component
-            ks = mat.getSpec() * Vector(mat.getSpecCol())
-            ns = mat.getHardness()
-            Ispec = Ip * ks * pow((V*R), ns)
+                N = Vector(f.no).normalize()
 
-            # Emissive component
+                if config.polygons['SHADING'] == 'TOON':
+                    NL = ShadingUtils.toonShading(N*L)
+                else:
+                    NL = (N*L)
+
+                # Should we use NL instead of (N*L) here?
+                R = 2 * (N*L) * N - L
+
+                Ip = light.getEnergy()
+
+                # Diffuse co-efficient
+                kd = mat.getRef() * Vector(mat.getRGBCol())
+                for i in [0, 1, 2]:
+                    kd[i] *= light.col[i]
+
+                Idiff = Ip * kd * max(0, NL)
+
+
+                # Specular component
+                ks = mat.getSpec() * Vector(mat.getSpecCol())
+                ns = mat.getHardness()
+                Ispec = Ip * ks * pow(max(0, (V*R)), ns)
+
+                TotDiffSpec += (Idiff+Ispec)
+
+
+            # Ambient component
+            Iamb = Vector(Blender.World.Get()[0].getAmb())
+            ka = mat.getAmb()
+
+            # Emissive component (convert to a triplet)
             ki = Vector([mat.getEmit()]*3)
 
-            I = ki + Iamb + (Idiff + Ispec)
+            #I = ki + Iamb + (Idiff + Ispec)
+            I = ki + (ka * Iamb) + TotDiffSpec
 
 
             # Set Alpha component
@@ -1172,6 +2208,310 @@ class Renderer:
                 c.b = tmp_col[2]
                 c.a = tmp_col[3]
 
+    def _doProjection(self, mesh, projector):
+        """Apply Viewing and Projection tranformations.
+        """
+
+        for v in mesh.verts:
+            p = projector.doProjection(v.co[:])
+            v.co[0] = p[0]
+            v.co[1] = p[1]
+            v.co[2] = p[2]
+
+        #mesh.recalcNormals()
+        #mesh.update()
+
+        # We could reeset Camera matrix, since now
+        # we are in Normalized Viewing Coordinates,
+        # but doung that would affect World Coordinate
+        # processing for other objects
+
+        #self.cameraObj.data.type = 1
+        #self.cameraObj.data.scale = 2.0
+        #m = Matrix().identity()
+        #self.cameraObj.setMatrix(m)
+
+    def _doViewFrustumClipping(self, mesh):
+        """Clip faces against the View Frustum.
+        """
+
+    # HSR routines
+    def __simpleDepthSort(self, mesh):
+        """Sort faces by the furthest vertex.
+
+        This simple mesthod is known also as the painter algorithm, and it
+        solves HSR correctly only for convex meshes.
+        """
+
+        #global progress
+
+        # The sorting requires circa n*log(n) steps
+        n = len(mesh.faces)
+        progress.setActivity("HSR: Painter", n*log(n))
+
+        by_furthest_z = (lambda f1, f2: progress.update() and
+                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+                )
+
+        # FIXME: using NMesh to sort faces. We should avoid that!
+        nmesh = NMesh.GetRaw(mesh.name)
+
+        # remember that _higher_ z values mean further points
+        nmesh.faces.sort(by_furthest_z)
+        nmesh.faces.reverse()
+
+        nmesh.update()
+
+
+    def __newellDepthSort(self, mesh):
+        """Newell's depth sorting.
+
+        """
+
+        #global progress
+
+        # Find non planar quads and convert them to triangle
+        #for f in mesh.faces:
+        #    f.sel = 0
+        #    if is_nonplanar_quad(f.v):
+        #        print "NON QUAD??"
+        #        f.sel = 1
+
+
+        # Now reselect all faces
+        for f in mesh.faces:
+            f.sel = 1
+        mesh.quadToTriangle()
+
+        # FIXME: using NMesh to sort faces. We should avoid that!
+        nmesh = NMesh.GetRaw(mesh.name)
+
+        # remember that _higher_ z values mean further points
+        nmesh.faces.sort(by_furthest_z)
+        nmesh.faces.reverse()
+
+        # Begin depth sort tests
+
+        # use the smooth flag to set marked faces
+        for f in nmesh.faces:
+            f.smooth = 0
+
+        facelist = nmesh.faces[:]
+        maplist = []
+
+
+        # The steps are _at_least_ equal to len(facelist), we do not count the
+        # feces coming out from splitting!!
+        progress.setActivity("HSR: Newell", len(facelist))
+        #progress.setQuiet(True)
+
+        
+        while len(facelist):
+            debug("\n----------------------\n")
+            debug("len(facelits): %d\n" % len(facelist))
+            P = facelist[0]
+
+            pSign = sign(P.normal[2])
+
+            # We can discard faces parallel to the view vector
+            #if P.normal[2] == 0:
+            #    facelist.remove(P)
+            #    continue
+
+            split_done = 0
+            face_marked = 0
+
+            for Q in facelist[1:]:
+
+                debug("P.smooth: " + str(P.smooth) + "\n")
+                debug("Q.smooth: " + str(Q.smooth) + "\n")
+                debug("\n")
+
+                qSign = sign(Q.normal[2])
+                # TODO: check also if Q is parallel??
+                # Test 0: We need to test only those Qs whose furthest vertex
+                # is closer to the observer than the closest vertex of P.
+
+                zP = [v.co[2] for v in P.v]
+                zQ = [v.co[2] for v in Q.v]
+                notZOverlap = min(zP) > max(zQ) + EPS
+
+                if notZOverlap:
+                    debug("\nTest 0\n")
+                    debug("NOT Z OVERLAP!\n")
+                    if Q.smooth == 0:
+                        # If Q is not marked then we can safely print P
+                        break
+                    else:
+                        debug("met a marked face\n")
+                        continue
+
+                # Test 1: X extent overlapping
+                xP = [v.co[0] for v in P.v]
+                xQ = [v.co[0] for v in Q.v]
+                #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+                notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
+
+                if notXOverlap:
+                    debug("\nTest 1\n")
+                    debug("NOT X OVERLAP!\n")
+                    continue
+
+
+                # Test 2: Y extent Overlapping
+                yP = [v.co[1] for v in P.v]
+                yQ = [v.co[1] for v in Q.v]
+                #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+                notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
+
+                if notYOverlap:
+                    debug("\nTest 2\n")
+                    debug("NOT Y OVERLAP!\n")
+                    continue
+                
+
+                # Test 3: P vertices are all behind the plane of Q
+                n = 0
+                for Pi in P:
+                    d = qSign * HSR.Distance(Vector(Pi), Q)
+                    if d <= EPS:
+                        n += 1
+                pVerticesBehindPlaneQ = (n == len(P))
+
+                if pVerticesBehindPlaneQ:
+                    debug("\nTest 3\n")
+                    debug("P BEHIND Q!\n")
+                    continue
+
+
+                # Test 4: Q vertices in front of the plane of P
+                n = 0
+                for Qi in Q:
+                    d = pSign * HSR.Distance(Vector(Qi), P)
+                    if d >= -EPS:
+                        n += 1
+                qVerticesInFrontPlaneP = (n == len(Q))
+
+                if qVerticesInFrontPlaneP:
+                    debug("\nTest 4\n")
+                    debug("Q IN FRONT OF P!\n")
+                    continue
+
+
+                # Test 5: Check if projections of polygons effectively overlap,
+                # in previous tests we checked only bounding boxes.
+
+                #if not projectionsOverlap(P, Q):
+                if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
+                    debug("\nTest 5\n")
+                    debug("Projections do not overlap!\n")
+                    continue
+
+                # We still can't say if P obscures Q.
+
+                # But if Q is marked we do a face-split trying to resolve a
+                # difficulty (maybe a visibility cycle).
+                if Q.smooth == 1:
+                    # Split P or Q
+                    debug("Possibly a cycle detected!\n")
+                    debug("Split here!!\n")
+
+                    facelist = HSR.facesplit(P, Q, facelist, nmesh)
+                    split_done = 1
+                    break 
+
+                # The question now is: Does Q obscure P?
+
+
+                # Test 3bis: Q vertices are all behind the plane of P
+                n = 0
+                for Qi in Q:
+                    d = pSign * HSR.Distance(Vector(Qi), P)
+                    if d <= EPS:
+                        n += 1
+                qVerticesBehindPlaneP = (n == len(Q))
+
+                if qVerticesBehindPlaneP:
+                    debug("\nTest 3bis\n")
+                    debug("Q BEHIND P!\n")
+
+
+                # Test 4bis: P vertices in front of the plane of Q
+                n = 0
+                for Pi in P:
+                    d = qSign * HSR.Distance(Vector(Pi), Q)
+                    if d >= -EPS:
+                        n += 1
+                pVerticesInFrontPlaneQ = (n == len(P))
+
+                if pVerticesInFrontPlaneQ:
+                    debug("\nTest 4bis\n")
+                    debug("P IN FRONT OF Q!\n")
+
+                
+                # We don't even know if Q does obscure P, so they should
+                # intersect each other, split one of them in two parts.
+                if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
+                    debug("\nSimple Intersection?\n")
+                    debug("Test 3bis or 4bis failed\n")
+                    debug("Split here!!2\n")
+
+                    facelist = HSR.facesplit(P, Q, facelist, nmesh)
+                    split_done = 1
+                    break 
+                    
+                facelist.remove(Q)
+                facelist.insert(0, Q)
+                Q.smooth = 1
+                face_marked = 1
+                debug("Q marked!\n")
+                break
+            # Write P!                     
+            if split_done == 0 and face_marked == 0:
+                facelist.remove(P)
+                maplist.append(P)
+                dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg")
+
+                progress.update()
+
+            if len(facelist) == 870:
+                dumpfaces([P, Q], "loopdebug.svg")
+
+
+            #if facelist == None:
+            #    maplist = [P, Q]
+            #    print [v.co for v in P]
+            #    print [v.co for v in Q]
+            #    break
+
+            # end of while len(facelist)
+         
+
+        nmesh.faces = maplist
+        #for f in nmesh.faces:
+        #    f.sel = 1
+
+        nmesh.update()
+
+
+    def _doHiddenSurfaceRemoval(self, mesh):
+        """Do HSR for the given mesh.
+        """
+        if len(mesh.faces) == 0:
+            return
+
+        if config.polygons['HSR'] == 'PAINTER':
+            print "\nUsing the Painter algorithm for HSR."
+            self.__simpleDepthSort(mesh)
+
+        elif config.polygons['HSR'] == 'NEWELL':
+            print "\nUsing the Newell's algorithm for HSR."
+            self.__newellDepthSort(mesh)
+
+
     def _doEdgesStyle(self, mesh, edgestyleSelect):
         """Process Mesh Edges accroding to a given selection style.
 
@@ -1188,23 +2528,21 @@ class Renderer:
 
         Mesh.Mode(Mesh.SelectModes['EDGE'])
 
+        edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
+
+        for i,edge_faces in enumerate(edge_cache):
+            mesh.edges[i].sel = 0
+            if edgestyleSelect(edge_faces):
+                mesh.edges[i].sel = 1
+
+        """
         for e in mesh.edges:
 
             e.sel = 0
             if edgestyleSelect(e, mesh):
                 e.sel = 1
-                
-    def _doProjection(self, mesh, projector):
-        """Calculate the Projection for the object.
         """
-        # TODO: maybe using the object.transform() can be faster?
-
-        for v in mesh.verts:
-            p = projector.doProjection(v.co)
-            v.co[0] = p[0]
-            v.co[1] = p[1]
-            v.co[2] = p[2]
-
+        #
 
 
 # ---------------------------------------------------------------------
@@ -1284,7 +2622,8 @@ class GUI:
         glClear(GL_COLOR_BUFFER_BIT)
         glColor3f(0.0, 0.0, 0.0)
         glRasterPos2i(10, 350)
-        Draw.Text("VRM: Vector Rendering Method script.")
+        Draw.Text("VRM: Vector Rendering Method script. Version %s." %
+                __version__)
         glRasterPos2i(10, 335)
         Draw.Text("Press Q or ESC to quit.")
 
@@ -1363,7 +2702,7 @@ class GUI:
                     "Render hidden edges as dashed lines")
 
         glRasterPos2i(10, 160)
-        Draw.Text("Antonio Ospite (c) 2006")
+        Draw.Text("%s (c) 2006" % __author__)
 
     def event(evt, val):
 
@@ -1382,9 +2721,12 @@ class GUI:
         elif evt == GUI.evtOutFormatMenu:
             i = GUI.outFormatMenu.val - 1
             config.output['FORMAT']= outputWriters.keys()[i]
+            # Set the new output file
+            global outputfile
+            outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
 
         elif evt == GUI.evtAnimToggle:
-            config.outpur['ANIMATION'] = bool(GUI.animToggle.val)
+            config.output['ANIMATION'] = bool(GUI.animToggle.val)
 
         elif evt == GUI.evtJoinObjsToggle:
             config.output['JOIN_OBJECTS'] = bool(GUI.joinObjsToggle.val)
@@ -1423,7 +2765,7 @@ class GUI:
 
         if evt:
             Draw.Redraw(1)
-            GUI.conf_debug()
+            #GUI.conf_debug()
 
     def conf_debug():
         from pprint import pprint
@@ -1463,15 +2805,20 @@ def vectorize(filename):
     if editmode: Window.EditMode(1) 
 
 
+
 # Here the main
 if __name__ == "__main__":
-    
+
+    global progress
+
     outputfile = ""
     basename = Blender.sys.basename(Blender.Get('filename'))
     if basename != "":
         outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
 
     if Blender.mode == 'background':
+        progress = ConsoleProgressIndicator()
         vectorize(outputfile)
     else:
+        progress = GraphicalProgressIndicator()
         Draw.Register(GUI.draw, GUI.event, GUI.button_event)