#!BPY
"""
Name: 'VRM'
-Blender: 242
+Blender: 245
Group: 'Render'
Tooltip: 'Vector Rendering Method script'
"""
__author__ = "Antonio Ospite"
-__url__ = ["http://projects.blender.org/projects/vrm"]
+__url__ = ["http://vrm.ao2.it"]
__version__ = "0.3.beta"
__bpydoc__ = """\
"""
# ---------------------------------------------------------------------
-# Copyright (c) 2006 Antonio Ospite
+# Copyright (c) 2006, 2007, 2008, 2009 Antonio Ospite
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# from scratch but Nikola gave me the idea, so I thank him publicly.
#
# ---------------------------------------------------------------------
-#
+#
# Things TODO for a next release:
+# - Shadeless shader
# - FIX the issue with negative scales in object tranformations!
# - Use a better depth sorting algorithm
-# - Implement clipping of primitives and do handle object intersections.
-# (for now only clipping away whole objects is supported).
# - Review how selections are made (this script uses selection states of
# primitives to represent visibility infos)
-# - Use a data structure other than Mesh to represent the 2D image?
+# - Use a data structure other than Mesh to represent the 2D image?
# Think to a way to merge (adjacent) polygons that have the same color.
# Or a way to use paths for silhouettes and contours.
# - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
# - Check memory use!!
#
# ---------------------------------------------------------------------
-#
-# Changelog:
-#
-# vrm-0.3.py - ...
-# * First release after code restucturing.
-# Now the script offers a useful set of functionalities
-# and it can render animations, too.
-# * Optimization in Renderer.doEdgeStyle(), build a topology cache
-# so to speed up the lookup of adjacent faces of an edge.
-# Thanks ideasman42.
-# * The SVG output is now SVG 1.0 valid.
-# Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
-# * Progress indicator during HSR.
-# * Initial SWF output support
-# * Fixed a bug in the animation code, now the projection matrix is
-# recalculated at each frame!
-#
-# ---------------------------------------------------------------------
import Blender
from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
from math import *
import sys, time
+try:
+ set()
+except NameError:
+ from sets import Set as set
+
+
+def uniq(alist):
+ tmpdict = dict()
+ return [tmpdict.setdefault(e,e) for e in alist if e not in tmpdict]
+ # in python > 2.4 we ca use the following
+ #return [ u for u in alist if u not in locals()['_[1]'] ]
+
+
# Constants
EPS = 10e-5
progress = None
-# Some global settings
+# Config class for global settings
class config:
polygons = dict()
output['ANIMATION'] = False
output['JOIN_OBJECTS'] = True
+ def saveToRegistry():
+ registry = {}
+
+ for k,v in config.__dict__.iteritems():
+
+ # config class store settings in dictionaries
+ if v.__class__ == dict().__class__:
+
+ regkey_prefix = k.upper()+"_"
+
+ for opt_k,opt_v in v.iteritems():
+ regkey = regkey_prefix + opt_k
+
+ registry[regkey] = opt_v
+
+ Blender.Registry.SetKey('VRM', registry, True)
+
+ saveToRegistry = staticmethod(saveToRegistry)
+
+ def loadFromRegistry():
+ registry = Blender.Registry.GetKey('VRM', True)
+ if not registry:
+ return
+
+ for k,v in registry.iteritems():
+ k_tmp = k.split('_')
+ conf_attr = k_tmp[0].lower()
+ conf_key = str.join("_",k_tmp[1:])
+ conf_val = v
+
+ if config.__dict__.has_key(conf_attr):
+ config.__dict__[conf_attr][conf_key] = conf_val
+
+ loadFromRegistry = staticmethod(loadFromRegistry)
+
# Utility functions
print_debug = False
sys.stderr.write(msg)
def EQ(v1, v2):
- return (abs(v1[0]-v2[0]) < EPS and
+ return (abs(v1[0]-v2[0]) < EPS and
abs(v1[1]-v2[1]) < EPS )
by_furthest_z = (lambda f1, f2:
cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
Geometric objects lying in a common plane are said to be coplanar.
Three noncollinear points determine a plane and so are trivially coplanar.
Four points are coplanar iff the volume of the tetrahedron defined by them is
- 0,
-
+ 0,
+
| x_1 y_1 z_1 1 |
| x_2 y_2 z_2 1 |
| x_3 y_3 z_3 1 |
def det(a, b, c):
return ((b[0] - a[0]) * (c[1] - a[1]) -
(b[1] - a[1]) * (c[0] - a[0]) )
-
+
det = staticmethod(det)
def pointInPolygon(q, P):
#
#newfaces = splitOn(plane, f)
-
+
if newfaces == None:
print "Big FAT problem, we weren't able to split POLYGONS!"
raise AssertionError
makeFaces = staticmethod(makeFaces)
- def splitOn(Q, P):
+ def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
"""Split P using the plane of Q.
Logic taken from the knife.py python script
"""
#print "d0:", d0, "d1:", d1
- # if the vertex lies in the cutplane
+ # if the vertex lies in the cutplane
if abs(d1) < EPS:
#print "d1 On cutplane"
posVertList.append(V1)
else:
negVertList.append(V1)
-
- # uniq
- posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
- negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+ # uniq for python > 2.4
+ #posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
+ #negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+ # a more portable way
+ posVertList = uniq(posVertList)
+ negVertList = uniq(negVertList)
# If vertex are all on the same half-space, return
#if len(posVertList) < 3:
- # print "Problem, we created a face with less that 3 verteices??"
+ # print "Problem, we created a face with less that 3 vertices??"
# posVertList = []
#if len(negVertList) < 3:
- # print "Problem, we created a face with less that 3 verteices??"
+ # print "Problem, we created a face with less that 3 vertices??"
# negVertList = []
if len(posVertList) < 3 or len(negVertList) < 3:
- print "RETURN NONE, SURE???"
+ #print "RETURN NONE, SURE???"
return None
+ if not return_positive_faces:
+ posVertList = []
+ if not return_negative_faces:
+ negVertList = []
newfaces = HSR.addNewFaces(posVertList, negVertList)
class MeshUtils:
def buildEdgeFaceUsersCache(me):
- '''
+ '''
Takes a mesh and returns a list aligned with the meshes edges.
Each item is a list of the faces that use the edge
would be the equiv for having ed.face_users as a property
i1,i2= i2,i1
return i1, i2
-
+
face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
for f in me.faces:
fvi= [v.index for v in f.v]# face vert idx's
for i in xrange(len(f)):
i1= fvi[i]
i2= fvi[i-1]
-
+
if i1>i2:
i1,i2= i2,i1
-
+
face_edges_dict[i1,i2][1].append(f)
-
+
face_edges= [None] * len(me.edges)
for ed_index, ed_faces in face_edges_dict.itervalues():
face_edges[ed_index]= ed_faces
-
+
return face_edges
def isMeshEdge(adjacent_faces):
class Projector:
"""Calculate the projection of an object given the camera.
-
+
A projector is useful to so some per-object transformation to obtain the
projection of an object given the camera.
-
+
The main method is #doProjection# see the method description for the
parameter list.
"""
fovy = atan(0.5/aspect/(camera.lens/32))
fovy = fovy * 360.0/pi
-
+
+
+ if Blender.Get('version') < 243:
+ camPersp = 0
+ camOrtho = 1
+ else:
+ camPersp = 'persp'
+ camOrtho = 'ortho'
+
# What projection do we want?
- if camera.type == 0:
- mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
- elif camera.type == 1:
- mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
-
+ if camera.type == camPersp:
+ mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+ elif camera.type == camOrtho:
+ mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
+
+
# View transformation
cam = Matrix(cameraObj.getInverseMatrix())
- cam.transpose()
-
+ cam.transpose()
+
mP = mP * cam
self.projectionMatrix = mP
Given a vertex calculate the projection using the current projection
matrix.
"""
-
+
# Note that we have to work on the vertex using homogeneous coordinates
# From blender 2.42+ we don't need to resize the vector to be 4d
# when applying a 4x4 matrix, but we do that anyway since we need the
# 4th coordinate later
p = self.projectionMatrix * Vector(v).resize4D()
-
+
# Perspective division
if p[3] != 0:
p[0] = p[0]/p[3]
##
# Private methods
#
-
+
def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
"""Return a perspective projection matrix.
"""
-
+
top = near * tan(fovy * pi / 360.0)
bottom = -top
left = bottom*aspect
b = (top+bottom) / (top - bottom)
c = - ((far+near) / (far-near))
d = - ((2*far*near)/(far-near))
-
+
m = Matrix(
[x, 0.0, a, 0.0],
[0.0, y, b, 0.0],
def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
"""Return an orthogonal projection matrix.
"""
-
+
# The 11 in the formula was found emiprically
top = near * tan(fovy * pi / 360.0) * (scale * 11)
- bottom = -top
+ bottom = -top
left = bottom * aspect
right= top * aspect
rl = right-left
tb = top-bottom
- fn = near-far
+ fn = near-far
tx = -((right+left)/rl)
ty = -((top+bottom)/tb)
tz = ((far+near)/fn)
[0.0, 2.0/tb, 0.0, ty],
[0.0, 0.0, 2.0/fn, tz],
[0.0, 0.0, 0.0, 1.0])
-
+
return m
class Progress:
"""A model for a progress indicator.
-
+
Do the progress calculation calculation and
the view independent stuff of a progress indicator.
"""
def show(self, progress, name):
ProgressIndicator.show(self, progress, name)
-
+
bar_length = 70
bar_progress = int( (progress/100.0) * bar_length )
bar = ("=" * bar_progress).ljust(bar_length)
- printCanvas(self, scene,
doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
"""
-
+
def __init__(self, fileName):
"""Set the output file name and other properties"""
+ try:
+ config.writer
+ except:
+ config.writer = dict()
+ config.writer['SETTING'] = True
+
self.outputFileName = fileName
- self.file = None
-
+
context = Scene.GetCurrent().getRenderingContext()
self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
+ self.fps = context.fps
+
self.startFrame = 1
self.endFrame = 1
self.animation = False
##
# Public Methods
#
-
+
def open(self, startFrame=1, endFrame=1):
if startFrame != endFrame:
self.startFrame = startFrame
self.endFrame = endFrame
self.animation = True
- self.file = open(self.outputFileName, "w")
print "Outputting to: ", self.outputFileName
return
def close(self):
- if self.file:
- self.file.close()
return
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
"""This is the interface for the needed printing routine.
"""
return
-
+
## SVG Writer
"""
VectorWriter.__init__(self, fileName)
+ self.file = None
+
##
# Public Methods
"""Do some initialization operations.
"""
VectorWriter.open(self, startFrame, endFrame)
+
+ self.file = open(self.outputFileName, "w")
+
self._printHeader()
def close(self):
"""
self._printFooter()
- # remember to call the close method of the parent
+ if self.file:
+ self.file.close()
+
+ # remember to call the close method of the parent as last
VectorWriter.close(self)
-
+
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
"""Convert the scene representation to SVG.
"""
- Objects = scene.getChildren()
+ Objects = scene.objects
context = scene.getRenderingContext()
framenumber = context.currentFrame()
framestyle = "display:none"
else:
framestyle = "display:block"
-
+
# Assign an id to this group so we can set properties on it using DOM
self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
(framenumber, framestyle) )
if doPrintEdges:
self._printEdges(mesh, showHiddenEdges)
-
+
self.file.write("</g>\n")
self.file.write("</g>\n")
-
- ##
+
+ ##
# Private Methods
#
-
+
def _calcCanvasCoord(self, v):
"""Convert vertex in scene coordinates to canvas coordinates.
"""
pt = Vector([0, 0, 0])
-
+
mW = float(self.canvasSize[0])/2.0
mH = float(self.canvasSize[1])/2.0
pt[0] = v.co[0]*mW + mW
pt[1] = v.co[1]*mH + mH
pt[2] = v.co[2]
-
+
# For now we want (0,0) in the top-left corner of the canvas.
# Mirror and translate along y
pt[1] *= -1
pt[1] += self.canvasSize[1]
-
+
return pt
def _printHeader(self):
self.canvasSize)
if self.animation:
+ delay = 1000/self.fps
self.file.write("""\n<script type="text/javascript"><![CDATA[
globalStartFrame=%d;
globalEndFrame=%d;
- /* FIXME: Use 1000 as interval as lower values gives problems */
- timerID = setInterval("NextFrame()", 1000);
+ timerID = setInterval("NextFrame()", %d);
globalFrameCounter=%d;
+ \n""" % (self.startFrame, self.endFrame, delay, self.startFrame) )
+ self.file.write("""\n
function NextFrame()
{
currentElement = document.getElementById('frame'+globalFrameCounter)
}
}
\n]]></script>\n
- \n""" % (self.startFrame, self.endFrame, self.startFrame) )
-
+ \n""")
+
def _printFooter(self):
"""Print the SVG footer."""
self.file.write("\n</svg>\n")
- def _printPolygons(self, mesh):
+ def _printPolygons(self, mesh):
"""Print the selected (visible) polygons.
"""
for v in face.v[1:]:
p = self._calcCanvasCoord(v)
self.file.write("%g,%g " % (p[0], p[1]))
-
+
# get rid of the last blank space, just cosmetics here.
- self.file.seek(-1, 1)
+ self.file.seek(-1, 1)
self.file.write(" z\"\n")
-
+
# take as face color the first vertex color
if face.col:
fcol = face.col[0]
stroke_width = config.edges['WIDTH']
stroke_col = config.edges['COLOR']
-
+
self.file.write("<g>\n")
for e in mesh.edges:
-
+
hidden_stroke_style = ""
-
+
if e.sel == 0:
if showHiddenEdges == False:
continue
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
-
+
self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
% ( p1[0], p1[1], p2[0], p2[1] ) )
self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
VectorWriter.open(self, startFrame, endFrame)
self.movie = SWFMovie()
self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
- # set fps
- self.movie.setRate(25)
- numframes = endFrame - startFrame + 1
- self.movie.setFrames(numframes)
+ if self.animation:
+ self.movie.setRate(self.fps)
+ numframes = endFrame - startFrame + 1
+ self.movie.setFrames(numframes)
def close(self):
"""Do some finalization operation.
context = scene.getRenderingContext()
framenumber = context.currentFrame()
- Objects = scene.getChildren()
+ Objects = scene.objects
if self.sprite:
self.movie.remove(self.sprite)
if doPrintEdges:
self._printEdges(mesh, sprite, showHiddenEdges)
-
+
sprite.nextFrame()
i = self.movie.add(sprite)
# Remove the instance the next time
if self.animation:
self.movie.nextFrame()
-
- ##
+
+ ##
# Private Methods
#
-
+
def _calcCanvasCoord(self, v):
"""Convert vertex in scene coordinates to canvas coordinates.
"""
pt = Vector([0, 0, 0])
-
+
mW = float(self.canvasSize[0])/2.0
mH = float(self.canvasSize[1])/2.0
pt[0] = v.co[0]*mW + mW
pt[1] = v.co[1]*mH + mH
pt[2] = v.co[2]
-
+
# For now we want (0,0) in the top-left corner of the canvas.
# Mirror and translate along y
pt[1] *= -1
pt[1] += self.canvasSize[1]
-
+
return pt
-
- def _printPolygons(self, mesh, sprite):
+
+ def _printPolygons(self, mesh, sprite):
"""Print the selected (visible) polygons.
"""
p0 = self._calcCanvasCoord(face.verts[0])
s.movePenTo(p0[0], p0[1])
-
for v in face.verts[1:]:
p = self._calcCanvasCoord(v)
s.drawLineTo(p[0], p[1])
-
+
# Closing the shape
s.drawLineTo(p0[0], p0[1])
+
s.end()
sprite.add(s)
- """
- # use the stroke property to alleviate the "adjacent edges" problem,
- # we simulate polygon expansion using borders,
- # see http://www.antigrain.com/svg/index.html for more info
- stroke_width = 1.0
-
- # EXPANSION TRICK is not that useful where there is transparency
- if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
- # str_col = "#000000" # For debug
- self.file.write(" stroke:%s;\n" % str_col)
- self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
- self.file.write(" stroke-linecap:round;stroke-linejoin:round")
-
- """
-
def _printEdges(self, mesh, sprite, showHiddenEdges=False):
"""Print the wireframe using mesh edges.
"""
for e in mesh.edges:
- #Next, we set the line width and color for our shape.
+ # Next, we set the line width and color for our shape.
s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
255)
-
+
if e.sel == 0:
if showHiddenEdges == False:
continue
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
- # FIXME: this is just a qorkaround, remove that after the
- # implementation of propoer Viewport clipping
- if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000:
- s.movePenTo(p1[0], p1[1])
- s.drawLineTo(p2[0], p2[1])
-
+ s.movePenTo(p1[0], p1[1])
+ s.drawLineTo(p2[0], p2[1])
s.end()
sprite.add(s)
-
+
+
+## PDF Writer
+
+try:
+ from reportlab.pdfgen import canvas
+ PDFSupported = True
+except:
+ PDFSupported = False
+
+class PDFVectorWriter(VectorWriter):
+ """A concrete class for writing PDF output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.canvas = None
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+ size = (self.canvasSize[0], self.canvasSize[1])
+ self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self.canvas.save()
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ Objects = scene.objects
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh)
+
+ if doPrintEdges:
+ self._printEdges(mesh, showHiddenEdges)
+
+ self.canvas.showPage()
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printPolygons(self, mesh):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r/255.0, fcol.g/255.0, fcol.b/255.0,
+ fcol.a/255.0]
+ else:
+ color = [1, 1, 1, 1]
+
+ self.canvas.setFillColorRGB(color[0], color[1], color[2])
+ # For debug
+ self.canvas.setStrokeColorRGB(0, 0, 0)
+
+ path = self.canvas.beginPath()
+
+ # The starting point of the path
+ p0 = self._calcCanvasCoord(face.verts[0])
+ path.moveTo(p0[0], p0[1])
+
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ path.lineTo(p[0], p[1])
+
+ # Closing the shape
+ path.close()
+
+ self.canvas.drawPath(path, stroke=0, fill=1)
+
+ def _printEdges(self, mesh, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ self.canvas.setLineCap(1)
+ self.canvas.setLineJoin(1)
+ self.canvas.setLineWidth(stroke_width)
+ self.canvas.setStrokeColorRGB(stroke_col[0]/255.0, stroke_col[1]/255.0,
+ stroke_col[2]/255)
+
+ for e in mesh.edges:
+
+ self.canvas.setLineWidth(stroke_width)
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ # PDF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner
+ self.canvas.setLineWidth(stroke_width/2.0)
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ self.canvas.line(p1[0], p1[1], p2[0], p2[1])
+
# ---------------------------------------------------------------------
outputWriters['SVG'] = SVGVectorWriter
if SWFSupported:
outputWriters['SWF'] = SWFVectorWriter
+if PDFSupported:
+ outputWriters['PDF'] = PDFVectorWriter
class Renderer:
"""Render a scene viewed from the active camera.
-
+
This class is responsible of the rendering process, transformation and
projection of the objects in the scene are invoked by the renderer.
# Render the current Scene, this should be a READ-ONLY property
self._SCENE = Scene.GetCurrent()
-
+
# Use the aspect ratio of the scene rendering context
context = self._SCENE.getRenderingContext()
float(context.aspectRatioY())
)
- # Render from the currently active camera
- self.cameraObj = self._SCENE.getCurrentCamera()
+ # Render from the currently active camera
+ #self.cameraObj = self._SCENE.objects.camera
- # Get the list of lighting sources
- obj_lst = self._SCENE.getChildren()
- self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
-
- # When there are no lights we use a default lighting source
- # that have the same position of the camera
- if len(self.lights) == 0:
- l = Lamp.New('Lamp')
- lobj = Object.New('Lamp')
- lobj.loc = self.cameraObj.loc
- lobj.link(l)
- self.lights.append(lobj)
+ self.lights = []
##
def doRendering(self, outputWriter, animation=False):
"""Render picture or animation and write it out.
-
+
The parameters are:
- a Vector writer object that will be used to output the result.
- a flag to tell if we want to render an animation or only the
current frame.
"""
-
+
context = self._SCENE.getRenderingContext()
origCurrentFrame = context.currentFrame()
startFrame = context.startFrame()
endFrame = context.endFrame()
outputWriter.open(startFrame, endFrame)
-
+
# Do the rendering process frame by frame
print "Start Rendering of %d frames" % (endFrame-startFrame+1)
for f in xrange(startFrame, endFrame+1):
print "\n\nFrame: %d" % f
- context.currentFrame(f)
+
+ # FIXME To get the correct camera position we have to use +1 here.
+ # Is there a bug somewhere in the Scene module?
+ context.currentFrame(f+1)
+ self.cameraObj = self._SCENE.objects.camera
# Use some temporary workspace, a full copy of the scene
inputScene = self._SCENE.copy(2)
- # And Set our camera accordingly
- self.cameraObj = inputScene.getCurrentCamera()
+
+ # To get the objects at this frame remove the +1 ...
+ ctx = inputScene.getRenderingContext()
+ ctx.currentFrame(f)
+
# Get a projector for this camera.
# NOTE: the projector wants object in world coordinates,
print traceback.print_exc()
self._SCENE.makeCurrent()
- Scene.unlink(inputScene)
+ Scene.Unlink(inputScene)
del inputScene
return
doPrintPolygons = config.polygons['SHOW'],
doPrintEdges = config.edges['SHOW'],
showHiddenEdges = config.edges['SHOW_HIDDEN'])
-
+
# delete the rendered scene
self._SCENE.makeCurrent()
- Scene.unlink(renderedScene)
+ Scene.Unlink(renderedScene)
del renderedScene
outputWriter.close()
def doRenderScene(self, workScene):
"""Control the rendering process.
-
+
Here we control the entire rendering process invoking the operation
needed to transform and project the 3D scene in two dimensions.
"""
-
+
# global processing of the scene
+ self._filterHiddenObjects(workScene)
+
+ self._buildLightSetup(workScene)
+
self._doSceneClipping(workScene)
self._doConvertGeometricObjsToMesh(workScene)
self._joinMeshObjectsInScene(workScene)
self._doSceneDepthSorting(workScene)
-
+
# Per object activities
- Objects = workScene.getChildren()
+ Objects = workScene.objects
+
print "Total Objects: %d" % len(Objects)
for i,obj in enumerate(Objects):
print "\n\n-------"
def _isFaceVisible(self, face):
"""Determine if a face of an object is visible from the current camera.
-
+
The view vector is calculated from the camera location and one of the
vertices of the face (expressed in World coordinates, after applying
modelview transformations).
# if d > 0 the face is visible from the camera
d = view_vect * normal
-
+
if d > 0:
return True
else:
# Scene methods
+ def _filterHiddenObjects(self, scene):
+ """Discard object that are on hidden layers in the scene.
+ """
+
+ Objects = scene.objects
+
+ visible_obj_list = [ obj for obj in Objects if
+ set(obj.layers).intersection(set(scene.getLayers())) ]
+
+ for o in Objects:
+ if o not in visible_obj_list:
+ scene.objects.unlink(o)
+
+ scene.update()
+
+
+
+ def _buildLightSetup(self, scene):
+ # Get the list of lighting sources
+ obj_lst = scene.objects
+ self.lights = [ o for o in obj_lst if o.getType() == 'Lamp' ]
+
+ # When there are no lights we use a default lighting source
+ # that have the same position of the camera
+ if len(self.lights) == 0:
+ l = Lamp.New('Lamp')
+ lobj = Object.New('Lamp')
+ lobj.loc = self.cameraObj.loc
+ lobj.link(l)
+ self.lights.append(lobj)
+
+
def _doSceneClipping(self, scene):
"""Clip whole objects against the View Frustum.
For now clip away only objects according to their center position.
"""
- cpos = self._getObjPosition(self.cameraObj)
+ cam_pos = self._getObjPosition(self.cameraObj)
view_vect = self._cameraViewVector()
near = self.cameraObj.data.clipStart
fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
fovy = fovy * 360.0/pi
- Objects = scene.getChildren()
+ Objects = scene.objects
+
for o in Objects:
if o.getType() != 'Mesh': continue;
- obj_vect = Vector(cpos) - self._getObjPosition(o)
+ """
+ obj_vect = Vector(cam_pos) - self._getObjPosition(o)
d = obj_vect*view_vect
theta = AngleBetweenVecs(obj_vect, view_vect)
-
+
# if the object is outside the view frustum, clip it away
if (d < near) or (d > far) or (theta > fovy):
- scene.unlink(o)
+ scene.objects.unlink(o)
+ """
+
+ # Use the object bounding box
+ # (whose points are already in WorldSpace Coordinate)
+
+ bb = o.getBoundBox()
+
+ points_outside = 0
+ for p in bb:
+ p_vect = Vector(cam_pos) - Vector(p)
+
+ d = p_vect * view_vect
+ theta = AngleBetweenVecs(p_vect, view_vect)
+
+ # Is this point outside the view frustum?
+ if (d < near) or (d > far) or (theta > fovy):
+ points_outside += 1
+
+ # If the bb is all outside the view frustum we clip the whole
+ # object away
+ if points_outside == len(bb):
+ scene.objects.unlink(o)
+
+
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
#geometricObjTypes = ['Mesh', 'Surf', 'Curve']
- Objects = scene.getChildren()
+ Objects = scene.objects
+
objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
for obj in objList:
old_obj = obj
obj = self._convertToRawMeshObj(obj)
- scene.link(obj)
- scene.unlink(old_obj)
+ scene.objects.link(obj)
+ scene.objects.unlink(old_obj)
# XXX Workaround for Text and Curve which have some normals
c = self._getObjPosition(self.cameraObj)
- by_center_pos = (lambda o1, o2:
+ by_obj_center_pos = (lambda o1, o2:
(o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
cmp((self._getObjPosition(o1) - Vector(c)).length,
(self._getObjPosition(o2) - Vector(c)).length)
)
- # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
- # then ob1 goes farther than obj2, useful when obj2 has holes
- by_bbox = None
-
- Objects = scene.getChildren()
- Objects.sort(by_center_pos)
-
+ # Implement sorting by bounding box, the object with the bb
+ # nearest to the camera should be drawn as last.
+ by_nearest_bbox_point = (lambda o1, o2:
+ (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+ cmp( min( [(Vector(p) - Vector(c)).length for p in o1.getBoundBox()] ),
+ min( [(Vector(p) - Vector(c)).length for p in o2.getBoundBox()] )
+ )
+ )
+
+
+ Objects = list(scene.objects)
+
+ #Objects.sort(by_obj_center_pos)
+ Objects.sort(by_nearest_bbox_point)
+
# update the scene
for o in Objects:
- scene.unlink(o)
- scene.link(o)
+ scene.objects.unlink(o)
+ scene.objects.link(o)
def _joinMeshObjectsInScene(self, scene):
"""Merge all the Mesh Objects in a scene into a single Mesh Object.
"""
- oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
+ oList = [o for o in scene.objects if o.getType()=='Mesh']
# FIXME: Object.join() do not work if the list contains 1 object
if len(oList) == 1:
bigObj = Object.New('Mesh', 'BigOne')
bigObj.link(mesh)
- scene.link(bigObj)
+ scene.objects.link(bigObj)
try:
bigObj.join(oList)
except RuntimeError:
print "\nWarning! - Can't Join Objects\n"
- scene.unlink(bigObj)
+ scene.objects.unlink(bigObj)
return
except TypeError:
print "Objects Type error?"
-
+
for o in oList:
- scene.unlink(o)
+ scene.objects.unlink(o)
scene.update()
-
+
# Per object/mesh methods
def _convertToRawMeshObj(self, object):
def _doBackFaceCulling(self, mesh):
"""Simple Backface Culling routine.
-
+
At this level we simply do a visibility test face by face and then
select the vertices belonging to visible faces.
"""
-
+
# Select all vertices, so edges can be displayed even if there are no
# faces
for v in mesh.verts:
v.sel = 1
-
+
Mesh.Mode(Mesh.SelectModes['FACE'])
# Loop on faces
for f in mesh.faces:
light_obj = l
light_pos = self._getObjPosition(l)
light = light_obj.getData()
-
+
L = Vector(light_pos).normalize()
V = (Vector(camPos) - Vector(f.cent)).normalize()
"""Clip faces against the View Frustum.
"""
+ # The Canonical View Volume, 8 vertices, and 6 faces,
+ # We consider its face normals pointing outside
+
+ v1 = NMesh.Vert(1, 1, -1)
+ v2 = NMesh.Vert(1, -1, -1)
+ v3 = NMesh.Vert(-1, -1, -1)
+ v4 = NMesh.Vert(-1, 1, -1)
+ v5 = NMesh.Vert(1, 1, 1)
+ v6 = NMesh.Vert(1, -1, 1)
+ v7 = NMesh.Vert(-1, -1, 1)
+ v8 = NMesh.Vert(-1, 1, 1)
+
+ cvv = []
+ f1 = NMesh.Face([v1, v4, v3, v2])
+ cvv.append(f1)
+ f2 = NMesh.Face([v5, v6, v7, v8])
+ cvv.append(f2)
+ f3 = NMesh.Face([v1, v2, v6, v5])
+ cvv.append(f3)
+ f4 = NMesh.Face([v2, v3, v7, v6])
+ cvv.append(f4)
+ f5 = NMesh.Face([v3, v4, v8, v7])
+ cvv.append(f5)
+ f6 = NMesh.Face([v4, v1, v5, v8])
+ cvv.append(f6)
+
+ nmesh = NMesh.GetRaw(mesh.name)
+ clippedfaces = nmesh.faces[:]
+ facelist = clippedfaces[:]
+
+ for clipface in cvv:
+
+ clippedfaces = []
+
+ for f in facelist:
+
+ #newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
+ newfaces = None
+
+ if not newfaces:
+ # Check if the face is all outside the view frustum
+ # TODO: Do this test before, it is more efficient
+ points_outside = 0
+ for v in f:
+ if abs(v[0]) > 1-EPS or abs(v[1]) > 1-EPS or abs(v[2]) > 1-EPS:
+ points_outside += 1
+
+ if points_outside != len(f):
+ clippedfaces.append(f)
+ else:
+ for nf in newfaces:
+ for v in nf:
+ nmesh.verts.append(v)
+
+ nf.mat = f.mat
+ nf.sel = f.sel
+ nf.col = [f.col[0]] * len(nf.v)
+
+ clippedfaces.append(nf)
+ facelist = clippedfaces[:]
+
+
+ nmesh.faces = facelist
+ nmesh.update()
+
+
# HSR routines
def __simpleDepthSort(self, mesh):
"""Sort faces by the furthest vertex.
progress.setActivity("HSR: Newell", len(facelist))
#progress.setQuiet(True)
-
+
while len(facelist):
debug("\n----------------------\n")
debug("len(facelits): %d\n" % len(facelist))
qSign = sign(Q.normal[2])
# TODO: check also if Q is parallel??
-
+
# Test 0: We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
debug("met a marked face\n")
continue
-
+
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
debug("\nTest 2\n")
debug("NOT Y OVERLAP!\n")
continue
-
+
# Test 3: P vertices are all behind the plane of Q
n = 0
facelist = HSR.facesplit(P, Q, facelist, nmesh)
split_done = 1
- break
+ break
# The question now is: Does Q obscure P?
debug("\nTest 4bis\n")
debug("P IN FRONT OF Q!\n")
-
+
# We don't even know if Q does obscure P, so they should
# intersect each other, split one of them in two parts.
if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
facelist = HSR.facesplit(P, Q, facelist, nmesh)
split_done = 1
- break
-
+ break
+
facelist.remove(Q)
facelist.insert(0, Q)
Q.smooth = 1
face_marked = 1
debug("Q marked!\n")
break
-
- # Write P!
+
+ # Write P!
if split_done == 0 and face_marked == 0:
facelist.remove(P)
maplist.append(P)
# break
# end of while len(facelist)
-
+
nmesh.faces = maplist
#for f in nmesh.faces:
from Blender.BGL import *
class GUI:
-
+
def _init():
- # Output Format menu
+ # Output Format menu
output_format = config.output['FORMAT']
default_value = outputWriters.keys().index(output_format)+1
GUI.outFormatMenu = Draw.Create(default_value)
# Render filled polygons
GUI.polygonsToggle = Draw.Create(config.polygons['SHOW'])
- # Shading Style menu
+ # Shading Style menu
shading_style = config.polygons['SHADING']
default_value = shadingStyles.keys().index(shading_style)+1
GUI.shadingStyleMenu = Draw.Create(default_value)
GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN'])
GUI.evtShowHiddenEdgesToggle = 5
- # Edge Style menu
+ # Edge Style menu
edge_style = config.edges['STYLE']
default_value = edgeStyles.keys().index(edge_style)+1
GUI.edgeStyleMenu = Draw.Create(default_value)
# Exit Button
GUI.evtExitButton = 9
+ # Save default button
+ GUI.evtSaveDefaultButton = 99
+
def draw():
# initialize static members
glClear(GL_COLOR_BUFFER_BIT)
glColor3f(0.0, 0.0, 0.0)
- glRasterPos2i(10, 350)
+ glRasterPos2i(10, 380)
Draw.Text("VRM: Vector Rendering Method script. Version %s." %
__version__)
+ glRasterPos2i(10, 365)
+ Draw.Text("%s (c) 2006, 2007" % __author__)
+
glRasterPos2i(10, 335)
Draw.Text("Press Q or ESC to quit.")
"Start Rendering")
Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!")
+ Draw.Button("Save settings as default", GUI.evtSaveDefaultButton, 10, 210-50, 160, 18,
+ "Save settings as default")
+
# Rendering Styles
glRasterPos2i(200, 310)
Draw.Text("Rendering Style:")
"Render polygon edges")
if GUI.showEdgesToggle.val == 1:
-
+
# Edge Style
edgeStyleMenuStruct = "Edge Style %t"
for t in edgeStyles.keys():
200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
"Render hidden edges as dashed lines")
- glRasterPos2i(10, 160)
- Draw.Text("%s (c) 2006" % __author__)
def event(evt, val):
global outputfile
Blender.Window.FileSelector(vectorize, label, outputfile)
+ elif evt == GUI.evtSaveDefaultButton:
+ config.saveToRegistry()
+
else:
print "Event: %d not handled!" % evt
# A wrapper function for the vectorizing process
def vectorize(filename):
"""The vectorizing process is as follows:
-
+
- Instanciate the writer and the renderer
- Render!
"""
actualWriter = outputWriters[config.output['FORMAT']]
writer = actualWriter(filename)
-
+
renderer = Renderer()
renderer.doRendering(writer, config.output['ANIMATION'])
- if editmode: Window.EditMode(1)
+ if editmode: Window.EditMode(1)
global progress
+ config.loadFromRegistry()
+
+ # initialize writer setting also here to configure writer specific
+ # settings on startup
+ actualWriter = outputWriters[config.output['FORMAT']]
+ writer = actualWriter("")
+
outputfile = ""
basename = Blender.sys.basename(Blender.Get('filename'))
if basename != "":