+ # Do "projection" now so we perform further processing
+ # in Normalized View Coordinates
+ self._doProjection(mesh, self.proj)
+
+ self._doViewFrustumClipping(mesh)
+
+ self._doHiddenSurfaceRemoval(mesh)
+
+ self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
+
+
+ # Update the object data, important! :)
+ mesh.update()
+
+ return workScene
+
+
+ ##
+ # Private Methods
+ #
+
+ # Utility methods
+
+ def _getObjPosition(self, obj):
+ """Return the obj position in World coordinates.
+ """
+ return obj.matrix.translationPart()
+
+ def _cameraViewVector(self):
+ """Get the View Direction form the camera matrix.
+ """
+ return Vector(self.cameraObj.matrix[2]).resize3D()
+
+
+ # Faces methods
+
+ def _isFaceVisible(self, face):
+ """Determine if a face of an object is visible from the current camera.
+
+ The view vector is calculated from the camera location and one of the
+ vertices of the face (expressed in World coordinates, after applying
+ modelview transformations).
+
+ After those transformations we determine if a face is visible by
+ computing the angle between the face normal and the view vector, this
+ angle has to be between -90 and 90 degrees for the face to be visible.
+ This corresponds somehow to the dot product between the two, if it
+ results > 0 then the face is visible.
+
+ There is no need to normalize those vectors since we are only interested in
+ the sign of the cross product and not in the product value.
+
+ NOTE: here we assume the face vertices are in WorldCoordinates, so
+ please transform the object _before_ doing the test.
+ """
+
+ normal = Vector(face.no)
+ camPos = self._getObjPosition(self.cameraObj)
+ view_vect = None
+
+ # View Vector in orthographics projections is the view Direction of
+ # the camera
+ if self.cameraObj.data.getType() == 1:
+ view_vect = self._cameraViewVector()
+
+ # View vector in perspective projections can be considered as
+ # the difference between the camera position and one point of
+ # the face, we choose the farthest point from the camera.
+ if self.cameraObj.data.getType() == 0:
+ vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
+ view_vect = vv[1]
+
+
+ # if d > 0 the face is visible from the camera
+ d = view_vect * normal
+
+ if d > 0:
+ return True
+ else:
+ return False
+
+
+ # Scene methods
+
+ def _doSceneClipping(self, scene):
+ """Clip whole objects against the View Frustum.
+
+ For now clip away only objects according to their center position.
+ """
+
+ cpos = self._getObjPosition(self.cameraObj)
+ view_vect = self._cameraViewVector()
+
+ near = self.cameraObj.data.clipStart
+ far = self.cameraObj.data.clipEnd
+
+ aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1])
+ fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
+ fovy = fovy * 360.0/pi
+
+ Objects = scene.getChildren()
+ for o in Objects:
+ if o.getType() != 'Mesh': continue;
+
+ obj_vect = Vector(cpos) - self._getObjPosition(o)
+
+ d = obj_vect*view_vect
+ theta = AngleBetweenVecs(obj_vect, view_vect)
+
+ # if the object is outside the view frustum, clip it away
+ if (d < near) or (d > far) or (theta > fovy):
+ scene.unlink(o)
+
+ def _doConvertGeometricObjsToMesh(self, scene):
+ """Convert all "geometric" objects to mesh ones.
+ """
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
+
+ Objects = scene.getChildren()
+ objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
+ for obj in objList:
+ old_obj = obj
+ obj = self._convertToRawMeshObj(obj)
+ scene.link(obj)
+ scene.unlink(old_obj)
+
+
+ # XXX Workaround for Text and Curve which have some normals
+ # inverted when they are converted to Mesh, REMOVE that when
+ # blender will fix that!!
+ if old_obj.getType() in ['Curve', 'Text']:
+ me = obj.getData(mesh=1)
+ for f in me.faces: f.sel = 1;
+ for v in me.verts: v.sel = 1;
+ me.remDoubles(0)
+ me.triangleToQuad()
+ me.recalcNormals()
+ me.update()
+
+
+ def _doSceneDepthSorting(self, scene):
+ """Sort objects in the scene.
+
+ The object sorting is done accordingly to the object centers.
+ """
+
+ c = self._getObjPosition(self.cameraObj)
+
+ by_center_pos = (lambda o1, o2:
+ (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+ cmp((self._getObjPosition(o1) - Vector(c)).length,
+ (self._getObjPosition(o2) - Vector(c)).length)
+ )
+
+ # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
+ # then ob1 goes farther than obj2, useful when obj2 has holes
+ by_bbox = None
+
+ Objects = scene.getChildren()
+ Objects.sort(by_center_pos)
+
+ # update the scene
+ for o in Objects:
+ scene.unlink(o)
+ scene.link(o)
+
+ def _joinMeshObjectsInScene(self, scene):
+ """Merge all the Mesh Objects in a scene into a single Mesh Object.
+ """
+
+ oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
+
+ # FIXME: Object.join() do not work if the list contains 1 object
+ if len(oList) == 1:
+ return
+
+ mesh = Mesh.New('BigOne')
+ bigObj = Object.New('Mesh', 'BigOne')
+ bigObj.link(mesh)
+
+ scene.link(bigObj)
+
+ try:
+ bigObj.join(oList)
+ except RuntimeError:
+ print "\nWarning! - Can't Join Objects\n"
+ scene.unlink(bigObj)
+ return
+ except TypeError:
+ print "Objects Type error?"
+
+ for o in oList:
+ scene.unlink(o)
+
+ scene.update()
+
+
+ # Per object/mesh methods
+
+ def _convertToRawMeshObj(self, object):
+ """Convert geometry based object to a mesh object.
+ """
+ me = Mesh.New('RawMesh_'+object.name)
+ me.getFromObject(object.name)
+
+ newObject = Object.New('Mesh', 'RawMesh_'+object.name)
+ newObject.link(me)
+
+ # If the object has no materials set a default material
+ if not me.materials:
+ me.materials = [Material.New()]
+ #for f in me.faces: f.mat = 0
+
+ newObject.setMatrix(object.getMatrix())
+
+ return newObject
+
+ def _doModelingTransformation(self, mesh, matrix):
+ """Transform object coordinates to world coordinates.
+
+ This step is done simply applying to the object its tranformation
+ matrix and recalculating its normals.
+ """
+ # XXX FIXME: blender do not transform normals in the right way when
+ # there are negative scale values
+ if matrix[0][0] < 0 or matrix[1][1] < 0 or matrix[2][2] < 0:
+ print "WARNING: Negative scales, expect incorrect results!"
+
+ mesh.transform(matrix, True)
+
+ def _doBackFaceCulling(self, mesh):
+ """Simple Backface Culling routine.
+
+ At this level we simply do a visibility test face by face and then
+ select the vertices belonging to visible faces.
+ """
+
+ # Select all vertices, so edges can be displayed even if there are no
+ # faces
+ for v in mesh.verts:
+ v.sel = 1
+
+ Mesh.Mode(Mesh.SelectModes['FACE'])
+ # Loop on faces
+ for f in mesh.faces:
+ f.sel = 0
+ if self._isFaceVisible(f):
+ f.sel = 1
+
+ def _doLighting(self, mesh):
+ """Apply an Illumination and shading model to the object.
+
+ The model used is the Phong one, it may be inefficient,
+ but I'm just learning about rendering and starting from Phong seemed
+ the most natural way.
+ """
+
+ # If the mesh has vertex colors already, use them,
+ # otherwise turn them on and do some calculations
+ if mesh.vertexColors:
+ return
+ mesh.vertexColors = 1
+
+ materials = mesh.materials
+
+ camPos = self._getObjPosition(self.cameraObj)
+
+ # We do per-face color calculation (FLAT Shading), we can easily turn
+ # to a per-vertex calculation if we want to implement some shading
+ # technique. For an example see:
+ # http://www.miralab.unige.ch/papers/368.pdf
+ for f in mesh.faces:
+ if not f.sel:
+ continue
+
+ mat = None
+ if materials:
+ mat = materials[f.mat]
+
+ # A new default material
+ if mat == None:
+ mat = Material.New('defMat')
+
+ # Check if it is a shadeless material
+ elif mat.getMode() & Material.Modes['SHADELESS']:
+ I = mat.getRGBCol()
+ # Convert to a value between 0 and 255
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ for c in f.col:
+ c.r = tmp_col[0]
+ c.g = tmp_col[1]
+ c.b = tmp_col[2]
+ #c.a = tmp_col[3]
+
+ continue
+
+
+ # do vertex color calculation
+
+ TotDiffSpec = Vector([0.0, 0.0, 0.0])
+
+ for l in self.lights:
+ light_obj = l
+ light_pos = self._getObjPosition(l)
+ light = light_obj.getData()
+
+ L = Vector(light_pos).normalize()
+
+ V = (Vector(camPos) - Vector(f.cent)).normalize()
+
+ N = Vector(f.no).normalize()
+
+ if config.polygons['SHADING'] == 'TOON':
+ NL = ShadingUtils.toonShading(N*L)
+ else:
+ NL = (N*L)
+
+ # Should we use NL instead of (N*L) here?
+ R = 2 * (N*L) * N - L
+
+ Ip = light.getEnergy()
+
+ # Diffuse co-efficient
+ kd = mat.getRef() * Vector(mat.getRGBCol())
+ for i in [0, 1, 2]:
+ kd[i] *= light.col[i]
+
+ Idiff = Ip * kd * max(0, NL)
+
+
+ # Specular component
+ ks = mat.getSpec() * Vector(mat.getSpecCol())
+ ns = mat.getHardness()
+ Ispec = Ip * ks * pow(max(0, (V*R)), ns)
+
+ TotDiffSpec += (Idiff+Ispec)
+
+
+ # Ambient component
+ Iamb = Vector(Blender.World.Get()[0].getAmb())
+ ka = mat.getAmb()
+
+ # Emissive component (convert to a triplet)
+ ki = Vector([mat.getEmit()]*3)
+
+ #I = ki + Iamb + (Idiff + Ispec)
+ I = ki + (ka * Iamb) + TotDiffSpec
+
+
+ # Set Alpha component
+ I = list(I)
+ I.append(mat.getAlpha())
+
+ # Clamp I values between 0 and 1
+ I = [ min(c, 1) for c in I]
+ I = [ max(0, c) for c in I]
+
+ # Convert to a value between 0 and 255
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ for c in f.col:
+ c.r = tmp_col[0]
+ c.g = tmp_col[1]
+ c.b = tmp_col[2]
+ c.a = tmp_col[3]
+
+ def _doProjection(self, mesh, projector):
+ """Apply Viewing and Projection tranformations.
+ """
+
+ for v in mesh.verts:
+ p = projector.doProjection(v.co[:])
+ v.co[0] = p[0]
+ v.co[1] = p[1]
+ v.co[2] = p[2]
+
+ #mesh.recalcNormals()
+ #mesh.update()
+
+ # We could reeset Camera matrix, since now
+ # we are in Normalized Viewing Coordinates,
+ # but doung that would affect World Coordinate
+ # processing for other objects
+
+ #self.cameraObj.data.type = 1
+ #self.cameraObj.data.scale = 2.0
+ #m = Matrix().identity()
+ #self.cameraObj.setMatrix(m)
+
+ def _doViewFrustumClipping(self, mesh):
+ """Clip faces against the View Frustum.
+ """
+
+ # HSR routines
+ def __simpleDepthSort(self, mesh):
+ """Sort faces by the furthest vertex.
+
+ This simple mesthod is known also as the painter algorithm, and it
+ solves HSR correctly only for convex meshes.
+ """
+
+ global progress
+ # The sorting requires circa n*log(n) steps
+ n = len(mesh.faces)
+ progress.setActivity("HSR: Painter", n*log(n))
+
+ by_furthest_z = (lambda f1, f2: progress.update() and
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ )
+
+ # FIXME: using NMesh to sort faces. We should avoid that!
+ nmesh = NMesh.GetRaw(mesh.name)
+
+ # remember that _higher_ z values mean further points
+ nmesh.faces.sort(by_furthest_z)
+ nmesh.faces.reverse()
+
+ nmesh.update()
+
+ def __newellDepthSort(self, mesh):
+ """Newell's depth sorting.
+
+ """
+
+ from hsrtk import *
+
+ # Find non planar quads and convert them to triangle
+ #for f in mesh.faces:
+ # f.sel = 0
+ # if is_nonplanar_quad(f.v):
+ # print "NON QUAD??"
+ # f.sel = 1
+
+
+ # Now reselect all faces
+ for f in mesh.faces:
+ f.sel = 1
+
+ # FIXME: using NMesh to sort faces. We should avoid that!
+ nmesh = NMesh.GetRaw(mesh.name)
+
+ # remember that _higher_ z values mean further points
+ nmesh.faces.sort(by_furthest_z)
+ nmesh.faces.reverse()
+
+
+ # Begin depth sort tests
+
+ # use the smooth flag to set marked faces
+ for f in nmesh.faces:
+ f.smooth = 0
+
+ facelist = nmesh.faces[:]
+ maplist = []
+
+
+ # The steps are _at_least_ equal to len(facelist), we do not count the
+ # feces coming out from splitting!!
+ global progress
+ progress.setActivity("HSR: Newell", len(facelist))
+ #progress.setQuiet(True)
+
+
+ while len(facelist):
+ debug("\n----------------------\n")
+ debug("len(facelits): %d\n" % len(facelist))
+ P = facelist[0]
+
+ pSign = sign(P.normal[2])
+
+ # We can discard faces parallel to the view vector
+ if P.normal[2] == 0:
+ facelist.remove(P)
+ continue
+
+ split_done = 0
+ face_marked = 0
+
+ for Q in facelist[1:]:
+
+ debug("P.smooth: " + str(P.smooth) + "\n")
+ debug("Q.smooth: " + str(Q.smooth) + "\n")
+ debug("\n")
+
+ qSign = sign(Q.normal[2])
+ # TODO: check also if Q is parallel??
+
+ # Test 0: We need to test only those Qs whose furthest vertex
+ # is closer to the observer than the closest vertex of P.
+
+ zP = [v.co[2] for v in P.v]
+ zQ = [v.co[2] for v in Q.v]
+ notZOverlap = min(zP) > max(zQ)+EPS
+
+ if notZOverlap:
+ debug("\nTest 0\n")
+ debug("NOT Z OVERLAP!\n")
+ if Q.smooth == 0:
+ # If Q is not marked then we can safely print P
+ break
+ else:
+ debug("met a marked face\n")
+ continue
+
+
+ # Test 1: X extent overlapping
+ xP = [v.co[0] for v in P.v]
+ xQ = [v.co[0] for v in Q.v]
+ #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
+
+ if notXOverlap:
+ debug("\nTest 1\n")
+ debug("NOT X OVERLAP!\n")
+ continue
+
+
+ # Test 2: Y extent Overlapping
+ yP = [v.co[1] for v in P.v]
+ yQ = [v.co[1] for v in Q.v]
+ #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
+
+ if notYOverlap:
+ debug("\nTest 2\n")
+ debug("NOT Y OVERLAP!\n")
+ continue
+
+
+ # Test 3: P vertices are all behind the plane of Q
+ n = 0
+ for Pi in P:
+ d = qSign * Distance(Vector(Pi), Q)
+ if d <= EPS:
+ n += 1
+ pVerticesBehindPlaneQ = (n == len(P))
+
+ if pVerticesBehindPlaneQ:
+ debug("\nTest 3\n")
+ debug("P BEHIND Q!\n")
+ continue
+
+
+ # Test 4: Q vertices in front of the plane of P
+ n = 0
+ for Qi in Q:
+ d = pSign * Distance(Vector(Qi), P)
+ if d >= -EPS:
+ n += 1
+ qVerticesInFrontPlaneP = (n == len(Q))
+
+ if qVerticesInFrontPlaneP:
+ debug("\nTest 4\n")
+ debug("Q IN FRONT OF P!\n")
+ continue
+
+
+ # Test 5: Check if projections of polygons effectively overlap,
+ # in previous tests we checked only bounding boxes.
+
+ if not projectionsOverlap(P, Q):
+ debug("\nTest 5\n")
+ debug("Projections do not overlap!\n")
+ continue
+
+ # We still can't say if P obscures Q.
+
+ # But if Q is marked we do a face-split trying to resolve a
+ # difficulty (maybe a visibility cycle).
+ if Q.smooth == 1:
+ # Split P or Q
+ debug("Possibly a cycle detected!\n")
+ debug("Split here!!\n")
+
+ facelist = facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
+
+ # The question now is: Does Q obscure P?
+
+
+ # Test 3bis: Q vertices are all behind the plane of P
+ n = 0
+ for Qi in Q:
+ d = pSign * Distance(Vector(Qi), P)
+ if d <= EPS:
+ n += 1
+ qVerticesBehindPlaneP = (n == len(Q))
+
+ if qVerticesBehindPlaneP:
+ debug("\nTest 3bis\n")
+ debug("Q BEHIND P!\n")
+
+
+ # Test 4bis: P vertices in front of the plane of Q
+ n = 0
+ for Pi in P:
+ d = qSign * Distance(Vector(Pi), Q)
+ if d >= -EPS:
+ n += 1
+ pVerticesInFrontPlaneQ = (n == len(P))
+
+ if pVerticesInFrontPlaneQ:
+ debug("\nTest 4bis\n")
+ debug("P IN FRONT OF Q!\n")
+
+
+ # We don't even know if Q does obscure P, so they should
+ # intersect each other, split one of them in two parts.
+ if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
+ debug("\nSimple Intersection?\n")
+ debug("Test 3bis or 4bis failed\n")
+ debug("Split here!!2\n")
+
+ facelist = facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
+
+ facelist.remove(Q)
+ facelist.insert(0, Q)
+ Q.smooth = 1
+ face_marked = 1
+ debug("Q marked!\n")
+ break
+
+ # Write P!
+ if split_done == 0 and face_marked == 0:
+ facelist.remove(P)
+ maplist.append(P)
+
+ progress.update()
+
+ if facelist == None:
+ maplist = [P, Q]
+ print [v.co for v in P]
+ print [v.co for v in Q]
+ break
+
+ # end of while len(facelist)
+
+
+ nmesh.faces = maplist
+
+ nmesh.update()
+
+
+ def _doHiddenSurfaceRemoval(self, mesh):
+ """Do HSR for the given mesh.
+ """
+ if len(mesh.faces) == 0:
+ return
+
+ if config.polygons['HSR'] == 'PAINTER':
+ print "\nUsing the Painter algorithm for HSR."
+ self.__simpleDepthSort(mesh)
+
+ elif config.polygons['HSR'] == 'NEWELL':
+ print "\nUsing the Newell's algorithm for HSR."
+ self.__newellDepthSort(mesh)
+
+
+ def _doEdgesStyle(self, mesh, edgestyleSelect):
+ """Process Mesh Edges accroding to a given selection style.
+
+ Examples of algorithms:
+
+ Contours:
+ given an edge if its adjacent faces have the same normal (that is
+ they are complanar), than deselect it.
+
+ Silhouettes:
+ given an edge if one its adjacent faces is frontfacing and the
+ other is backfacing, than select it, else deselect.
+ """
+
+ Mesh.Mode(Mesh.SelectModes['EDGE'])
+
+ edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
+
+ for i,edge_faces in enumerate(edge_cache):
+ mesh.edges[i].sel = 0
+ if edgestyleSelect(edge_faces):
+ mesh.edges[i].sel = 1
+
+ """
+ for e in mesh.edges:
+
+ e.sel = 0
+ if edgestyleSelect(e, mesh):
+ e.sel = 1
+ """
+
+
+
+# ---------------------------------------------------------------------
+#
+## GUI Class and Main Program
+#
+# ---------------------------------------------------------------------
+
+
+from Blender import BGL, Draw
+from Blender.BGL import *
+
+class GUI: