#!BPY
"""
Name: 'VRM'
-Blender: 242
+Blender: 245
Group: 'Render'
Tooltip: 'Vector Rendering Method script'
"""
__author__ = "Antonio Ospite"
-__url__ = ["http://projects.blender.org/projects/vrm"]
-__version__ = "0.3"
+__url__ = ["http://vrm.ao2.it"]
+__version__ = "0.3.beta"
__bpydoc__ = """\
Render the scene and save the result in vector format.
"""
# ---------------------------------------------------------------------
-# Copyright (c) 2006 Antonio Ospite
+# Copyright (c) 2006, 2007, 2008, 2009 Antonio Ospite
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# from scratch but Nikola gave me the idea, so I thank him publicly.
#
# ---------------------------------------------------------------------
-#
+#
# Things TODO for a next release:
-# - Use multiple lighting sources in color calculation,
-# (this is part of the "shading refactor") and use light color!
+# - Shadeless shader
# - FIX the issue with negative scales in object tranformations!
# - Use a better depth sorting algorithm
-# - Implement clipping of primitives and do handle object intersections.
-# (for now only clipping away whole objects is supported).
# - Review how selections are made (this script uses selection states of
# primitives to represent visibility infos)
-# - Use a data structure other than Mesh to represent the 2D image?
+# - Use a data structure other than Mesh to represent the 2D image?
# Think to a way to merge (adjacent) polygons that have the same color.
# Or a way to use paths for silhouettes and contours.
# - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
# not support SMIL for animations)
# - Switch to the Mesh structure, should be considerably faster
-# (partially done, but with Mesh we cannot sort faces, yet)
+# (partially done, but with Mesh we cannot sort faces, yet)
# - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
-# - Implement Shading Styles? (for now we use Flat Shading) (partially done).
+# - Implement Shading Styles? (partially done, to make more flexible).
# - Add Vector Writers other than SVG.
-#
-# ---------------------------------------------------------------------
-#
-# Changelog:
-#
-# vrm-0.3.py - 2006-05-19
-# * First release after code restucturing.
-# Now the script offers a useful set of functionalities
-# and it can render animations, too.
+# - set the background color!
+# - Check memory use!!
#
# ---------------------------------------------------------------------
import Blender
-from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera
+from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
from Blender.Mathutils import *
from math import *
+import sys, time
+
+try:
+ set()
+except NameError:
+ from sets import Set as set
+
+
+def uniq(alist):
+ tmpdict = dict()
+ return [tmpdict.setdefault(e,e) for e in alist if e not in tmpdict]
+ # in python > 2.4 we ca use the following
+ #return [ u for u in alist if u not in locals()['_[1]'] ]
-# Some global settings
+# Constants
+EPS = 10e-5
+
+# We use a global progress Indicator Object
+progress = None
+
+
+# Config class for global settings
class config:
polygons = dict()
polygons['SHOW'] = True
- polygons['SHADING'] = 'TOON'
+ polygons['SHADING'] = 'FLAT' # FLAT or TOON
+ polygons['HSR'] = 'PAINTER' # PAINTER or NEWELL
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
+ polygons['TOON_LEVELS'] = 2
+
edges = dict()
- edges['SHOW'] = True
+ edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
- edges['STYLE'] = 'SILHOUETTE'
+ edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
output['ANIMATION'] = False
output['JOIN_OBJECTS'] = True
+ def saveToRegistry():
+ registry = {}
+
+ for k,v in config.__dict__.iteritems():
+
+ # config class store settings in dictionaries
+ if v.__class__ == dict().__class__:
+
+ regkey_prefix = k.upper()+"_"
+
+ for opt_k,opt_v in v.iteritems():
+ regkey = regkey_prefix + opt_k
+
+ registry[regkey] = opt_v
+
+ Blender.Registry.SetKey('VRM', registry, True)
+
+ saveToRegistry = staticmethod(saveToRegistry)
+
+ def loadFromRegistry():
+ registry = Blender.Registry.GetKey('VRM', True)
+ if not registry:
+ return
+
+ for k,v in registry.iteritems():
+ k_tmp = k.split('_')
+ conf_attr = k_tmp[0].lower()
+ conf_key = str.join("_",k_tmp[1:])
+ conf_val = v
+
+ if config.__dict__.has_key(conf_attr):
+ config.__dict__[conf_attr][conf_key] = conf_val
+
+ loadFromRegistry = staticmethod(loadFromRegistry)
+
+
+# Utility functions
+print_debug = False
+
+def dumpfaces(flist, filename):
+ """Dump a single face to a file.
+ """
+ if not print_debug:
+ return
+
+ class tmpmesh:
+ pass
+
+ m = tmpmesh()
+ m.faces = flist
+
+ writerobj = SVGVectorWriter(filename)
+
+ writerobj.open()
+ writerobj._printPolygons(m)
+
+ writerobj.close()
+
+def debug(msg):
+ if print_debug:
+ sys.stderr.write(msg)
+
+def EQ(v1, v2):
+ return (abs(v1[0]-v2[0]) < EPS and
+ abs(v1[1]-v2[1]) < EPS )
+by_furthest_z = (lambda f1, f2:
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ )
+
+def sign(x):
+
+ if x < -EPS:
+ #if x < 0:
+ return -1
+ elif x > EPS:
+ #elif x > 0:
+ return 1
+ else:
+ return 0
# ---------------------------------------------------------------------
#
-## Utility Mesh class
+## HSR Utility class
#
# ---------------------------------------------------------------------
-class MeshUtils:
- def getEdgeAdjacentFaces(edge, mesh):
- """Get the faces adjacent to a given edge.
+EPS = 10e-5
+INF = 10e5
+
+class HSR:
+ """A utility class for HSR processing.
+ """
+
+ def is_nonplanar_quad(face):
+ """Determine if a quad is non-planar.
+
+ From: http://mathworld.wolfram.com/Coplanar.html
+
+ Geometric objects lying in a common plane are said to be coplanar.
+ Three noncollinear points determine a plane and so are trivially coplanar.
+ Four points are coplanar iff the volume of the tetrahedron defined by them is
+ 0,
- There can be 0, 1 or more (usually 2) faces adjacent to an edge.
+ | x_1 y_1 z_1 1 |
+ | x_2 y_2 z_2 1 |
+ | x_3 y_3 z_3 1 |
+ | x_4 y_4 z_4 1 | == 0
+
+ Coplanarity is equivalent to the statement that the pair of lines
+ determined by the four points are not skew, and can be equivalently stated
+ in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
+
+ An arbitrary number of n points x_1, ..., x_n can be tested for
+ coplanarity by finding the point-plane distances of the points
+ x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
+ and checking if they are all zero.
+ If so, the points are all coplanar.
+
+ We here check only for 4-point complanarity.
"""
- adjface_list = []
+ n = len(face)
- for f in mesh.faces:
- if (edge.v1 in f.v) and (edge.v2 in f.v):
- adjface_list.append(f)
+ # assert(n>4)
+ if n < 3 or n > 4:
+ print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
+ raise AssertionError
+
+ elif n == 3:
+ # three points must be complanar
+ return False
+ else: # n == 4
+ x1 = Vector(face[0].co)
+ x2 = Vector(face[1].co)
+ x3 = Vector(face[2].co)
+ x4 = Vector(face[3].co)
+
+ v = (x3-x1) * CrossVecs((x2-x1), (x4-x3))
+ if v != 0:
+ return True
+
+ return False
+
+ is_nonplanar_quad = staticmethod(is_nonplanar_quad)
+
+ def pointInPolygon(poly, v):
+ return False
+
+ pointInPolygon = staticmethod(pointInPolygon)
+
+ def edgeIntersection(s1, s2, do_perturbate=False):
+
+ (x1, y1) = s1[0].co[0], s1[0].co[1]
+ (x2, y2) = s1[1].co[0], s1[1].co[1]
+
+ (x3, y3) = s2[0].co[0], s2[0].co[1]
+ (x4, y4) = s2[1].co[0], s2[1].co[1]
+
+ #z1 = s1[0].co[2]
+ #z2 = s1[1].co[2]
+ #z3 = s2[0].co[2]
+ #z4 = s2[1].co[2]
+
+
+ # calculate delta values (vector components)
+ dx1 = x2 - x1;
+ dx2 = x4 - x3;
+ dy1 = y2 - y1;
+ dy2 = y4 - y3;
+
+ #dz1 = z2 - z1;
+ #dz2 = z4 - z3;
+
+ C = dy2 * dx1 - dx2 * dy1 # /* cross product */
+ if C == 0: #/* parallel */
+ return None
+
+ dx3 = x1 - x3 # /* combined origin offset vector */
+ dy3 = y1 - y3
+
+ a1 = (dy3 * dx2 - dx3 * dy2) / C;
+ a2 = (dy3 * dx1 - dx3 * dy1) / C;
+
+ # check for degeneracies
+ #print_debug("\n")
+ #print_debug(str(a1)+"\n")
+ #print_debug(str(a2)+"\n\n")
+
+ if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
+ # Intersection on boundaries, we consider the point external?
+ return None
+
+ elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): # /* lines cross */
+ x = x1 + a1*dx1
+ y = y1 + a1*dy1
+
+ #z = z1 + a1*dz1
+ z = 0
+ return (NMesh.Vert(x, y, z), a1, a2)
+
+ else:
+ # lines have intersections but not those segments
+ return None
+
+ edgeIntersection = staticmethod(edgeIntersection)
+
+ def isVertInside(self, v):
+ winding_number = 0
+ coincidence = False
+
+ # Create point at infinity
+ point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
+
+ for i in range(len(self.v)):
+ s1 = (point_at_infinity, v)
+ s2 = (self.v[i-1], self.v[i])
+
+ if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
+ coincidence = True
+
+ if HSR.edgeIntersection(s1, s2, do_perturbate=False):
+ winding_number += 1
+
+ # Check even or odd
+ if winding_number % 2 == 0 :
+ return False
+ else:
+ if coincidence:
+ return False
+ return True
+
+ isVertInside = staticmethod(isVertInside)
+
+
+ def det(a, b, c):
+ return ((b[0] - a[0]) * (c[1] - a[1]) -
+ (b[1] - a[1]) * (c[0] - a[0]) )
+
+ det = staticmethod(det)
+
+ def pointInPolygon(q, P):
+ is_in = False
+
+ point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
+
+ det = HSR.det
+
+ for i in range(len(P.v)):
+ p0 = P.v[i-1]
+ p1 = P.v[i]
+ if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0):
+ if det(p0.co, p1.co, q.co) == 0 :
+ #print "On Boundary"
+ return False
+ elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0):
+ is_in = not is_in
+
+ return is_in
+
+ pointInPolygon = staticmethod(pointInPolygon)
+
+ def projectionsOverlap(f1, f2):
+ """ If you have nonconvex, but still simple polygons, an acceptable method
+ is to iterate over all vertices and perform the Point-in-polygon test[1].
+ The advantage of this method is that you can compute the exact
+ intersection point and collision normal that you will need to simulate
+ collision. When you have the point that lies inside the other polygon, you
+ just iterate over all edges of the second polygon again and look for edge
+ intersections. Note that this method detects collsion when it already
+ happens. This algorithm is fast enough to perform it hundreds of times per
+ sec. """
+
+ for i in range(len(f1.v)):
+
+
+ # If a point of f1 in inside f2, there is an overlap!
+ v1 = f1.v[i]
+ #if HSR.isVertInside(f2, v1):
+ if HSR.pointInPolygon(v1, f2):
+ return True
+
+ # If not the polygon can be ovelap as well, so we check for
+ # intersection between an edge of f1 and all the edges of f2
+
+ v0 = f1.v[i-1]
+
+ for j in range(len(f2.v)):
+ v2 = f2.v[j-1]
+ v3 = f2.v[j]
+
+ e1 = v0, v1
+ e2 = v2, v3
+
+ intrs = HSR.edgeIntersection(e1, e2)
+ if intrs:
+ #print_debug(str(v0.co) + " " + str(v1.co) + " " +
+ # str(v2.co) + " " + str(v3.co) )
+ #print_debug("\nIntersection\n")
+
+ return True
+
+ return False
+
+ projectionsOverlap = staticmethod(projectionsOverlap)
+
+ def midpoint(p1, p2):
+ """Return the midpoint of two vertices.
+ """
+ m = MidpointVecs(Vector(p1), Vector(p2))
+ mv = NMesh.Vert(m[0], m[1], m[2])
+
+ return mv
+
+ midpoint = staticmethod(midpoint)
+
+ def facesplit(P, Q, facelist, nmesh):
+ """Split P or Q according to the strategy illustrated in the Newell's
+ paper.
+ """
+
+ by_furthest_z = (lambda f1, f2:
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ )
+
+ # Choose if split P on Q plane or vice-versa
+
+ n = 0
+ for Pi in P:
+ d = HSR.Distance(Vector(Pi), Q)
+ if d <= EPS:
+ n += 1
+ pIntersectQ = (n != len(P))
+
+ n = 0
+ for Qi in Q:
+ d = HSR.Distance(Vector(Qi), P)
+ if d >= -EPS:
+ n += 1
+ qIntersectP = (n != len(Q))
+
+ newfaces = []
+
+ # 1. If parts of P lie in both half-spaces of Q
+ # then splice P in two with the plane of Q
+ if pIntersectQ:
+ #print "We split P"
+ f = P
+ plane = Q
+
+ newfaces = HSR.splitOn(plane, f)
+
+ # 2. Else if parts of Q lie in both half-space of P
+ # then splice Q in two with the plane of P
+ if qIntersectP and newfaces == None:
+ #print "We split Q"
+ f = Q
+ plane = P
+
+ newfaces = HSR.splitOn(plane, f)
+ #print "After"
+
+ # 3. Else slice P in half through the mid-point of
+ # the longest pair of opposite sides
+ if newfaces == None:
+
+ print "We ignore P..."
+ facelist.remove(P)
+ return facelist
+
+ #f = P
+
+ #if len(P)==3:
+ # v1 = midpoint(f[0], f[1])
+ # v2 = midpoint(f[1], f[2])
+ #if len(P)==4:
+ # v1 = midpoint(f[0], f[1])
+ # v2 = midpoint(f[2], f[3])
+ #vec3 = (Vector(v2)+10*Vector(f.normal))
+ #
+ #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
+
+ #plane = NMesh.Face([v1, v2, v3])
+ #
+ #newfaces = splitOn(plane, f)
+
+
+ if newfaces == None:
+ print "Big FAT problem, we weren't able to split POLYGONS!"
+ raise AssertionError
+
+ #print newfaces
+ if newfaces:
+ #for v in f:
+ # if v not in plane and v in nmesh.verts:
+ # nmesh.verts.remove(v)
+ for nf in newfaces:
+
+ nf.mat = f.mat
+ nf.sel = f.sel
+ nf.col = [f.col[0]] * len(nf.v)
+
+ nf.smooth = 0
- return adjface_list
+ for v in nf:
+ nmesh.verts.append(v)
+ # insert pieces in the list
+ facelist.append(nf)
- def isMeshEdge(e, mesh):
+ facelist.remove(f)
+
+ # and resort the faces
+ facelist.sort(by_furthest_z)
+ facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
+ facelist.reverse()
+
+ #print [ f.smooth for f in facelist ]
+
+ return facelist
+
+ facesplit = staticmethod(facesplit)
+
+ def isOnSegment(v1, v2, p, extremes_internal=False):
+ """Check if point p is in segment v1v2.
+ """
+
+ l1 = (v1-p).length
+ l2 = (v2-p).length
+
+ # Should we consider extreme points as internal ?
+ # The test:
+ # if p == v1 or p == v2:
+ if l1 < EPS or l2 < EPS:
+ return extremes_internal
+
+ l = (v1-v2).length
+
+ # if the sum of l1 and l2 is circa l, then the point is on segment,
+ if abs(l - (l1+l2)) < EPS:
+ return True
+ else:
+ return False
+
+ isOnSegment = staticmethod(isOnSegment)
+
+ def Distance(point, face):
+ """ Calculate the distance between a point and a face.
+
+ An alternative but more expensive method can be:
+
+ ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
+ Vector(face.no), Vector(point), 0)
+
+ d = Vector(ip - point).length
+
+ See: http://mathworld.wolfram.com/Point-PlaneDistance.html
+ """
+
+ p = Vector(point)
+ plNormal = Vector(face.no)
+ plVert0 = Vector(face.v[0])
+
+ d = (plVert0 * plNormal) - (p * plNormal)
+
+ #d = plNormal * (plVert0 - p)
+
+ #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
+
+ return d
+
+ Distance = staticmethod(Distance)
+
+ def makeFaces(vl):
+ #
+ # make one or two new faces based on a list of vertex-indices
+ #
+ newfaces = []
+
+ if len(vl) <= 4:
+ nf = NMesh.Face()
+
+ for v in vl:
+ nf.v.append(v)
+
+ newfaces.append(nf)
+
+ else:
+ nf = NMesh.Face()
+
+ nf.v.append(vl[0])
+ nf.v.append(vl[1])
+ nf.v.append(vl[2])
+ nf.v.append(vl[3])
+ newfaces.append(nf)
+
+ nf = NMesh.Face()
+ nf.v.append(vl[3])
+ nf.v.append(vl[4])
+ nf.v.append(vl[0])
+ newfaces.append(nf)
+
+ return newfaces
+
+ makeFaces = staticmethod(makeFaces)
+
+ def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
+ """Split P using the plane of Q.
+ Logic taken from the knife.py python script
+ """
+
+ # Check if P and Q are parallel
+ u = CrossVecs(Vector(Q.no),Vector(P.no))
+ ax = abs(u[0])
+ ay = abs(u[1])
+ az = abs(u[2])
+
+ if (ax+ay+az) < EPS:
+ print "PARALLEL planes!!"
+ return
+
+
+ # The final aim is to find the intersection line between P
+ # and the plane of Q, and split P along this line
+
+ nP = len(P.v)
+
+ # Calculate point-plane Distance between vertices of P and plane Q
+ d = []
+ for i in range(0, nP):
+ d.append(HSR.Distance(P.v[i], Q))
+
+ newVertList = []
+
+ posVertList = []
+ negVertList = []
+ for i in range(nP):
+ d0 = d[i-1]
+ V0 = P.v[i-1]
+
+ d1 = d[i]
+ V1 = P.v[i]
+
+ #print "d0:", d0, "d1:", d1
+
+ # if the vertex lies in the cutplane
+ if abs(d1) < EPS:
+ #print "d1 On cutplane"
+ posVertList.append(V1)
+ negVertList.append(V1)
+ else:
+ # if the previous vertex lies in cutplane
+ if abs(d0) < EPS:
+ #print "d0 on Cutplane"
+ if d1 > 0:
+ #print "d1 on positive Halfspace"
+ posVertList.append(V1)
+ else:
+ #print "d1 on negative Halfspace"
+ negVertList.append(V1)
+ else:
+ # if they are on the same side of the plane
+ if d1*d0 > 0:
+ #print "On the same half-space"
+ if d1 > 0:
+ #print "d1 on positive Halfspace"
+ posVertList.append(V1)
+ else:
+ #print "d1 on negative Halfspace"
+ negVertList.append(V1)
+
+ # the vertices are not on the same side of the plane, so we have an intersection
+ else:
+ #print "Intersection"
+
+ e = Vector(V0), Vector(V1)
+ tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
+
+ inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0)
+ if inters == None:
+ print "Split Break"
+ break
+
+ #print "Intersection", inters
+
+ nv = NMesh.Vert(inters[0], inters[1], inters[2])
+ newVertList.append(nv)
+
+ posVertList.append(nv)
+ negVertList.append(nv)
+
+ if d1 > 0:
+ posVertList.append(V1)
+ else:
+ negVertList.append(V1)
+
+
+ # uniq for python > 2.4
+ #posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
+ #negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+ # a more portable way
+ posVertList = uniq(posVertList)
+ negVertList = uniq(negVertList)
+
+
+ # If vertex are all on the same half-space, return
+ #if len(posVertList) < 3:
+ # print "Problem, we created a face with less that 3 vertices??"
+ # posVertList = []
+ #if len(negVertList) < 3:
+ # print "Problem, we created a face with less that 3 vertices??"
+ # negVertList = []
+
+ if len(posVertList) < 3 or len(negVertList) < 3:
+ #print "RETURN NONE, SURE???"
+ return None
+
+ if not return_positive_faces:
+ posVertList = []
+ if not return_negative_faces:
+ negVertList = []
+
+ newfaces = HSR.addNewFaces(posVertList, negVertList)
+
+ return newfaces
+
+ splitOn = staticmethod(splitOn)
+
+ def addNewFaces(posVertList, negVertList):
+ # Create new faces resulting from the split
+ outfaces = []
+ if len(posVertList) or len(negVertList):
+
+ #newfaces = [posVertList] + [negVertList]
+ newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
+ [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] )
+
+ for nf in newfaces:
+ if nf and len(nf)>2:
+ outfaces += HSR.makeFaces(nf)
+
+ return outfaces
+
+
+ addNewFaces = staticmethod(addNewFaces)
+
+
+# ---------------------------------------------------------------------
+#
+## Mesh Utility class
+#
+# ---------------------------------------------------------------------
+
+class MeshUtils:
+
+ def buildEdgeFaceUsersCache(me):
+ '''
+ Takes a mesh and returns a list aligned with the meshes edges.
+ Each item is a list of the faces that use the edge
+ would be the equiv for having ed.face_users as a property
+
+ Taken from .blender/scripts/bpymodules/BPyMesh.py,
+ thanks to ideasman_42.
+ '''
+
+ def sorted_edge_indicies(ed):
+ i1= ed.v1.index
+ i2= ed.v2.index
+ if i1>i2:
+ i1,i2= i2,i1
+ return i1, i2
+
+
+ face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
+ for f in me.faces:
+ fvi= [v.index for v in f.v]# face vert idx's
+ for i in xrange(len(f)):
+ i1= fvi[i]
+ i2= fvi[i-1]
+
+ if i1>i2:
+ i1,i2= i2,i1
+
+ face_edges_dict[i1,i2][1].append(f)
+
+ face_edges= [None] * len(me.edges)
+ for ed_index, ed_faces in face_edges_dict.itervalues():
+ face_edges[ed_index]= ed_faces
+
+ return face_edges
+
+ def isMeshEdge(adjacent_faces):
"""Mesh edge rule.
- A mesh edge is visible if _any_ of its adjacent faces is selected.
+ A mesh edge is visible if _at_least_one_ of its adjacent faces is selected.
Note: if the edge has no adjacent faces we want to show it as well,
useful for "edge only" portion of objects.
"""
- adjacent_faces = MeshUtils.getEdgeAdjacentFaces(e, mesh)
-
if len(adjacent_faces) == 0:
return True
else:
return False
- def isSilhouetteEdge(e, mesh):
+ def isSilhouetteEdge(adjacent_faces):
"""Silhuette selection rule.
An edge is a silhuette edge if it is shared by two faces with
face.
"""
- adjacent_faces = MeshUtils.getEdgeAdjacentFaces(e, mesh)
-
if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or
(len(adjacent_faces) == 2 and
adjacent_faces[0].sel != adjacent_faces[1].sel)
return True
else:
return False
-
- def toonShading(u):
- levels = 2
+ buildEdgeFaceUsersCache = staticmethod(buildEdgeFaceUsersCache)
+ isMeshEdge = staticmethod(isMeshEdge)
+ isSilhouetteEdge = staticmethod(isSilhouetteEdge)
+
+
+# ---------------------------------------------------------------------
+#
+## Shading Utility class
+#
+# ---------------------------------------------------------------------
+
+class ShadingUtils:
+
+ shademap = None
+
+ def toonShadingMapSetup():
+ levels = config.polygons['TOON_LEVELS']
+
texels = 2*levels - 1
- map = [0.0] + [(i)/float(texels-1) for i in range(1, texels-1) ] + [1.0]
-
+ tmp_shademap = [0.0] + [(i)/float(texels-1) for i in xrange(1, texels-1) ] + [1.0]
+
+ return tmp_shademap
+
+ def toonShading(u):
+
+ shademap = ShadingUtils.shademap
+
+ if not shademap:
+ shademap = ShadingUtils.toonShadingMapSetup()
+
v = 1.0
- for i in range(0, len(map)-1):
- pivot = (map[i]+map[i+1])/2.0
+ for i in xrange(0, len(shademap)-1):
+ pivot = (shademap[i]+shademap[i+1])/2.0
j = int(u>pivot)
- v = map[i+j]
+ v = shademap[i+j]
- if v<map[i+1]:
+ if v < shademap[i+1]:
return v
return v
-
- getEdgeAdjacentFaces = staticmethod(getEdgeAdjacentFaces)
- isMeshEdge = staticmethod(isMeshEdge)
- isSilhouetteEdge = staticmethod(isSilhouetteEdge)
+ toonShadingMapSetup = staticmethod(toonShadingMapSetup)
toonShading = staticmethod(toonShading)
-
# ---------------------------------------------------------------------
#
## Projections classes
class Projector:
"""Calculate the projection of an object given the camera.
-
+
A projector is useful to so some per-object transformation to obtain the
projection of an object given the camera.
-
+
The main method is #doProjection# see the method description for the
parameter list.
"""
fovy = atan(0.5/aspect/(camera.lens/32))
fovy = fovy * 360.0/pi
-
+
+
+ if Blender.Get('version') < 243:
+ camPersp = 0
+ camOrtho = 1
+ else:
+ camPersp = 'persp'
+ camOrtho = 'ortho'
+
# What projection do we want?
- if camera.type == 0:
- mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
- elif camera.type == 1:
- mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
-
+ if camera.type == camPersp:
+ mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+ elif camera.type == camOrtho:
+ mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
+
+
# View transformation
cam = Matrix(cameraObj.getInverseMatrix())
- cam.transpose()
-
+ cam.transpose()
+
mP = mP * cam
self.projectionMatrix = mP
Given a vertex calculate the projection using the current projection
matrix.
"""
-
+
# Note that we have to work on the vertex using homogeneous coordinates
+ # From blender 2.42+ we don't need to resize the vector to be 4d
+ # when applying a 4x4 matrix, but we do that anyway since we need the
+ # 4th coordinate later
p = self.projectionMatrix * Vector(v).resize4D()
# Perspective division
##
# Private methods
#
-
+
def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
"""Return a perspective projection matrix.
"""
-
+
top = near * tan(fovy * pi / 360.0)
bottom = -top
left = bottom*aspect
b = (top+bottom) / (top - bottom)
c = - ((far+near) / (far-near))
d = - ((2*far*near)/(far-near))
-
+
m = Matrix(
[x, 0.0, a, 0.0],
[0.0, y, b, 0.0],
def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
"""Return an orthogonal projection matrix.
"""
-
+
# The 11 in the formula was found emiprically
top = near * tan(fovy * pi / 360.0) * (scale * 11)
- bottom = -top
+ bottom = -top
left = bottom * aspect
right= top * aspect
rl = right-left
tb = top-bottom
- fn = near-far
+ fn = near-far
tx = -((right+left)/rl)
ty = -((top+bottom)/tb)
tz = ((far+near)/fn)
[0.0, 2.0/tb, 0.0, ty],
[0.0, 0.0, 2.0/fn, tz],
[0.0, 0.0, 0.0, 1.0])
-
+
return m
+# ---------------------------------------------------------------------
+#
+## Progress Indicator
+#
+# ---------------------------------------------------------------------
+
+class Progress:
+ """A model for a progress indicator.
+
+ Do the progress calculation calculation and
+ the view independent stuff of a progress indicator.
+ """
+ def __init__(self, steps=0):
+ self.name = ""
+ self.steps = steps
+ self.completed = 0
+ self.progress = 0
+
+ def setSteps(self, steps):
+ """Set the number of steps of the activity wich we want to track.
+ """
+ self.steps = steps
+
+ def getSteps(self):
+ return self.steps
+
+ def setName(self, name):
+ """Set the name of the activity wich we want to track.
+ """
+ self.name = name
+
+ def getName(self):
+ return self.name
+
+ def getProgress(self):
+ return self.progress
+
+ def reset(self):
+ self.completed = 0
+ self.progress = 0
+
+ def update(self):
+ """Update the model, call this method when one step is completed.
+ """
+ if self.progress == 100:
+ return False
+
+ self.completed += 1
+ self.progress = ( float(self.completed) / float(self.steps) ) * 100
+ self.progress = int(self.progress)
+
+ return True
+
+
+class ProgressIndicator:
+ """An abstraction of a View for the Progress Model
+ """
+ def __init__(self):
+
+ # Use a refresh rate so we do not show the progress at
+ # every update, but every 'self.refresh_rate' times.
+ self.refresh_rate = 10
+ self.shows_counter = 0
+
+ self.quiet = False
+
+ self.progressModel = None
+
+ def setQuiet(self, value):
+ self.quiet = value
+
+ def setActivity(self, name, steps):
+ """Initialize the Model.
+
+ In a future version (with subactivities-progress support) this method
+ could only set the current activity.
+ """
+ self.progressModel = Progress()
+ self.progressModel.setName(name)
+ self.progressModel.setSteps(steps)
+
+ def getActivity(self):
+ return self.progressModel
+
+ def update(self):
+ """Update the model and show the actual progress.
+ """
+ assert(self.progressModel)
+
+ if self.progressModel.update():
+ if self.quiet:
+ return
+
+ self.show(self.progressModel.getProgress(),
+ self.progressModel.getName())
+
+ # We return always True here so we can call the update() method also
+ # from lambda funcs (putting the call in logical AND with other ops)
+ return True
+
+ def show(self, progress, name=""):
+ self.shows_counter = (self.shows_counter + 1) % self.refresh_rate
+ if self.shows_counter != 0:
+ return
+
+ if progress == 100:
+ self.shows_counter = -1
+
+
+class ConsoleProgressIndicator(ProgressIndicator):
+ """Show a progress bar on stderr, a la wget.
+ """
+ def __init__(self):
+ ProgressIndicator.__init__(self)
+
+ self.swirl_chars = ["-", "\\", "|", "/"]
+ self.swirl_count = -1
+
+ def show(self, progress, name):
+ ProgressIndicator.show(self, progress, name)
+
+ bar_length = 70
+ bar_progress = int( (progress/100.0) * bar_length )
+ bar = ("=" * bar_progress).ljust(bar_length)
+
+ self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+ swirl_char = self.swirl_chars[self.swirl_count]
+
+ progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress)
+
+ sys.stderr.write(progress_bar+"\r")
+ if progress == 100:
+ sys.stderr.write("\n")
+
+
+class GraphicalProgressIndicator(ProgressIndicator):
+ """Interface to the Blender.Window.DrawProgressBar() method.
+ """
+ def __init__(self):
+ ProgressIndicator.__init__(self)
+
+ #self.swirl_chars = ["-", "\\", "|", "/"]
+ # We have to use letters with the same width, for now!
+ # Blender progress bar considers the font widths when
+ # calculating the progress bar width.
+ self.swirl_chars = ["\\", "/"]
+ self.swirl_count = -1
+
+ def show(self, progress, name):
+ ProgressIndicator.show(self, progress)
+
+ self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+ swirl_char = self.swirl_chars[self.swirl_count]
+
+ progress_text = "%s - %c %3d%%" % (name, swirl_char, progress)
+
+ # Finally draw the Progress Bar
+ Window.WaitCursor(1) # Maybe we can move that call in the constructor?
+ Window.DrawProgressBar(progress/100.0, progress_text)
+
+ if progress == 100:
+ Window.DrawProgressBar(1, progress_text)
+ Window.WaitCursor(0)
+
+
# ---------------------------------------------------------------------
#
- printCanvas(self, scene,
doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
"""
-
+
def __init__(self, fileName):
"""Set the output file name and other properties"""
+ try:
+ config.writer
+ except:
+ config.writer = dict()
+ config.writer['SETTING'] = True
+
self.outputFileName = fileName
- self.file = None
-
+
context = Scene.GetCurrent().getRenderingContext()
self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
+ self.fps = context.fps
+
self.startFrame = 1
self.endFrame = 1
self.animation = False
##
# Public Methods
#
-
+
def open(self, startFrame=1, endFrame=1):
if startFrame != endFrame:
self.startFrame = startFrame
self.endFrame = endFrame
self.animation = True
- self.file = open(self.outputFileName, "w")
print "Outputting to: ", self.outputFileName
return
def close(self):
- self.file.close()
return
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
"""This is the interface for the needed printing routine.
"""
return
-
+
## SVG Writer
"""
VectorWriter.__init__(self, fileName)
+ self.file = None
+
##
# Public Methods
"""Do some initialization operations.
"""
VectorWriter.open(self, startFrame, endFrame)
+
+ self.file = open(self.outputFileName, "w")
+
self._printHeader()
def close(self):
"""
self._printFooter()
- # remember to call the close method of the parent
+ if self.file:
+ self.file.close()
+
+ # remember to call the close method of the parent as last
VectorWriter.close(self)
-
+
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
"""Convert the scene representation to SVG.
"""
- Objects = scene.getChildren()
+ Objects = scene.objects
context = scene.getRenderingContext()
framenumber = context.currentFrame()
framestyle = "display:none"
else:
framestyle = "display:block"
-
+
# Assign an id to this group so we can set properties on it using DOM
self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
(framenumber, framestyle) )
if doPrintEdges:
self._printEdges(mesh, showHiddenEdges)
-
+
self.file.write("</g>\n")
self.file.write("</g>\n")
-
- ##
+
+ ##
# Private Methods
#
-
+
def _calcCanvasCoord(self, v):
"""Convert vertex in scene coordinates to canvas coordinates.
"""
pt = Vector([0, 0, 0])
-
+
mW = float(self.canvasSize[0])/2.0
mH = float(self.canvasSize[1])/2.0
pt[0] = v.co[0]*mW + mW
pt[1] = v.co[1]*mH + mH
pt[2] = v.co[2]
-
+
# For now we want (0,0) in the top-left corner of the canvas.
# Mirror and translate along y
pt[1] *= -1
pt[1] += self.canvasSize[1]
-
+
return pt
def _printHeader(self):
"""Print SVG header."""
self.file.write("<?xml version=\"1.0\"?>\n")
- self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n")
- self.file.write("\t\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n")
- self.file.write("<svg version=\"1.1\"\n")
+ self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\"\n")
+ self.file.write("\t\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n")
+ self.file.write("<svg version=\"1.0\"\n")
self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
- self.file.write("\twidth=\"%d\" height=\"%d\" streamable=\"true\">\n\n" %
+ self.file.write("\twidth=\"%d\" height=\"%d\">\n\n" %
self.canvasSize)
if self.animation:
+ delay = 1000/self.fps
- self.file.write("""\n<script><![CDATA[
+ self.file.write("""\n<script type="text/javascript"><![CDATA[
globalStartFrame=%d;
globalEndFrame=%d;
- /* FIXME: Use 1000 as interval as lower values gives problems */
- timerID = setInterval("NextFrame()", 1000);
+ timerID = setInterval("NextFrame()", %d);
globalFrameCounter=%d;
+ \n""" % (self.startFrame, self.endFrame, delay, self.startFrame) )
+ self.file.write("""\n
function NextFrame()
{
currentElement = document.getElementById('frame'+globalFrameCounter)
}
}
\n]]></script>\n
- \n""" % (self.startFrame, self.endFrame, self.startFrame) )
-
+ \n""")
+
def _printFooter(self):
"""Print the SVG footer."""
- self.file.write("\n</svg>\n")
+ self.file.write("\n</svg>\n")
+
+ def _printPolygons(self, mesh):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ self.file.write("<g>\n")
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ self.file.write("<path d=\"")
+
+ #p = self._calcCanvasCoord(face.verts[0])
+ p = self._calcCanvasCoord(face.v[0])
+ self.file.write("M %g,%g L " % (p[0], p[1]))
+
+ for v in face.v[1:]:
+ p = self._calcCanvasCoord(v)
+ self.file.write("%g,%g " % (p[0], p[1]))
+
+ # get rid of the last blank space, just cosmetics here.
+ self.file.seek(-1, 1)
+ self.file.write(" z\"\n")
+
+ # take as face color the first vertex color
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r, fcol.g, fcol.b, fcol.a]
+ else:
+ color = [255, 255, 255, 255]
+
+ # Convert the color to the #RRGGBB form
+ str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
+
+ # Handle transparent polygons
+ opacity_string = ""
+ if color[3] != 255:
+ opacity = float(color[3])/255.0
+ opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+ #opacity_string = "opacity: %g;" % (opacity)
+
+ self.file.write("\tstyle=\"fill:" + str_col + ";")
+ self.file.write(opacity_string)
+
+ # use the stroke property to alleviate the "adjacent edges" problem,
+ # we simulate polygon expansion using borders,
+ # see http://www.antigrain.com/svg/index.html for more info
+ stroke_width = 1.0
+
+ # EXPANSION TRICK is not that useful where there is transparency
+ if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+ # str_col = "#000000" # For debug
+ self.file.write(" stroke:%s;\n" % str_col)
+ self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+ self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+
+ self.file.write("\"/>\n")
+
+ self.file.write("</g>\n")
+
+ def _printEdges(self, mesh, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ self.file.write("<g>\n")
+
+ for e in mesh.edges:
+
+ hidden_stroke_style = ""
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
+ % ( p1[0], p1[1], p2[0], p2[1] ) )
+ self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
+ self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+ self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+ self.file.write(hidden_stroke_style)
+ self.file.write("\"/>\n")
+
+ self.file.write("</g>\n")
+
+
+## SWF Writer
+
+try:
+ from ming import *
+ SWFSupported = True
+except:
+ SWFSupported = False
+
+class SWFVectorWriter(VectorWriter):
+ """A concrete class for writing SWF output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.movie = None
+ self.sprite = None
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+ self.movie = SWFMovie()
+ self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+ if self.animation:
+ self.movie.setRate(self.fps)
+ numframes = endFrame - startFrame + 1
+ self.movie.setFrames(numframes)
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self.movie.save(self.outputFileName)
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ Objects = scene.objects
+
+ if self.sprite:
+ self.movie.remove(self.sprite)
+
+ sprite = SWFSprite()
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh, sprite)
+
+ if doPrintEdges:
+ self._printEdges(mesh, sprite, showHiddenEdges)
+
+ sprite.nextFrame()
+ i = self.movie.add(sprite)
+ # Remove the instance the next time
+ self.sprite = i
+ if self.animation:
+ self.movie.nextFrame()
+
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printPolygons(self, mesh, sprite):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r, fcol.g, fcol.b, fcol.a]
+ else:
+ color = [255, 255, 255, 255]
+
+ s = SWFShape()
+ f = s.addFill(color[0], color[1], color[2], color[3])
+ s.setRightFill(f)
+
+ # The starting point of the shape
+ p0 = self._calcCanvasCoord(face.verts[0])
+ s.movePenTo(p0[0], p0[1])
+
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ s.drawLineTo(p[0], p[1])
+
+ # Closing the shape
+ s.drawLineTo(p0[0], p0[1])
+
+ s.end()
+ sprite.add(s)
+
+
+ def _printEdges(self, mesh, sprite, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ s = SWFShape()
+
+ for e in mesh.edges:
+
+ # Next, we set the line width and color for our shape.
+ s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+ 255)
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ # SWF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner and half-trasparent
+ s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
+ stroke_col[2], 128)
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ s.movePenTo(p1[0], p1[1])
+ s.drawLineTo(p2[0], p2[1])
+
+ s.end()
+ sprite.add(s)
+
+
+## PDF Writer
+
+try:
+ from reportlab.pdfgen import canvas
+ PDFSupported = True
+except:
+ PDFSupported = False
+
+class PDFVectorWriter(VectorWriter):
+ """A concrete class for writing PDF output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.canvas = None
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+ size = (self.canvasSize[0], self.canvasSize[1])
+ self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self.canvas.save()
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ Objects = scene.objects
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh)
+
+ if doPrintEdges:
+ self._printEdges(mesh, showHiddenEdges)
+
+ self.canvas.showPage()
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
- def _printPolygons(self, mesh):
+ def _printPolygons(self, mesh):
"""Print the selected (visible) polygons.
"""
if len(mesh.faces) == 0:
return
- self.file.write("<g>\n")
-
for face in mesh.faces:
if not face.sel:
continue
- self.file.write("<path d=\"")
-
- p = self._calcCanvasCoord(face.verts[0])
- self.file.write("M %g,%g L " % (p[0], p[1]))
-
- for v in face.verts[1:]:
- p = self._calcCanvasCoord(v)
- self.file.write("%g,%g " % (p[0], p[1]))
-
- # get rid of the last blank space, just cosmetics here.
- self.file.seek(-1, 1)
- self.file.write("\"\n")
-
- # take as face color the first vertex color
- # TODO: the average of vetrex colors?
if face.col:
fcol = face.col[0]
- color = [fcol.r, fcol.g, fcol.b, fcol.a]
+ color = [fcol.r/255.0, fcol.g/255.0, fcol.b/255.0,
+ fcol.a/255.0]
else:
- color = [255, 255, 255, 255]
+ color = [1, 1, 1, 1]
- # Convert the color to the #RRGGBB form
- str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
+ self.canvas.setFillColorRGB(color[0], color[1], color[2])
+ # For debug
+ self.canvas.setStrokeColorRGB(0, 0, 0)
- # use the stroke property to alleviate the "adjacent edges" problem,
- # we simulate polygon expansion using borders,
- # see http://www.antigrain.com/svg/index.html for more info
- stroke_width = 0.5
+ path = self.canvas.beginPath()
- # Handle transparent polygons
- opacity_string = ""
- if color[3] != 255:
- opacity = float(color[3])/255.0
- opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+ # The starting point of the path
+ p0 = self._calcCanvasCoord(face.verts[0])
+ path.moveTo(p0[0], p0[1])
- self.file.write("\tstyle=\"fill:" + str_col + ";")
- self.file.write(opacity_string)
- if config.polygons['EXPANSION_TRICK']:
- self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
- self.file.write(" stroke-linecap:round;stroke-linejoin:round")
- self.file.write("\"/>\n")
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ path.lineTo(p[0], p[1])
- self.file.write("</g>\n")
+ # Closing the shape
+ path.close()
+
+ self.canvas.drawPath(path, stroke=0, fill=1)
def _printEdges(self, mesh, showHiddenEdges=False):
"""Print the wireframe using mesh edges.
stroke_width = config.edges['WIDTH']
stroke_col = config.edges['COLOR']
-
- self.file.write("<g>\n")
+
+ self.canvas.setLineCap(1)
+ self.canvas.setLineJoin(1)
+ self.canvas.setLineWidth(stroke_width)
+ self.canvas.setStrokeColorRGB(stroke_col[0]/255.0, stroke_col[1]/255.0,
+ stroke_col[2]/255)
for e in mesh.edges:
-
- hidden_stroke_style = ""
-
+
+ self.canvas.setLineWidth(stroke_width)
+
if e.sel == 0:
if showHiddenEdges == False:
continue
else:
- hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+ # PDF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner
+ self.canvas.setLineWidth(stroke_width/2.0)
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
-
- self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
- % ( p1[0], p1[1], p2[0], p2[1] ) )
- self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
- self.file.write(" stroke-width:"+str(stroke_width)+";\n")
- self.file.write(" stroke-linecap:round;stroke-linejoin:round")
- self.file.write(hidden_stroke_style)
- self.file.write("\"/>\n")
- self.file.write("</g>\n")
+ self.canvas.line(p1[0], p1[1], p2[0], p2[1])
# A dictionary to collect the supported output formats
outputWriters = dict()
outputWriters['SVG'] = SVGVectorWriter
+if SWFSupported:
+ outputWriters['SWF'] = SWFVectorWriter
+if PDFSupported:
+ outputWriters['PDF'] = PDFVectorWriter
class Renderer:
- """Render a scene viewed from a given camera.
-
+ """Render a scene viewed from the active camera.
+
This class is responsible of the rendering process, transformation and
projection of the objects in the scene are invoked by the renderer.
def __init__(self):
"""Make the rendering process only for the current scene by default.
- We will work on a copy of the scene, be sure that the current scene do
+ We will work on a copy of the scene, to be sure that the current scene do
not get modified in any way.
"""
# Render the current Scene, this should be a READ-ONLY property
self._SCENE = Scene.GetCurrent()
-
+
# Use the aspect ratio of the scene rendering context
context = self._SCENE.getRenderingContext()
float(context.aspectRatioY())
)
- # Render from the currently active camera
- self.cameraObj = self._SCENE.getCurrentCamera()
-
- # Get a projector for this camera.
- # NOTE: the projector wants object in world coordinates,
- # so we should remember to apply modelview transformations
- # _before_ we do projection transformations.
- self.proj = Projector(self.cameraObj, self.canvasRatio)
-
- # Get the list of lighting sources
- obj_lst = self._SCENE.getChildren()
- self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
+ # Render from the currently active camera
+ #self.cameraObj = self._SCENE.objects.camera
- # When there are no lights we use a default lighting source
- # that have the same position of the camera
- if len(self.lights) == 0:
- l = Lamp.New('Lamp')
- lobj = Object.New('Lamp')
- lobj.loc = self.cameraObj.loc
- lobj.link(l)
- self.lights.append(lobj)
+ self.lights = []
##
def doRendering(self, outputWriter, animation=False):
"""Render picture or animation and write it out.
-
+
The parameters are:
- a Vector writer object that will be used to output the result.
- a flag to tell if we want to render an animation or only the
current frame.
"""
-
+
context = self._SCENE.getRenderingContext()
origCurrentFrame = context.currentFrame()
startFrame = context.startFrame()
endFrame = context.endFrame()
outputWriter.open(startFrame, endFrame)
-
+
# Do the rendering process frame by frame
- print "Start Rendering!"
- for f in range(startFrame, endFrame+1):
- context.currentFrame(f)
+ print "Start Rendering of %d frames" % (endFrame-startFrame+1)
+ for f in xrange(startFrame, endFrame+1):
+ print "\n\nFrame: %d" % f
+
+ # FIXME To get the correct camera position we have to use +1 here.
+ # Is there a bug somewhere in the Scene module?
+ context.currentFrame(f+1)
+ self.cameraObj = self._SCENE.objects.camera
# Use some temporary workspace, a full copy of the scene
inputScene = self._SCENE.copy(2)
- # And Set our camera accordingly
- self.cameraObj = inputScene.getCurrentCamera()
+
+ # To get the objects at this frame remove the +1 ...
+ ctx = inputScene.getRenderingContext()
+ ctx.currentFrame(f)
+
+
+ # Get a projector for this camera.
+ # NOTE: the projector wants object in world coordinates,
+ # so we should remember to apply modelview transformations
+ # _before_ we do projection transformations.
+ self.proj = Projector(self.cameraObj, self.canvasRatio)
try:
renderedScene = self.doRenderScene(inputScene)
print traceback.print_exc()
self._SCENE.makeCurrent()
- Scene.unlink(inputScene)
+ Scene.Unlink(inputScene)
del inputScene
return
doPrintPolygons = config.polygons['SHOW'],
doPrintEdges = config.edges['SHOW'],
showHiddenEdges = config.edges['SHOW_HIDDEN'])
-
- # clear the rendered scene
+
+ # delete the rendered scene
self._SCENE.makeCurrent()
- #Scene.unlink(renderedScene)
- #del renderedScene
+ Scene.Unlink(renderedScene)
+ del renderedScene
outputWriter.close()
print "Done!"
def doRenderScene(self, workScene):
"""Control the rendering process.
-
+
Here we control the entire rendering process invoking the operation
needed to transform and project the 3D scene in two dimensions.
"""
-
+
# global processing of the scene
+ self._filterHiddenObjects(workScene)
+
+ self._buildLightSetup(workScene)
+
self._doSceneClipping(workScene)
- self._doConvertGeometricObjToMesh(workScene)
+ self._doConvertGeometricObjsToMesh(workScene)
if config.output['JOIN_OBJECTS']:
self._joinMeshObjectsInScene(workScene)
self._doSceneDepthSorting(workScene)
-
+
# Per object activities
- Objects = workScene.getChildren()
- for obj in Objects:
+ Objects = workScene.objects
+
+ print "Total Objects: %d" % len(Objects)
+ for i,obj in enumerate(Objects):
+ print "\n\n-------"
+ print "Rendering Object: %d" % i
if obj.getType() != 'Mesh':
print "Only Mesh supported! - Skipping type:", obj.getType()
self._doBackFaceCulling(mesh)
- self._doPerVertexLighting(mesh)
+
+ # When doing HSR with NEWELL we may want to flip all normals
+ # toward the viewer
+ if config.polygons['HSR'] == "NEWELL":
+ for f in mesh.faces:
+ f.sel = 1-f.sel
+ mesh.flipNormals()
+ for f in mesh.faces:
+ f.sel = 1
+
+ self._doLighting(mesh)
# Do "projection" now so we perform further processing
# in Normalized View Coordinates
self._doViewFrustumClipping(mesh)
- self._doMeshDepthSorting(mesh)
+ self._doHiddenSurfaceRemoval(mesh)
self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
-
# Update the object data, important! :)
mesh.update()
def _isFaceVisible(self, face):
"""Determine if a face of an object is visible from the current camera.
-
+
The view vector is calculated from the camera location and one of the
vertices of the face (expressed in World coordinates, after applying
modelview transformations).
# if d > 0 the face is visible from the camera
d = view_vect * normal
-
+
if d > 0:
return True
else:
# Scene methods
+ def _filterHiddenObjects(self, scene):
+ """Discard object that are on hidden layers in the scene.
+ """
+
+ Objects = scene.objects
+
+ visible_obj_list = [ obj for obj in Objects if
+ set(obj.layers).intersection(set(scene.getLayers())) ]
+
+ for o in Objects:
+ if o not in visible_obj_list:
+ scene.objects.unlink(o)
+
+ scene.update()
+
+
+
+ def _buildLightSetup(self, scene):
+ # Get the list of lighting sources
+ obj_lst = scene.objects
+ self.lights = [ o for o in obj_lst if o.getType() == 'Lamp' ]
+
+ # When there are no lights we use a default lighting source
+ # that have the same position of the camera
+ if len(self.lights) == 0:
+ l = Lamp.New('Lamp')
+ lobj = Object.New('Lamp')
+ lobj.loc = self.cameraObj.loc
+ lobj.link(l)
+ self.lights.append(lobj)
+
+
def _doSceneClipping(self, scene):
"""Clip whole objects against the View Frustum.
For now clip away only objects according to their center position.
"""
- cpos = self._getObjPosition(self.cameraObj)
+ cam_pos = self._getObjPosition(self.cameraObj)
view_vect = self._cameraViewVector()
near = self.cameraObj.data.clipStart
fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
fovy = fovy * 360.0/pi
- Objects = scene.getChildren()
+ Objects = scene.objects
+
for o in Objects:
if o.getType() != 'Mesh': continue;
- obj_vect = Vector(cpos) - self._getObjPosition(o)
+ """
+ obj_vect = Vector(cam_pos) - self._getObjPosition(o)
d = obj_vect*view_vect
theta = AngleBetweenVecs(obj_vect, view_vect)
-
+
# if the object is outside the view frustum, clip it away
if (d < near) or (d > far) or (theta > fovy):
- scene.unlink(o)
+ scene.objects.unlink(o)
+ """
+
+ # Use the object bounding box
+ # (whose points are already in WorldSpace Coordinate)
+
+ bb = o.getBoundBox()
+
+ points_outside = 0
+ for p in bb:
+ p_vect = Vector(cam_pos) - Vector(p)
+
+ d = p_vect * view_vect
+ theta = AngleBetweenVecs(p_vect, view_vect)
+
+ # Is this point outside the view frustum?
+ if (d < near) or (d > far) or (theta > fovy):
+ points_outside += 1
+
+ # If the bb is all outside the view frustum we clip the whole
+ # object away
+ if points_outside == len(bb):
+ scene.objects.unlink(o)
- def _doConvertGeometricObjToMesh(self, scene):
+
+
+ def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
"""
geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
+
+ Objects = scene.objects
- Objects = scene.getChildren()
objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
for obj in objList:
old_obj = obj
obj = self._convertToRawMeshObj(obj)
- scene.link(obj)
- scene.unlink(old_obj)
+ scene.objects.link(obj)
+ scene.objects.unlink(old_obj)
# XXX Workaround for Text and Curve which have some normals
c = self._getObjPosition(self.cameraObj)
- by_center_pos = (lambda o1, o2:
+ by_obj_center_pos = (lambda o1, o2:
(o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
cmp((self._getObjPosition(o1) - Vector(c)).length,
(self._getObjPosition(o2) - Vector(c)).length)
)
- # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
- # then ob1 goes farther than obj2, useful when obj2 has holes
- by_bbox = None
-
- Objects = scene.getChildren()
- Objects.sort(by_center_pos)
-
+ # Implement sorting by bounding box, the object with the bb
+ # nearest to the camera should be drawn as last.
+ by_nearest_bbox_point = (lambda o1, o2:
+ (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+ cmp( min( [(Vector(p) - Vector(c)).length for p in o1.getBoundBox()] ),
+ min( [(Vector(p) - Vector(c)).length for p in o2.getBoundBox()] )
+ )
+ )
+
+
+ Objects = list(scene.objects)
+
+ #Objects.sort(by_obj_center_pos)
+ Objects.sort(by_nearest_bbox_point)
+
# update the scene
for o in Objects:
- scene.unlink(o)
- scene.link(o)
+ scene.objects.unlink(o)
+ scene.objects.link(o)
def _joinMeshObjectsInScene(self, scene):
"""Merge all the Mesh Objects in a scene into a single Mesh Object.
"""
- oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
+ oList = [o for o in scene.objects if o.getType()=='Mesh']
# FIXME: Object.join() do not work if the list contains 1 object
if len(oList) == 1:
bigObj = Object.New('Mesh', 'BigOne')
bigObj.link(mesh)
- scene.link(bigObj)
+ scene.objects.link(bigObj)
try:
bigObj.join(oList)
except RuntimeError:
- print "\nCan't Join Objects\n"
- scene.unlink(bigObj)
+ print "\nWarning! - Can't Join Objects\n"
+ scene.objects.unlink(bigObj)
return
except TypeError:
print "Objects Type error?"
-
+
for o in oList:
- scene.unlink(o)
+ scene.objects.unlink(o)
scene.update()
-
- # Per object methods
+
+ # Per object/mesh methods
def _convertToRawMeshObj(self, object):
"""Convert geometry based object to a mesh object.
def _doBackFaceCulling(self, mesh):
"""Simple Backface Culling routine.
-
+
At this level we simply do a visibility test face by face and then
select the vertices belonging to visible faces.
"""
-
+
# Select all vertices, so edges can be displayed even if there are no
# faces
for v in mesh.verts:
v.sel = 1
-
+
Mesh.Mode(Mesh.SelectModes['FACE'])
# Loop on faces
for f in mesh.faces:
if self._isFaceVisible(f):
f.sel = 1
- def _doPerVertexLighting(self, mesh):
- """Apply an Illumination ans shading model to the object.
+ def _doLighting(self, mesh):
+ """Apply an Illumination and shading model to the object.
The model used is the Phong one, it may be inefficient,
but I'm just learning about rendering and starting from Phong seemed
mesh.vertexColors = 1
materials = mesh.materials
-
- # TODO: use multiple lighting sources
- light_obj = self.lights[0]
- light_pos = self._getObjPosition(light_obj)
- light = light_obj.data
camPos = self._getObjPosition(self.cameraObj)
# A new default material
if mat == None:
mat = Material.New('defMat')
-
- L = Vector(light_pos).normalize()
- V = (Vector(camPos) - Vector(f.cent)).normalize()
+ # Check if it is a shadeless material
+ elif mat.getMode() & Material.Modes['SHADELESS']:
+ I = mat.getRGBCol()
+ # Convert to a value between 0 and 255
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ for c in f.col:
+ c.r = tmp_col[0]
+ c.g = tmp_col[1]
+ c.b = tmp_col[2]
+ #c.a = tmp_col[3]
+
+ continue
+
+
+ # do vertex color calculation
+
+ TotDiffSpec = Vector([0.0, 0.0, 0.0])
+
+ for l in self.lights:
+ light_obj = l
+ light_pos = self._getObjPosition(l)
+ light = light_obj.getData()
+
+ L = Vector(light_pos).normalize()
+
+ V = (Vector(camPos) - Vector(f.cent)).normalize()
+
+ N = Vector(f.no).normalize()
- N = Vector(f.no).normalize()
+ if config.polygons['SHADING'] == 'TOON':
+ NL = ShadingUtils.toonShading(N*L)
+ else:
+ NL = (N*L)
+
+ # Should we use NL instead of (N*L) here?
+ R = 2 * (N*L) * N - L
+
+ Ip = light.getEnergy()
+
+ # Diffuse co-efficient
+ kd = mat.getRef() * Vector(mat.getRGBCol())
+ for i in [0, 1, 2]:
+ kd[i] *= light.col[i]
- R = 2 * (N*L) * N - L
+ Idiff = Ip * kd * max(0, NL)
+
+
+ # Specular component
+ ks = mat.getSpec() * Vector(mat.getSpecCol())
+ ns = mat.getHardness()
+ Ispec = Ip * ks * pow(max(0, (V*R)), ns)
+
+ TotDiffSpec += (Idiff+Ispec)
- # TODO: Attenuation factor (not used for now)
- a0 = 1.0; a1 = 0.0; a2 = 1.0
- d = (Vector(f.v[0].co) - Vector(light_pos)).length
- fd = min(1, 1.0/(a0 + a1*d + a2*(d*d)))
# Ambient component
- Ia = 1.0
- ka = mat.getAmb() * Vector([0.1, 0.1, 0.1])
- Iamb = Ia * ka
-
- # Diffuse component (add light.col for kd)
- kd = mat.getRef() * Vector(mat.getRGBCol())
- Ip = light.getEnergy()
-
- if config.polygons['SHADING'] == 'FLAT':
- Idiff = Ip * kd * max(0, (N*L))
- elif config.polygons['SHADING'] == 'TOON':
- Idiff = Ip * kd * MeshUtils.toonShading(N*L)
-
- # Specular component
- ks = mat.getSpec() * Vector(mat.getSpecCol())
- ns = mat.getHardness()
- Ispec = Ip * ks * pow(max(0, (V*R)), ns)
-
- # Emissive component
+ Iamb = Vector(Blender.World.Get()[0].getAmb())
+ ka = mat.getAmb()
+
+ # Emissive component (convert to a triplet)
ki = Vector([mat.getEmit()]*3)
- I = ki + Iamb + (Idiff + Ispec)
+ #I = ki + Iamb + (Idiff + Ispec)
+ I = ki + (ka * Iamb) + TotDiffSpec
# Set Alpha component
"""
for v in mesh.verts:
- p = projector.doProjection(v.co)
+ p = projector.doProjection(v.co[:])
v.co[0] = p[0]
v.co[1] = p[1]
v.co[2] = p[2]
+ #mesh.recalcNormals()
+ #mesh.update()
+
# We could reeset Camera matrix, since now
# we are in Normalized Viewing Coordinates,
# but doung that would affect World Coordinate
"""Clip faces against the View Frustum.
"""
- def test_extensions(self, f1, f2):
- for v1, v2 in [ (v1, v2) for v1 in f1 for v2 in f2 ]:
- pass
+ # The Canonical View Volume, 8 vertices, and 6 faces,
+ # We consider its face normals pointing outside
+
+ v1 = NMesh.Vert(1, 1, -1)
+ v2 = NMesh.Vert(1, -1, -1)
+ v3 = NMesh.Vert(-1, -1, -1)
+ v4 = NMesh.Vert(-1, 1, -1)
+ v5 = NMesh.Vert(1, 1, 1)
+ v6 = NMesh.Vert(1, -1, 1)
+ v7 = NMesh.Vert(-1, -1, 1)
+ v8 = NMesh.Vert(-1, 1, 1)
+
+ cvv = []
+ f1 = NMesh.Face([v1, v4, v3, v2])
+ cvv.append(f1)
+ f2 = NMesh.Face([v5, v6, v7, v8])
+ cvv.append(f2)
+ f3 = NMesh.Face([v1, v2, v6, v5])
+ cvv.append(f3)
+ f4 = NMesh.Face([v2, v3, v7, v6])
+ cvv.append(f4)
+ f5 = NMesh.Face([v3, v4, v8, v7])
+ cvv.append(f5)
+ f6 = NMesh.Face([v4, v1, v5, v8])
+ cvv.append(f6)
- def depth_sort(self, faces):
- return
-
+ nmesh = NMesh.GetRaw(mesh.name)
+ clippedfaces = nmesh.faces[:]
+ facelist = clippedfaces[:]
+
+ for clipface in cvv:
+
+ clippedfaces = []
+
+ for f in facelist:
+
+ #newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
+ newfaces = None
+
+ if not newfaces:
+ # Check if the face is all outside the view frustum
+ # TODO: Do this test before, it is more efficient
+ points_outside = 0
+ for v in f:
+ if abs(v[0]) > 1-EPS or abs(v[1]) > 1-EPS or abs(v[2]) > 1-EPS:
+ points_outside += 1
+
+ if points_outside != len(f):
+ clippedfaces.append(f)
+ else:
+ for nf in newfaces:
+ for v in nf:
+ nmesh.verts.append(v)
+
+ nf.mat = f.mat
+ nf.sel = f.sel
+ nf.col = [f.col[0]] * len(nf.v)
+
+ clippedfaces.append(nf)
+ facelist = clippedfaces[:]
- def _doMeshDepthSorting(self, mesh):
- """Sort faces in an object.
- The faces in the object are sorted following the distance of the
- vertices from the camera position.
+ nmesh.faces = facelist
+ nmesh.update()
+
+
+ # HSR routines
+ def __simpleDepthSort(self, mesh):
+ """Sort faces by the furthest vertex.
+
+ This simple mesthod is known also as the painter algorithm, and it
+ solves HSR correctly only for convex meshes.
"""
- if len(mesh.faces) == 0:
- return
- #c = self._getObjPosition(self.cameraObj)
+ #global progress
+
+ # The sorting requires circa n*log(n) steps
+ n = len(mesh.faces)
+ progress.setActivity("HSR: Painter", n*log(n))
+
+ by_furthest_z = (lambda f1, f2: progress.update() and
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ )
+
+ # FIXME: using NMesh to sort faces. We should avoid that!
+ nmesh = NMesh.GetRaw(mesh.name)
+
+ # remember that _higher_ z values mean further points
+ nmesh.faces.sort(by_furthest_z)
+ nmesh.faces.reverse()
+
+ nmesh.update()
- # In NVC
- c = [0, 0, 1]
- # hackish sorting of faces
+ def __newellDepthSort(self, mesh):
+ """Newell's depth sorting.
+
+ """
+
+ #global progress
+
+ # Find non planar quads and convert them to triangle
+ #for f in mesh.faces:
+ # f.sel = 0
+ # if is_nonplanar_quad(f.v):
+ # print "NON QUAD??"
+ # f.sel = 1
- # Sort faces according to the max distance from the camera
- by_max_vert_dist = (lambda f1, f2:
- cmp(max([(Vector(v.co)-Vector(c)).length for v in f2]),
- max([(Vector(v.co)-Vector(c)).length for v in f1])))
-
- # Sort faces according to the min distance from the camera
- by_min_vert_dist = (lambda f1, f2:
- cmp(min([(Vector(v.co)-Vector(c)).length for v in f1]),
- min([(Vector(v.co)-Vector(c)).length for v in f2])))
-
- # Sort faces according to the avg distance from the camera
- by_avg_vert_dist = (lambda f1, f2:
- cmp(sum([(Vector(v.co)-Vector(c)).length for v in f1])/len(f1),
- sum([(Vector(v.co)-Vector(c)).length for v in f2])/len(f2)))
+ # Now reselect all faces
+ for f in mesh.faces:
+ f.sel = 1
+ mesh.quadToTriangle()
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
- nmesh.faces.sort(by_max_vert_dist)
- #nmesh.faces.reverse()
- # Depth sort tests
+ # remember that _higher_ z values mean further points
+ nmesh.faces.sort(by_furthest_z)
+ nmesh.faces.reverse()
+
+ # Begin depth sort tests
+
+ # use the smooth flag to set marked faces
+ for f in nmesh.faces:
+ f.smooth = 0
+
+ facelist = nmesh.faces[:]
+ maplist = []
+
+
+ # The steps are _at_least_ equal to len(facelist), we do not count the
+ # feces coming out from splitting!!
+ progress.setActivity("HSR: Newell", len(facelist))
+ #progress.setQuiet(True)
+
+
+ while len(facelist):
+ debug("\n----------------------\n")
+ debug("len(facelits): %d\n" % len(facelist))
+ P = facelist[0]
+
+ pSign = sign(P.normal[2])
+
+ # We can discard faces parallel to the view vector
+ #if P.normal[2] == 0:
+ # facelist.remove(P)
+ # continue
+
+ split_done = 0
+ face_marked = 0
+
+ for Q in facelist[1:]:
+
+ debug("P.smooth: " + str(P.smooth) + "\n")
+ debug("Q.smooth: " + str(Q.smooth) + "\n")
+ debug("\n")
+
+ qSign = sign(Q.normal[2])
+ # TODO: check also if Q is parallel??
+
+ # Test 0: We need to test only those Qs whose furthest vertex
+ # is closer to the observer than the closest vertex of P.
+
+ zP = [v.co[2] for v in P.v]
+ zQ = [v.co[2] for v in Q.v]
+ notZOverlap = min(zP) > max(zQ) + EPS
+
+ if notZOverlap:
+ debug("\nTest 0\n")
+ debug("NOT Z OVERLAP!\n")
+ if Q.smooth == 0:
+ # If Q is not marked then we can safely print P
+ break
+ else:
+ debug("met a marked face\n")
+ continue
+
+
+ # Test 1: X extent overlapping
+ xP = [v.co[0] for v in P.v]
+ xQ = [v.co[0] for v in Q.v]
+ #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
+
+ if notXOverlap:
+ debug("\nTest 1\n")
+ debug("NOT X OVERLAP!\n")
+ continue
+
+
+ # Test 2: Y extent Overlapping
+ yP = [v.co[1] for v in P.v]
+ yQ = [v.co[1] for v in Q.v]
+ #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
+
+ if notYOverlap:
+ debug("\nTest 2\n")
+ debug("NOT Y OVERLAP!\n")
+ continue
+
+
+ # Test 3: P vertices are all behind the plane of Q
+ n = 0
+ for Pi in P:
+ d = qSign * HSR.Distance(Vector(Pi), Q)
+ if d <= EPS:
+ n += 1
+ pVerticesBehindPlaneQ = (n == len(P))
+
+ if pVerticesBehindPlaneQ:
+ debug("\nTest 3\n")
+ debug("P BEHIND Q!\n")
+ continue
+
+
+ # Test 4: Q vertices in front of the plane of P
+ n = 0
+ for Qi in Q:
+ d = pSign * HSR.Distance(Vector(Qi), P)
+ if d >= -EPS:
+ n += 1
+ qVerticesInFrontPlaneP = (n == len(Q))
+
+ if qVerticesInFrontPlaneP:
+ debug("\nTest 4\n")
+ debug("Q IN FRONT OF P!\n")
+ continue
+
+
+ # Test 5: Check if projections of polygons effectively overlap,
+ # in previous tests we checked only bounding boxes.
+
+ #if not projectionsOverlap(P, Q):
+ if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
+ debug("\nTest 5\n")
+ debug("Projections do not overlap!\n")
+ continue
+
+ # We still can't say if P obscures Q.
+
+ # But if Q is marked we do a face-split trying to resolve a
+ # difficulty (maybe a visibility cycle).
+ if Q.smooth == 1:
+ # Split P or Q
+ debug("Possibly a cycle detected!\n")
+ debug("Split here!!\n")
+
+ facelist = HSR.facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
+
+ # The question now is: Does Q obscure P?
+
+
+ # Test 3bis: Q vertices are all behind the plane of P
+ n = 0
+ for Qi in Q:
+ d = pSign * HSR.Distance(Vector(Qi), P)
+ if d <= EPS:
+ n += 1
+ qVerticesBehindPlaneP = (n == len(Q))
+
+ if qVerticesBehindPlaneP:
+ debug("\nTest 3bis\n")
+ debug("Q BEHIND P!\n")
+
+
+ # Test 4bis: P vertices in front of the plane of Q
+ n = 0
+ for Pi in P:
+ d = qSign * HSR.Distance(Vector(Pi), Q)
+ if d >= -EPS:
+ n += 1
+ pVerticesInFrontPlaneQ = (n == len(P))
+
+ if pVerticesInFrontPlaneQ:
+ debug("\nTest 4bis\n")
+ debug("P IN FRONT OF Q!\n")
+
+
+ # We don't even know if Q does obscure P, so they should
+ # intersect each other, split one of them in two parts.
+ if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
+ debug("\nSimple Intersection?\n")
+ debug("Test 3bis or 4bis failed\n")
+ debug("Split here!!2\n")
+
+ facelist = HSR.facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
+
+ facelist.remove(Q)
+ facelist.insert(0, Q)
+ Q.smooth = 1
+ face_marked = 1
+ debug("Q marked!\n")
+ break
+
+ # Write P!
+ if split_done == 0 and face_marked == 0:
+ facelist.remove(P)
+ maplist.append(P)
+ dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg")
- self.depth_sort(nmesh.faces)
+ progress.update()
-
- mesh.faces.delete(1, range(0, len(mesh.faces)))
+ if len(facelist) == 870:
+ dumpfaces([P, Q], "loopdebug.svg")
+
+
+ #if facelist == None:
+ # maplist = [P, Q]
+ # print [v.co for v in P]
+ # print [v.co for v in Q]
+ # break
+
+ # end of while len(facelist)
+
+
+ nmesh.faces = maplist
+ #for f in nmesh.faces:
+ # f.sel = 1
+
+ nmesh.update()
+
+
+ def _doHiddenSurfaceRemoval(self, mesh):
+ """Do HSR for the given mesh.
+ """
+ if len(mesh.faces) == 0:
+ return
+
+ if config.polygons['HSR'] == 'PAINTER':
+ print "\nUsing the Painter algorithm for HSR."
+ self.__simpleDepthSort(mesh)
+
+ elif config.polygons['HSR'] == 'NEWELL':
+ print "\nUsing the Newell's algorithm for HSR."
+ self.__newellDepthSort(mesh)
- for i,f in enumerate(nmesh.faces):
- fv = [v.index for v in f.v]
- mesh.faces.extend(fv)
- mesh.faces[i].mat = f.mat
- mesh.faces[i].sel = f.sel
- for i,c in enumerate(mesh.faces[i].col):
- c.r = f.col[i].r
- c.g = f.col[i].g
- c.b = f.col[i].b
- c.a = f.col[i].a
def _doEdgesStyle(self, mesh, edgestyleSelect):
"""Process Mesh Edges accroding to a given selection style.
Mesh.Mode(Mesh.SelectModes['EDGE'])
+ edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
+
+ for i,edge_faces in enumerate(edge_cache):
+ mesh.edges[i].sel = 0
+ if edgestyleSelect(edge_faces):
+ mesh.edges[i].sel = 1
+
+ """
for e in mesh.edges:
e.sel = 0
if edgestyleSelect(e, mesh):
e.sel = 1
-
+ """
+ #
# ---------------------------------------------------------------------
from Blender.BGL import *
class GUI:
-
+
def _init():
- # Output Format menu
+ # Output Format menu
output_format = config.output['FORMAT']
default_value = outputWriters.keys().index(output_format)+1
GUI.outFormatMenu = Draw.Create(default_value)
# Render filled polygons
GUI.polygonsToggle = Draw.Create(config.polygons['SHOW'])
- # Shading Style menu
+ # Shading Style menu
shading_style = config.polygons['SHADING']
default_value = shadingStyles.keys().index(shading_style)+1
GUI.shadingStyleMenu = Draw.Create(default_value)
GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN'])
GUI.evtShowHiddenEdgesToggle = 5
- # Edge Style menu
+ # Edge Style menu
edge_style = config.edges['STYLE']
default_value = edgeStyles.keys().index(edge_style)+1
GUI.edgeStyleMenu = Draw.Create(default_value)
# Exit Button
GUI.evtExitButton = 9
+ # Save default button
+ GUI.evtSaveDefaultButton = 99
+
def draw():
# initialize static members
glClear(GL_COLOR_BUFFER_BIT)
glColor3f(0.0, 0.0, 0.0)
- glRasterPos2i(10, 350)
- Draw.Text("VRM: Vector Rendering Method script.")
+ glRasterPos2i(10, 380)
+ Draw.Text("VRM: Vector Rendering Method script. Version %s." %
+ __version__)
+ glRasterPos2i(10, 365)
+ Draw.Text("%s (c) 2006, 2007" % __author__)
+
glRasterPos2i(10, 335)
Draw.Text("Press Q or ESC to quit.")
"Start Rendering")
Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!")
+ Draw.Button("Save settings as default", GUI.evtSaveDefaultButton, 10, 210-50, 160, 18,
+ "Save settings as default")
+
# Rendering Styles
glRasterPos2i(200, 310)
Draw.Text("Rendering Style:")
"Render polygon edges")
if GUI.showEdgesToggle.val == 1:
-
+
# Edge Style
edgeStyleMenuStruct = "Edge Style %t"
for t in edgeStyles.keys():
200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
"Render hidden edges as dashed lines")
- glRasterPos2i(10, 160)
- Draw.Text("Antonio Ospite (c) 2006")
def event(evt, val):
elif evt == GUI.evtOutFormatMenu:
i = GUI.outFormatMenu.val - 1
config.output['FORMAT']= outputWriters.keys()[i]
+ # Set the new output file
+ global outputfile
+ outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
elif evt == GUI.evtAnimToggle:
- config.outpur['ANIMATION'] = bool(GUI.animToggle.val)
+ config.output['ANIMATION'] = bool(GUI.animToggle.val)
elif evt == GUI.evtJoinObjsToggle:
config.output['JOIN_OBJECTS'] = bool(GUI.joinObjsToggle.val)
global outputfile
Blender.Window.FileSelector(vectorize, label, outputfile)
+ elif evt == GUI.evtSaveDefaultButton:
+ config.saveToRegistry()
+
else:
print "Event: %d not handled!" % evt
# A wrapper function for the vectorizing process
def vectorize(filename):
"""The vectorizing process is as follows:
-
+
- Instanciate the writer and the renderer
- Render!
"""
actualWriter = outputWriters[config.output['FORMAT']]
writer = actualWriter(filename)
-
+
renderer = Renderer()
renderer.doRendering(writer, config.output['ANIMATION'])
- if editmode: Window.EditMode(1)
+ if editmode: Window.EditMode(1)
+
# Here the main
if __name__ == "__main__":
-
+
+ global progress
+
+ config.loadFromRegistry()
+
+ # initialize writer setting also here to configure writer specific
+ # settings on startup
+ actualWriter = outputWriters[config.output['FORMAT']]
+ writer = actualWriter("")
+
outputfile = ""
basename = Blender.sys.basename(Blender.Get('filename'))
if basename != "":
outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
if Blender.mode == 'background':
+ progress = ConsoleProgressIndicator()
vectorize(outputfile)
else:
+ progress = GraphicalProgressIndicator()
Draw.Register(GUI.draw, GUI.event, GUI.button_event)