Adapt to blender 2.45 API
[vrm.git] / vrm.py
diff --git a/vrm.py b/vrm.py
index 5e2c128..7ac4d83 100755 (executable)
--- a/vrm.py
+++ b/vrm.py
@@ -1,7 +1,7 @@
 #!BPY
 """
 Name: 'VRM'
-Blender: 242
+Blender: 245
 Group: 'Render'
 Tooltip: 'Vector Rendering Method script'
 """
@@ -15,7 +15,7 @@ __bpydoc__ = """\
 """
 
 # ---------------------------------------------------------------------
-#    Copyright (c) 2006 Antonio Ospite
+#    Copyright (c) 2006, 2007, 2008 Antonio Ospite
 #
 #    This program is free software; you can redistribute it and/or modify
 #    it under the terms of the GNU General Public License as published by
@@ -40,15 +40,14 @@ __bpydoc__ = """\
 #       from scratch but Nikola gave me the idea, so I thank him publicly.
 #
 # ---------------------------------------------------------------------
-# 
+#
 # Things TODO for a next release:
+#   - Shadeless shader
 #   - FIX the issue with negative scales in object tranformations!
 #   - Use a better depth sorting algorithm
-#   - Implement clipping of primitives and do handle object intersections.
-#     (for now only clipping away whole objects is supported).
 #   - Review how selections are made (this script uses selection states of
 #     primitives to represent visibility infos)
-#   - Use a data structure other than Mesh to represent the 2D image? 
+#   - Use a data structure other than Mesh to represent the 2D image?
 #     Think to a way to merge (adjacent) polygons that have the same color.
 #     Or a way to use paths for silhouettes and contours.
 #   - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
@@ -58,15 +57,15 @@ __bpydoc__ = """\
 #   - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
 #   - Implement Shading Styles? (partially done, to make more flexible).
 #   - Add Vector Writers other than SVG.
+#   - set the background color!
 #   - Check memory use!!
-#   - Support Indexed palettes!! (Useful for ILDA FILES, for example,
-#     see http://www.linux-laser.org/download/autotrace/ilda-output.patch)
 #
 # ---------------------------------------------------------------------
 #
 # Changelog:
 #
 #   vrm-0.3.py  - ...
+#     * Adapted to blender API 2.45
 #     * First release after code restucturing.
 #       Now the script offers a useful set of functionalities
 #       and it can render animations, too.
@@ -76,6 +75,21 @@ __bpydoc__ = """\
 #     * The SVG output is now SVG 1.0 valid.
 #       Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
 #     * Progress indicator during HSR.
+#     * Initial SWF output support (using ming)
+#     * Fixed a bug in the animation code, now the projection matrix is
+#       recalculated at each frame!
+#     * PDF output (using reportlab)
+#     * Fixed another problem in the animation code the current frame was off
+#       by one in the case of camera movement.
+#     * Use fps as specified in blender when VectorWriter handles animation
+#     * Remove the real file opening in the abstract VectorWriter
+#     * View frustum clipping
+#     * Scene clipping done using bounding box instead of object center
+#     * Fix camera type selection for blender>2.43 (Thanks to Thomas Lachmann)
+#     * Compatibility with python 2.3
+#     * Process only object that are on visible layers.
+#     * Saving config to registry (Thanks to Thomas Lachmann for a draft
+#       implementation)
 #
 # ---------------------------------------------------------------------
 
@@ -85,18 +99,27 @@ from Blender.Mathutils import *
 from math import *
 import sys, time
 
+def uniq(alist):
+    tmpdict = dict()
+    return [tmpdict.setdefault(e,e) for e in alist if e not in tmpdict]
+    # in python > 2.4 we ca use the following
+    #return [ u for u in alist if u not in locals()['_[1]'] ]
+
+
 # Constants
 EPS = 10e-5
 
+# We use a global progress Indicator Object
+progress = None
+
 
-# Some global settings
+# Config class for global settings
 
 class config:
     polygons = dict()
     polygons['SHOW'] = True
-    polygons['SHADING'] = 'TOON'
-    #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
-    polygons['HSR'] = 'NEWELL'
+    polygons['SHADING'] = 'FLAT' # FLAT or TOON
+    polygons['HSR'] = 'PAINTER' # PAINTER or NEWELL
     # Hidden to the user for now
     polygons['EXPANSION_TRICK'] = True
 
@@ -105,7 +128,7 @@ class config:
     edges = dict()
     edges['SHOW'] = False
     edges['SHOW_HIDDEN'] = False
-    edges['STYLE'] = 'MESH' # or SILHOUETTE
+    edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
     edges['WIDTH'] = 2
     edges['COLOR'] = [0, 0, 0]
 
@@ -114,17 +137,650 @@ class config:
     output['ANIMATION'] = False
     output['JOIN_OBJECTS'] = True
 
+    def saveToRegistry():
+        registry = {}
+
+        for k,v in config.__dict__.iteritems():
+
+            # config class store settings in dictionaries
+            if v.__class__ == dict().__class__:
+
+                regkey_prefix = k.upper()+"_"
+
+                for opt_k,opt_v in v.iteritems():
+                    regkey = regkey_prefix + opt_k
+
+                    registry[regkey] = opt_v
+
+        Blender.Registry.SetKey('VRM', registry, True)
+
+    saveToRegistry = staticmethod(saveToRegistry)
+
+    def loadFromRegistry():
+        registry = Blender.Registry.GetKey('VRM', True)
+        if not registry:
+              return
+
+        for k,v in registry.iteritems():
+            k_tmp = k.split('_')
+            conf_attr = k_tmp[0].lower()
+            conf_key = str.join("_",k_tmp[1:])
+            conf_val = v
+
+            if config.__dict__.has_key(conf_attr):
+                config.__dict__[conf_attr][conf_key] = conf_val
+
+    loadFromRegistry = staticmethod(loadFromRegistry)
 
 
 # Utility functions
+print_debug = False
+
+def dumpfaces(flist, filename):
+    """Dump a single face to a file.
+    """
+    if not print_debug:
+        return
+
+    class tmpmesh:
+        pass
+
+    m = tmpmesh()
+    m.faces = flist
+
+    writerobj = SVGVectorWriter(filename)
+
+    writerobj.open()
+    writerobj._printPolygons(m)
+
+    writerobj.close()
+
+def debug(msg):
+    if print_debug:
+        sys.stderr.write(msg)
+
+def EQ(v1, v2):
+    return (abs(v1[0]-v2[0]) < EPS and
+            abs(v1[1]-v2[1]) < EPS )
+by_furthest_z = (lambda f1, f2:
+    cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+    )
+
 def sign(x):
 
-    if x < 0:
+    if x < -EPS:
+    #if x < 0:
         return -1
-    elif x > 0:
+    elif x > EPS:
+    #elif x > 0:
         return 1
-    #else:
-    #    return 0
+    else:
+        return 0
+
+
+# ---------------------------------------------------------------------
+#
+## HSR Utility class
+#
+# ---------------------------------------------------------------------
+
+EPS = 10e-5
+INF = 10e5
+
+class HSR:
+    """A utility class for HSR processing.
+    """
+
+    def is_nonplanar_quad(face):
+        """Determine if a quad is non-planar.
+
+        From: http://mathworld.wolfram.com/Coplanar.html
+
+        Geometric objects lying in a common plane are said to be coplanar.
+        Three noncollinear points determine a plane and so are trivially coplanar.
+        Four points are coplanar iff the volume of the tetrahedron defined by them is
+        0,
+
+            | x_1 y_1 z_1 1 |
+            | x_2 y_2 z_2 1 |
+            | x_3 y_3 z_3 1 |
+            | x_4 y_4 z_4 1 | == 0
+
+        Coplanarity is equivalent to the statement that the pair of lines
+        determined by the four points are not skew, and can be equivalently stated
+        in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
+
+        An arbitrary number of n points x_1, ..., x_n can be tested for
+        coplanarity by finding the point-plane distances of the points
+        x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
+        and checking if they are all zero.
+        If so, the points are all coplanar.
+
+        We here check only for 4-point complanarity.
+        """
+        n = len(face)
+
+        # assert(n>4)
+        if n < 3 or n > 4:
+            print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
+            raise AssertionError
+
+        elif n == 3:
+            # three points must be complanar
+            return False
+        else: # n == 4
+            x1 = Vector(face[0].co)
+            x2 = Vector(face[1].co)
+            x3 = Vector(face[2].co)
+            x4 = Vector(face[3].co)
+
+            v = (x3-x1) * CrossVecs((x2-x1), (x4-x3))
+            if v != 0:
+                return True
+
+        return False
+
+    is_nonplanar_quad = staticmethod(is_nonplanar_quad)
+
+    def pointInPolygon(poly, v):
+        return False
+
+    pointInPolygon = staticmethod(pointInPolygon)
+
+    def edgeIntersection(s1, s2, do_perturbate=False):
+
+        (x1, y1) = s1[0].co[0], s1[0].co[1]
+        (x2, y2) = s1[1].co[0], s1[1].co[1]
+
+        (x3, y3) = s2[0].co[0], s2[0].co[1]
+        (x4, y4) = s2[1].co[0], s2[1].co[1]
+
+        #z1 = s1[0].co[2]
+        #z2 = s1[1].co[2]
+        #z3 = s2[0].co[2]
+        #z4 = s2[1].co[2]
+
+
+        # calculate delta values (vector components)
+        dx1 = x2 - x1;
+        dx2 = x4 - x3;
+        dy1 = y2 - y1;
+        dy2 = y4 - y3;
+
+        #dz1 = z2 - z1;
+        #dz2 = z4 - z3;
+
+        C = dy2 * dx1 - dx2 * dy1 #  /* cross product */
+        if C == 0:  #/* parallel */
+            return None
+
+        dx3 = x1 - x3 # /* combined origin offset vector */
+        dy3 = y1 - y3
+
+        a1 = (dy3 * dx2 - dx3 * dy2) / C;
+        a2 = (dy3 * dx1 - dx3 * dy1) / C;
+
+        # check for degeneracies
+        #print_debug("\n")
+        #print_debug(str(a1)+"\n")
+        #print_debug(str(a2)+"\n\n")
+
+        if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
+            # Intersection on boundaries, we consider the point external?
+            return None
+
+        elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): #  /* lines cross */
+            x = x1 + a1*dx1
+            y = y1 + a1*dy1
+
+            #z = z1 + a1*dz1
+            z = 0
+            return (NMesh.Vert(x, y, z), a1, a2)
+
+        else:
+            # lines have intersections but not those segments
+            return None
+
+    edgeIntersection = staticmethod(edgeIntersection)
+
+    def isVertInside(self, v):
+        winding_number = 0
+        coincidence = False
+
+        # Create point at infinity
+        point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
+
+        for i in range(len(self.v)):
+            s1 = (point_at_infinity, v)
+            s2 = (self.v[i-1], self.v[i])
+
+            if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
+                coincidence = True
+
+            if HSR.edgeIntersection(s1, s2, do_perturbate=False):
+                winding_number += 1
+
+        # Check even or odd
+        if winding_number % 2 == 0 :
+            return False
+        else:
+            if coincidence:
+                return False
+            return True
+
+    isVertInside = staticmethod(isVertInside)
+
+
+    def det(a, b, c):
+        return ((b[0] - a[0]) * (c[1] - a[1]) -
+                (b[1] - a[1]) * (c[0] - a[0]) )
+
+    det = staticmethod(det)
+
+    def pointInPolygon(q, P):
+        is_in = False
+
+        point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
+
+        det = HSR.det
+
+        for i in range(len(P.v)):
+            p0 = P.v[i-1]
+            p1 = P.v[i]
+            if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0):
+                if det(p0.co, p1.co, q.co) == 0 :
+                    #print "On Boundary"
+                    return False
+                elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0):
+                    is_in = not is_in
+
+        return is_in
+
+    pointInPolygon = staticmethod(pointInPolygon)
+
+    def projectionsOverlap(f1, f2):
+        """ If you have nonconvex, but still simple polygons, an acceptable method
+        is to iterate over all vertices and perform the Point-in-polygon test[1].
+        The advantage of this method is that you can compute the exact
+        intersection point and collision normal that you will need to simulate
+        collision. When you have the point that lies inside the other polygon, you
+        just iterate over all edges of the second polygon again and look for edge
+        intersections. Note that this method detects collsion when it already
+        happens. This algorithm is fast enough to perform it hundreds of times per
+        sec.  """
+
+        for i in range(len(f1.v)):
+
+
+            # If a point of f1 in inside f2, there is an overlap!
+            v1 = f1.v[i]
+            #if HSR.isVertInside(f2, v1):
+            if HSR.pointInPolygon(v1, f2):
+                return True
+
+            # If not the polygon can be ovelap as well, so we check for
+            # intersection between an edge of f1 and all the edges of f2
+
+            v0 = f1.v[i-1]
+
+            for j in range(len(f2.v)):
+                v2 = f2.v[j-1]
+                v3 = f2.v[j]
+
+                e1 = v0, v1
+                e2 = v2, v3
+
+                intrs = HSR.edgeIntersection(e1, e2)
+                if intrs:
+                    #print_debug(str(v0.co) + " " + str(v1.co) + " " +
+                    #        str(v2.co) + " " + str(v3.co) )
+                    #print_debug("\nIntersection\n")
+
+                    return True
+
+        return False
+
+    projectionsOverlap = staticmethod(projectionsOverlap)
+
+    def midpoint(p1, p2):
+        """Return the midpoint of two vertices.
+        """
+        m = MidpointVecs(Vector(p1), Vector(p2))
+        mv = NMesh.Vert(m[0], m[1], m[2])
+
+        return mv
+
+    midpoint = staticmethod(midpoint)
+
+    def facesplit(P, Q, facelist, nmesh):
+        """Split P or Q according to the strategy illustrated in the Newell's
+        paper.
+        """
+
+        by_furthest_z = (lambda f1, f2:
+                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+                )
+
+        # Choose if split P on Q plane or vice-versa
+
+        n = 0
+        for Pi in P:
+            d = HSR.Distance(Vector(Pi), Q)
+            if d <= EPS:
+                n += 1
+        pIntersectQ = (n != len(P))
+
+        n = 0
+        for Qi in Q:
+            d = HSR.Distance(Vector(Qi), P)
+            if d >= -EPS:
+                n += 1
+        qIntersectP = (n != len(Q))
+
+        newfaces = []
+
+        # 1. If parts of P lie in both half-spaces of Q
+        # then splice P in two with the plane of Q
+        if pIntersectQ:
+            #print "We split P"
+            f = P
+            plane = Q
+
+            newfaces = HSR.splitOn(plane, f)
+
+        # 2. Else if parts of Q lie in both half-space of P
+        # then splice Q in two with the plane of P
+        if qIntersectP and newfaces == None:
+            #print "We split Q"
+            f = Q
+            plane = P
+
+            newfaces = HSR.splitOn(plane, f)
+            #print "After"
+
+        # 3. Else slice P in half through the mid-point of
+        # the longest pair of opposite sides
+        if newfaces == None:
+
+            print "We ignore P..."
+            facelist.remove(P)
+            return facelist
+
+            #f = P
+
+            #if len(P)==3:
+            #    v1 = midpoint(f[0], f[1])
+            #    v2 = midpoint(f[1], f[2])
+            #if len(P)==4:
+            #    v1 = midpoint(f[0], f[1])
+            #    v2 = midpoint(f[2], f[3])
+            #vec3 = (Vector(v2)+10*Vector(f.normal))
+            #
+            #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
+
+            #plane = NMesh.Face([v1, v2, v3])
+            #
+            #newfaces = splitOn(plane, f)
+
+
+        if newfaces == None:
+            print "Big FAT problem, we weren't able to split POLYGONS!"
+            raise AssertionError
+
+        #print newfaces
+        if newfaces:
+            #for v in f:
+            #    if v not in plane and v in nmesh.verts:
+            #        nmesh.verts.remove(v)
+            for nf in newfaces:
+
+                nf.mat = f.mat
+                nf.sel = f.sel
+                nf.col = [f.col[0]] * len(nf.v)
+
+                nf.smooth = 0
+
+                for v in nf:
+                    nmesh.verts.append(v)
+                # insert pieces in the list
+                facelist.append(nf)
+
+            facelist.remove(f)
+
+        # and resort the faces
+        facelist.sort(by_furthest_z)
+        facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
+        facelist.reverse()
+
+        #print [ f.smooth for f in facelist ]
+
+        return facelist
+
+    facesplit = staticmethod(facesplit)
+
+    def isOnSegment(v1, v2, p, extremes_internal=False):
+        """Check if point p is in segment v1v2.
+        """
+
+        l1 = (v1-p).length
+        l2 = (v2-p).length
+
+        # Should we consider extreme points as internal ?
+        # The test:
+        # if p == v1 or p == v2:
+        if l1 < EPS or l2 < EPS:
+            return extremes_internal
+
+        l = (v1-v2).length
+
+        # if the sum of l1 and l2 is circa l, then the point is on segment,
+        if abs(l - (l1+l2)) < EPS:
+            return True
+        else:
+            return False
+
+    isOnSegment = staticmethod(isOnSegment)
+
+    def Distance(point, face):
+        """ Calculate the distance between a point and a face.
+
+        An alternative but more expensive method can be:
+
+            ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
+                    Vector(face.no), Vector(point), 0)
+
+            d = Vector(ip - point).length
+
+        See: http://mathworld.wolfram.com/Point-PlaneDistance.html
+        """
+
+        p = Vector(point)
+        plNormal = Vector(face.no)
+        plVert0 = Vector(face.v[0])
+
+        d = (plVert0 * plNormal) - (p * plNormal)
+
+        #d = plNormal * (plVert0 - p)
+
+        #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
+
+        return d
+
+    Distance = staticmethod(Distance)
+
+    def makeFaces(vl):
+        #
+        # make one or two new faces based on a list of vertex-indices
+        #
+        newfaces = []
+
+        if len(vl) <= 4:
+            nf = NMesh.Face()
+
+            for v in vl:
+                nf.v.append(v)
+
+            newfaces.append(nf)
+
+        else:
+            nf = NMesh.Face()
+
+            nf.v.append(vl[0])
+            nf.v.append(vl[1])
+            nf.v.append(vl[2])
+            nf.v.append(vl[3])
+            newfaces.append(nf)
+
+            nf = NMesh.Face()
+            nf.v.append(vl[3])
+            nf.v.append(vl[4])
+            nf.v.append(vl[0])
+            newfaces.append(nf)
+
+        return newfaces
+
+    makeFaces = staticmethod(makeFaces)
+
+    def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
+        """Split P using the plane of Q.
+        Logic taken from the knife.py python script
+        """
+
+        # Check if P and Q are parallel
+        u = CrossVecs(Vector(Q.no),Vector(P.no))
+        ax = abs(u[0])
+        ay = abs(u[1])
+        az = abs(u[2])
+
+        if (ax+ay+az) < EPS:
+            print "PARALLEL planes!!"
+            return
+
+
+        # The final aim is to find the intersection line between P
+        # and the plane of Q, and split P along this line
+
+        nP = len(P.v)
+
+        # Calculate point-plane Distance between vertices of P and plane Q
+        d = []
+        for i in range(0, nP):
+            d.append(HSR.Distance(P.v[i], Q))
+
+        newVertList = []
+
+        posVertList = []
+        negVertList = []
+        for i in range(nP):
+            d0 = d[i-1]
+            V0 = P.v[i-1]
+
+            d1 = d[i]
+            V1 = P.v[i]
+
+            #print "d0:", d0, "d1:", d1
+
+            # if the vertex lies in the cutplane
+            if abs(d1) < EPS:
+                #print "d1 On cutplane"
+                posVertList.append(V1)
+                negVertList.append(V1)
+            else:
+                # if the previous vertex lies in cutplane
+                if abs(d0) < EPS:
+                    #print "d0 on Cutplane"
+                    if d1 > 0:
+                        #print "d1 on positive Halfspace"
+                        posVertList.append(V1)
+                    else:
+                        #print "d1 on negative Halfspace"
+                        negVertList.append(V1)
+                else:
+                    # if they are on the same side of the plane
+                    if d1*d0 > 0:
+                        #print "On the same half-space"
+                        if d1 > 0:
+                            #print "d1 on positive Halfspace"
+                            posVertList.append(V1)
+                        else:
+                            #print "d1 on negative Halfspace"
+                            negVertList.append(V1)
+
+                    # the vertices are not on the same side of the plane, so we have an intersection
+                    else:
+                        #print "Intersection"
+
+                        e = Vector(V0), Vector(V1)
+                        tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
+
+                        inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0)
+                        if inters == None:
+                            print "Split Break"
+                            break
+
+                        #print "Intersection", inters
+
+                        nv = NMesh.Vert(inters[0], inters[1], inters[2])
+                        newVertList.append(nv)
+
+                        posVertList.append(nv)
+                        negVertList.append(nv)
+
+                        if d1 > 0:
+                            posVertList.append(V1)
+                        else:
+                            negVertList.append(V1)
+
+
+        # uniq for python > 2.4
+        #posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
+        #negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+        # a more portable way
+        posVertList = uniq(posVertList)
+        negVertList = uniq(negVertList)
+
+
+        # If vertex are all on the same half-space, return
+        #if len(posVertList) < 3:
+        #    print "Problem, we created a face with less that 3 vertices??"
+        #    posVertList = []
+        #if len(negVertList) < 3:
+        #    print "Problem, we created a face with less that 3 vertices??"
+        #    negVertList = []
+
+        if len(posVertList) < 3 or len(negVertList) < 3:
+            #print "RETURN NONE, SURE???"
+            return None
+
+        if not return_positive_faces:
+            posVertList = []
+        if not return_negative_faces:
+            negVertList = []
+
+        newfaces = HSR.addNewFaces(posVertList, negVertList)
+
+        return newfaces
+
+    splitOn = staticmethod(splitOn)
+
+    def addNewFaces(posVertList, negVertList):
+        # Create new faces resulting from the split
+        outfaces = []
+        if len(posVertList) or len(negVertList):
+
+            #newfaces = [posVertList] + [negVertList]
+            newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
+                    [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] )
+
+            for nf in newfaces:
+                if nf and len(nf)>2:
+                    outfaces += HSR.makeFaces(nf)
+
+        return outfaces
+
+
+    addNewFaces = staticmethod(addNewFaces)
 
 
 # ---------------------------------------------------------------------
@@ -132,10 +788,11 @@ def sign(x):
 ## Mesh Utility class
 #
 # ---------------------------------------------------------------------
+
 class MeshUtils:
 
     def buildEdgeFaceUsersCache(me):
-        ''' 
+        '''
         Takes a mesh and returns a list aligned with the meshes edges.
         Each item is a list of the faces that use the edge
         would be the equiv for having ed.face_users as a property
@@ -151,23 +808,23 @@ class MeshUtils:
                 i1,i2= i2,i1
             return i1, i2
 
-       
+
         face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
         for f in me.faces:
             fvi= [v.index for v in f.v]# face vert idx's
             for i in xrange(len(f)):
                 i1= fvi[i]
                 i2= fvi[i-1]
-                
+
                 if i1>i2:
                     i1,i2= i2,i1
-                
+
                 face_edges_dict[i1,i2][1].append(f)
-        
+
         face_edges= [None] * len(me.edges)
         for ed_index, ed_faces in face_edges_dict.itervalues():
             face_edges[ed_index]= ed_faces
-        
+
         return face_edges
 
     def isMeshEdge(adjacent_faces):
@@ -214,6 +871,7 @@ class MeshUtils:
 ## Shading Utility class
 #
 # ---------------------------------------------------------------------
+
 class ShadingUtils:
 
     shademap = None
@@ -257,10 +915,10 @@ class ShadingUtils:
 
 class Projector:
     """Calculate the projection of an object given the camera.
-    
+
     A projector is useful to so some per-object transformation to obtain the
     projection of an object given the camera.
-    
+
     The main method is #doProjection# see the method description for the
     parameter list.
     """
@@ -282,17 +940,26 @@ class Projector:
 
         fovy = atan(0.5/aspect/(camera.lens/32))
         fovy = fovy * 360.0/pi
-        
+
+
+        if Blender.Get('version') < 243:
+            camPersp = 0
+            camOrtho = 1
+        else:
+            camPersp = 'persp'
+            camOrtho = 'ortho'
+
         # What projection do we want?
-        if camera.type == 0:
-            mP = self._calcPerspectiveMatrix(fovy, aspect, near, far) 
-        elif camera.type == 1:
-            mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale) 
-        
+        if camera.type == camPersp:
+            mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+        elif camera.type == camOrtho:
+            mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
+
+
         # View transformation
         cam = Matrix(cameraObj.getInverseMatrix())
-        cam.transpose() 
-        
+        cam.transpose()
+
         mP = mP * cam
 
         self.projectionMatrix = mP
@@ -307,13 +974,13 @@ class Projector:
         Given a vertex calculate the projection using the current projection
         matrix.
         """
-        
+
         # Note that we have to work on the vertex using homogeneous coordinates
         # From blender 2.42+ we don't need to resize the vector to be 4d
         # when applying a 4x4 matrix, but we do that anyway since we need the
         # 4th coordinate later
         p = self.projectionMatrix * Vector(v).resize4D()
-        
+
         # Perspective division
         if p[3] != 0:
             p[0] = p[0]/p[3]
@@ -330,11 +997,11 @@ class Projector:
     ##
     # Private methods
     #
-    
+
     def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
         """Return a perspective projection matrix.
         """
-        
+
         top = near * tan(fovy * pi / 360.0)
         bottom = -top
         left = bottom*aspect
@@ -345,7 +1012,7 @@ class Projector:
         b = (top+bottom) / (top - bottom)
         c = - ((far+near) / (far-near))
         d = - ((2*far*near)/(far-near))
-        
+
         m = Matrix(
                 [x,   0.0,    a,    0.0],
                 [0.0,   y,    b,    0.0],
@@ -357,15 +1024,15 @@ class Projector:
     def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
         """Return an orthogonal projection matrix.
         """
-        
+
         # The 11 in the formula was found emiprically
         top = near * tan(fovy * pi / 360.0) * (scale * 11)
-        bottom = -top 
+        bottom = -top
         left = bottom * aspect
         right= top * aspect
         rl = right-left
         tb = top-bottom
-        fn = near-far 
+        fn = near-far
         tx = -((right+left)/rl)
         ty = -((top+bottom)/tb)
         tz = ((far+near)/fn)
@@ -375,7 +1042,7 @@ class Projector:
                 [0.0,    2.0/tb, 0.0,     ty],
                 [0.0,    0.0,    2.0/fn,  tz],
                 [0.0,    0.0,    0.0,    1.0])
-        
+
         return m
 
 
@@ -387,7 +1054,7 @@ class Projector:
 
 class Progress:
     """A model for a progress indicator.
-    
+
     Do the progress calculation calculation and
     the view independent stuff of a progress indicator.
     """
@@ -499,7 +1166,7 @@ class ConsoleProgressIndicator(ProgressIndicator):
 
     def show(self, progress, name):
         ProgressIndicator.show(self, progress, name)
-        
+
         bar_length = 70
         bar_progress = int( (progress/100.0) * bar_length )
         bar = ("=" * bar_progress).ljust(bar_length)
@@ -577,16 +1244,23 @@ class VectorWriter:
         - printCanvas(self, scene,
             doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
     """
-    
+
     def __init__(self, fileName):
         """Set the output file name and other properties"""
 
+        try:
+            config.writer
+        except:
+            config.writer = dict()
+            config.writer['SETTING'] = True
+
         self.outputFileName = fileName
-        self.file = None
-        
+
         context = Scene.GetCurrent().getRenderingContext()
         self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
 
+        self.fps = context.fps
+
         self.startFrame = 1
         self.endFrame = 1
         self.animation = False
@@ -595,33 +1269,466 @@ class VectorWriter:
     ##
     # Public Methods
     #
-    
+
     def open(self, startFrame=1, endFrame=1):
         if startFrame != endFrame:
             self.startFrame = startFrame
             self.endFrame = endFrame
             self.animation = True
 
-        self.file = open(self.outputFileName, "w")
         print "Outputting to: ", self.outputFileName
 
         return
 
     def close(self):
-        self.file.close()
         return
 
-    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
-            showHiddenEdges=False):
-        """This is the interface for the needed printing routine.
-        """
-        return
-        
+    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+            showHiddenEdges=False):
+        """This is the interface for the needed printing routine.
+        """
+        return
+
+
+## SVG Writer
+
+class SVGVectorWriter(VectorWriter):
+    """A concrete class for writing SVG output.
+    """
+
+    def __init__(self, fileName):
+        """Simply call the parent Contructor.
+        """
+        VectorWriter.__init__(self, fileName)
+
+        self.file = None
+
+
+    ##
+    # Public Methods
+    #
+
+    def open(self, startFrame=1, endFrame=1):
+        """Do some initialization operations.
+        """
+        VectorWriter.open(self, startFrame, endFrame)
+
+        self.file = open(self.outputFileName, "w")
+
+        self._printHeader()
+
+    def close(self):
+        """Do some finalization operation.
+        """
+        self._printFooter()
+
+        if self.file:
+            self.file.close()
+
+        # remember to call the close method of the parent as last
+        VectorWriter.close(self)
+
+
+    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+            showHiddenEdges=False):
+        """Convert the scene representation to SVG.
+        """
+
+        Objects = scene.objects
+
+        context = scene.getRenderingContext()
+        framenumber = context.currentFrame()
+
+        if self.animation:
+            framestyle = "display:none"
+        else:
+            framestyle = "display:block"
+
+        # Assign an id to this group so we can set properties on it using DOM
+        self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
+                (framenumber, framestyle) )
+
+
+        for obj in Objects:
+
+            if(obj.getType() != 'Mesh'):
+                continue
+
+            self.file.write("<g id=\"%s\">\n" % obj.getName())
+
+            mesh = obj.getData(mesh=1)
+
+            if doPrintPolygons:
+                self._printPolygons(mesh)
+
+            if doPrintEdges:
+                self._printEdges(mesh, showHiddenEdges)
+
+            self.file.write("</g>\n")
+
+        self.file.write("</g>\n")
+
+
+    ##
+    # Private Methods
+    #
+
+    def _calcCanvasCoord(self, v):
+        """Convert vertex in scene coordinates to canvas coordinates.
+        """
+
+        pt = Vector([0, 0, 0])
+
+        mW = float(self.canvasSize[0])/2.0
+        mH = float(self.canvasSize[1])/2.0
+
+        # rescale to canvas size
+        pt[0] = v.co[0]*mW + mW
+        pt[1] = v.co[1]*mH + mH
+        pt[2] = v.co[2]
+
+        # For now we want (0,0) in the top-left corner of the canvas.
+        # Mirror and translate along y
+        pt[1] *= -1
+        pt[1] += self.canvasSize[1]
+
+        return pt
+
+    def _printHeader(self):
+        """Print SVG header."""
+
+        self.file.write("<?xml version=\"1.0\"?>\n")
+        self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\"\n")
+        self.file.write("\t\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n")
+        self.file.write("<svg version=\"1.0\"\n")
+        self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
+        self.file.write("\twidth=\"%d\" height=\"%d\">\n\n" %
+                self.canvasSize)
+
+        if self.animation:
+            delay = 1000/self.fps
+
+            self.file.write("""\n<script type="text/javascript"><![CDATA[
+            globalStartFrame=%d;
+            globalEndFrame=%d;
+
+            timerID = setInterval("NextFrame()", %d);
+            globalFrameCounter=%d;
+            \n""" % (self.startFrame, self.endFrame, delay, self.startFrame) )
+
+            self.file.write("""\n
+            function NextFrame()
+            {
+              currentElement  = document.getElementById('frame'+globalFrameCounter)
+              previousElement = document.getElementById('frame'+(globalFrameCounter-1))
+
+              if (!currentElement)
+              {
+                return;
+              }
+
+              if (globalFrameCounter > globalEndFrame)
+              {
+                clearInterval(timerID)
+              }
+              else
+              {
+                if(previousElement)
+                {
+                    previousElement.style.display="none";
+                }
+                currentElement.style.display="block";
+                globalFrameCounter++;
+              }
+            }
+            \n]]></script>\n
+            \n""")
+
+    def _printFooter(self):
+        """Print the SVG footer."""
+
+        self.file.write("\n</svg>\n")
+
+    def _printPolygons(self, mesh):
+        """Print the selected (visible) polygons.
+        """
+
+        if len(mesh.faces) == 0:
+            return
+
+        self.file.write("<g>\n")
+
+        for face in mesh.faces:
+            if not face.sel:
+               continue
+
+            self.file.write("<path d=\"")
+
+            #p = self._calcCanvasCoord(face.verts[0])
+            p = self._calcCanvasCoord(face.v[0])
+            self.file.write("M %g,%g L " % (p[0], p[1]))
+
+            for v in face.v[1:]:
+                p = self._calcCanvasCoord(v)
+                self.file.write("%g,%g " % (p[0], p[1]))
+
+            # get rid of the last blank space, just cosmetics here.
+            self.file.seek(-1, 1)
+            self.file.write(" z\"\n")
+
+            # take as face color the first vertex color
+            if face.col:
+                fcol = face.col[0]
+                color = [fcol.r, fcol.g, fcol.b, fcol.a]
+            else:
+                color = [255, 255, 255, 255]
+
+            # Convert the color to the #RRGGBB form
+            str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
+
+            # Handle transparent polygons
+            opacity_string = ""
+            if color[3] != 255:
+                opacity = float(color[3])/255.0
+                opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+                #opacity_string = "opacity: %g;" % (opacity)
+
+            self.file.write("\tstyle=\"fill:" + str_col + ";")
+            self.file.write(opacity_string)
+
+            # use the stroke property to alleviate the "adjacent edges" problem,
+            # we simulate polygon expansion using borders,
+            # see http://www.antigrain.com/svg/index.html for more info
+            stroke_width = 1.0
+
+            # EXPANSION TRICK is not that useful where there is transparency
+            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+                # str_col = "#000000" # For debug
+                self.file.write(" stroke:%s;\n" % str_col)
+                self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+                self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+
+            self.file.write("\"/>\n")
+
+        self.file.write("</g>\n")
+
+    def _printEdges(self, mesh, showHiddenEdges=False):
+        """Print the wireframe using mesh edges.
+        """
+
+        stroke_width = config.edges['WIDTH']
+        stroke_col = config.edges['COLOR']
+
+        self.file.write("<g>\n")
+
+        for e in mesh.edges:
+
+            hidden_stroke_style = ""
+
+            if e.sel == 0:
+                if showHiddenEdges == False:
+                    continue
+                else:
+                    hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+            p1 = self._calcCanvasCoord(e.v1)
+            p2 = self._calcCanvasCoord(e.v2)
+
+            self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
+                    % ( p1[0], p1[1], p2[0], p2[1] ) )
+            self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
+            self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+            self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+            self.file.write(hidden_stroke_style)
+            self.file.write("\"/>\n")
+
+        self.file.write("</g>\n")
+
+
+## SWF Writer
+
+try:
+    from ming import *
+    SWFSupported = True
+except:
+    SWFSupported = False
+
+class SWFVectorWriter(VectorWriter):
+    """A concrete class for writing SWF output.
+    """
+
+    def __init__(self, fileName):
+        """Simply call the parent Contructor.
+        """
+        VectorWriter.__init__(self, fileName)
+
+        self.movie = None
+        self.sprite = None
+
+
+    ##
+    # Public Methods
+    #
+
+    def open(self, startFrame=1, endFrame=1):
+        """Do some initialization operations.
+        """
+        VectorWriter.open(self, startFrame, endFrame)
+        self.movie = SWFMovie()
+        self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+        if self.animation:
+            self.movie.setRate(self.fps)
+            numframes = endFrame - startFrame + 1
+            self.movie.setFrames(numframes)
+
+    def close(self):
+        """Do some finalization operation.
+        """
+        self.movie.save(self.outputFileName)
+
+        # remember to call the close method of the parent
+        VectorWriter.close(self)
+
+    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+            showHiddenEdges=False):
+        """Convert the scene representation to SVG.
+        """
+        context = scene.getRenderingContext()
+        framenumber = context.currentFrame()
+
+        Objects = scene.objects
+
+        if self.sprite:
+            self.movie.remove(self.sprite)
+
+        sprite = SWFSprite()
+
+        for obj in Objects:
+
+            if(obj.getType() != 'Mesh'):
+                continue
+
+            mesh = obj.getData(mesh=1)
+
+            if doPrintPolygons:
+                self._printPolygons(mesh, sprite)
+
+            if doPrintEdges:
+                self._printEdges(mesh, sprite, showHiddenEdges)
+
+        sprite.nextFrame()
+        i = self.movie.add(sprite)
+        # Remove the instance the next time
+        self.sprite = i
+        if self.animation:
+            self.movie.nextFrame()
+
+
+    ##
+    # Private Methods
+    #
+
+    def _calcCanvasCoord(self, v):
+        """Convert vertex in scene coordinates to canvas coordinates.
+        """
+
+        pt = Vector([0, 0, 0])
+
+        mW = float(self.canvasSize[0])/2.0
+        mH = float(self.canvasSize[1])/2.0
+
+        # rescale to canvas size
+        pt[0] = v.co[0]*mW + mW
+        pt[1] = v.co[1]*mH + mH
+        pt[2] = v.co[2]
+
+        # For now we want (0,0) in the top-left corner of the canvas.
+        # Mirror and translate along y
+        pt[1] *= -1
+        pt[1] += self.canvasSize[1]
+
+        return pt
+
+    def _printPolygons(self, mesh, sprite):
+        """Print the selected (visible) polygons.
+        """
+
+        if len(mesh.faces) == 0:
+            return
+
+        for face in mesh.faces:
+            if not face.sel:
+               continue
+
+            if face.col:
+                fcol = face.col[0]
+                color = [fcol.r, fcol.g, fcol.b, fcol.a]
+            else:
+                color = [255, 255, 255, 255]
+
+            s = SWFShape()
+            f = s.addFill(color[0], color[1], color[2], color[3])
+            s.setRightFill(f)
+
+            # The starting point of the shape
+            p0 = self._calcCanvasCoord(face.verts[0])
+            s.movePenTo(p0[0], p0[1])
+
+            for v in face.verts[1:]:
+                p = self._calcCanvasCoord(v)
+                s.drawLineTo(p[0], p[1])
+
+            # Closing the shape
+            s.drawLineTo(p0[0], p0[1])
+
+            s.end()
+            sprite.add(s)
+
+
+    def _printEdges(self, mesh, sprite, showHiddenEdges=False):
+        """Print the wireframe using mesh edges.
+        """
+
+        stroke_width = config.edges['WIDTH']
+        stroke_col = config.edges['COLOR']
+
+        s = SWFShape()
+
+        for e in mesh.edges:
+
+            # Next, we set the line width and color for our shape.
+            s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+            255)
+
+            if e.sel == 0:
+                if showHiddenEdges == False:
+                    continue
+                else:
+                    # SWF does not support dashed lines natively, so -for now-
+                    # draw hidden lines thinner and half-trasparent
+                    s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
+                            stroke_col[2], 128)
+
+            p1 = self._calcCanvasCoord(e.v1)
+            p2 = self._calcCanvasCoord(e.v2)
+
+            s.movePenTo(p1[0], p1[1])
+            s.drawLineTo(p2[0], p2[1])
+
+        s.end()
+        sprite.add(s)
+
 
-## SVG Writer
+## PDF Writer
 
-class SVGVectorWriter(VectorWriter):
-    """A concrete class for writing SVG output.
+try:
+    from reportlab.pdfgen import canvas
+    PDFSupported = True
+except:
+    PDFSupported = False
+
+class PDFVectorWriter(VectorWriter):
+    """A concrete class for writing PDF output.
     """
 
     def __init__(self, fileName):
@@ -629,6 +1736,8 @@ class SVGVectorWriter(VectorWriter):
         """
         VectorWriter.__init__(self, fileName)
 
+        self.canvas = None
+
 
     ##
     # Public Methods
@@ -638,44 +1747,31 @@ class SVGVectorWriter(VectorWriter):
         """Do some initialization operations.
         """
         VectorWriter.open(self, startFrame, endFrame)
-        self._printHeader()
+        size = (self.canvasSize[0], self.canvasSize[1])
+        self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
 
     def close(self):
         """Do some finalization operation.
         """
-        self._printFooter()
+        self.canvas.save()
 
         # remember to call the close method of the parent
         VectorWriter.close(self)
 
-        
     def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
             showHiddenEdges=False):
         """Convert the scene representation to SVG.
         """
-
-        Objects = scene.getChildren()
-
         context = scene.getRenderingContext()
         framenumber = context.currentFrame()
 
-        if self.animation:
-            framestyle = "display:none"
-        else:
-            framestyle = "display:block"
-        
-        # Assign an id to this group so we can set properties on it using DOM
-        self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
-                (framenumber, framestyle) )
-
+        Objects = scene.objects
 
         for obj in Objects:
 
             if(obj.getType() != 'Mesh'):
                 continue
 
-            self.file.write("<g id=\"%s\">\n" % obj.getName())
-
             mesh = obj.getData(mesh=1)
 
             if doPrintPolygons:
@@ -683,22 +1779,19 @@ class SVGVectorWriter(VectorWriter):
 
             if doPrintEdges:
                 self._printEdges(mesh, showHiddenEdges)
-            
-            self.file.write("</g>\n")
 
-        self.file.write("</g>\n")
+        self.canvas.showPage()
 
-    
-    ##  
+    ##
     # Private Methods
     #
-    
+
     def _calcCanvasCoord(self, v):
         """Convert vertex in scene coordinates to canvas coordinates.
         """
 
         pt = Vector([0, 0, 0])
-        
+
         mW = float(self.canvasSize[0])/2.0
         mH = float(self.canvasSize[1])/2.0
 
@@ -706,128 +1799,50 @@ class SVGVectorWriter(VectorWriter):
         pt[0] = v.co[0]*mW + mW
         pt[1] = v.co[1]*mH + mH
         pt[2] = v.co[2]
-         
+
         # For now we want (0,0) in the top-left corner of the canvas.
         # Mirror and translate along y
         pt[1] *= -1
         pt[1] += self.canvasSize[1]
-        
-        return pt
-
-    def _printHeader(self):
-        """Print SVG header."""
-
-        self.file.write("<?xml version=\"1.0\"?>\n")
-        self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\"\n")
-        self.file.write("\t\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n")
-        self.file.write("<svg version=\"1.0\"\n")
-        self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
-        self.file.write("\twidth=\"%d\" height=\"%d\">\n\n" %
-                self.canvasSize)
-
-        if self.animation:
-
-            self.file.write("""\n<script type="text/javascript"><![CDATA[
-            globalStartFrame=%d;
-            globalEndFrame=%d;
-
-            /* FIXME: Use 1000 as interval as lower values gives problems */
-            timerID = setInterval("NextFrame()", 1000);
-            globalFrameCounter=%d;
-
-            function NextFrame()
-            {
-              currentElement  = document.getElementById('frame'+globalFrameCounter)
-              previousElement = document.getElementById('frame'+(globalFrameCounter-1))
-
-              if (!currentElement)
-              {
-                return;
-              }
-
-              if (globalFrameCounter > globalEndFrame)
-              {
-                clearInterval(timerID)
-              }
-              else
-              {
-                if(previousElement)
-                {
-                    previousElement.style.display="none";
-                }
-                currentElement.style.display="block";
-                globalFrameCounter++;
-              }
-            }
-            \n]]></script>\n
-            \n""" % (self.startFrame, self.endFrame, self.startFrame) )
-                
-    def _printFooter(self):
-        """Print the SVG footer."""
 
-        self.file.write("\n</svg>\n")
+        return pt
 
-    def _printPolygons(self, mesh): 
+    def _printPolygons(self, mesh):
         """Print the selected (visible) polygons.
         """
 
         if len(mesh.faces) == 0:
             return
 
-        self.file.write("<g>\n")
-
         for face in mesh.faces:
             if not face.sel:
                continue
 
-            self.file.write("<path d=\"")
-
-            p = self._calcCanvasCoord(face.verts[0])
-            self.file.write("M %g,%g L " % (p[0], p[1]))
-
-            for v in face.verts[1:]:
-                p = self._calcCanvasCoord(v)
-                self.file.write("%g,%g " % (p[0], p[1]))
-            
-            # get rid of the last blank space, just cosmetics here.
-            self.file.seek(-1, 1) 
-            self.file.write(" z\"\n")
-            
-            # take as face color the first vertex color
             if face.col:
                 fcol = face.col[0]
-                color = [fcol.r, fcol.g, fcol.b, fcol.a]
+                color = [fcol.r/255.0, fcol.g/255.0, fcol.b/255.0,
+                        fcol.a/255.0]
             else:
-                color = [255, 255, 255, 255]
-
-            # Convert the color to the #RRGGBB form
-            str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
+                color = [1, 1, 1, 1]
 
-            # Handle transparent polygons
-            opacity_string = ""
-            if color[3] != 255:
-                opacity = float(color[3])/255.0
-                opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
-                #opacity_string = "opacity: %g;" % (opacity)
+            self.canvas.setFillColorRGB(color[0], color[1], color[2])
+            # For debug
+            self.canvas.setStrokeColorRGB(0, 0, 0)
 
-            self.file.write("\tstyle=\"fill:" + str_col + ";")
-            self.file.write(opacity_string)
+            path = self.canvas.beginPath()
 
-            # use the stroke property to alleviate the "adjacent edges" problem,
-            # we simulate polygon expansion using borders,
-            # see http://www.antigrain.com/svg/index.html for more info
-            stroke_width = 1.0
+            # The starting point of the path
+            p0 = self._calcCanvasCoord(face.verts[0])
+            path.moveTo(p0[0], p0[1])
 
-            # EXPANSION TRICK is not that useful where there is transparency
-            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
-                # str_col = "#000000" # For debug
-                self.file.write(" stroke:%s;\n" % str_col)
-                self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
-                self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+            for v in face.verts[1:]:
+                p = self._calcCanvasCoord(v)
+                path.lineTo(p[0], p[1])
 
-            self.file.write("\"/>\n")
+            # Closing the shape
+            path.close()
 
-        self.file.write("</g>\n")
+            self.canvas.drawPath(path, stroke=0, fill=1)
 
     def _printEdges(self, mesh, showHiddenEdges=False):
         """Print the wireframe using mesh edges.
@@ -835,31 +1850,30 @@ class SVGVectorWriter(VectorWriter):
 
         stroke_width = config.edges['WIDTH']
         stroke_col = config.edges['COLOR']
-        
-        self.file.write("<g>\n")
+
+        self.canvas.setLineCap(1)
+        self.canvas.setLineJoin(1)
+        self.canvas.setLineWidth(stroke_width)
+        self.canvas.setStrokeColorRGB(stroke_col[0]/255.0, stroke_col[1]/255.0,
+            stroke_col[2]/255)
 
         for e in mesh.edges:
-            
-            hidden_stroke_style = ""
-            
+
+            self.canvas.setLineWidth(stroke_width)
+
             if e.sel == 0:
                 if showHiddenEdges == False:
                     continue
                 else:
-                    hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+                    # PDF does not support dashed lines natively, so -for now-
+                    # draw hidden lines thinner
+                    self.canvas.setLineWidth(stroke_width/2.0)
 
             p1 = self._calcCanvasCoord(e.v1)
             p2 = self._calcCanvasCoord(e.v2)
-            
-            self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
-                    % ( p1[0], p1[1], p2[0], p2[1] ) )
-            self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
-            self.file.write(" stroke-width:"+str(stroke_width)+";\n")
-            self.file.write(" stroke-linecap:round;stroke-linejoin:round")
-            self.file.write(hidden_stroke_style)
-            self.file.write("\"/>\n")
 
-        self.file.write("</g>\n")
+            self.canvas.line(p1[0], p1[1], p2[0], p2[1])
+
 
 
 # ---------------------------------------------------------------------
@@ -881,11 +1895,15 @@ edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
 # A dictionary to collect the supported output formats
 outputWriters = dict()
 outputWriters['SVG'] = SVGVectorWriter
+if SWFSupported:
+    outputWriters['SWF'] = SWFVectorWriter
+if PDFSupported:
+    outputWriters['PDF'] = PDFVectorWriter
 
 
 class Renderer:
     """Render a scene viewed from the active camera.
-    
+
     This class is responsible of the rendering process, transformation and
     projection of the objects in the scene are invoked by the renderer.
 
@@ -901,7 +1919,7 @@ class Renderer:
 
         # Render the current Scene, this should be a READ-ONLY property
         self._SCENE = Scene.GetCurrent()
-        
+
         # Use the aspect ratio of the scene rendering context
         context = self._SCENE.getRenderingContext()
 
@@ -910,27 +1928,10 @@ class Renderer:
                             float(context.aspectRatioY())
                             )
 
-        # Render from the currently active camera 
-        self.cameraObj = self._SCENE.getCurrentCamera()
+        # Render from the currently active camera
+        #self.cameraObj = self._SCENE.objects.camera
 
-        # Get a projector for this camera.
-        # NOTE: the projector wants object in world coordinates,
-        # so we should remember to apply modelview transformations
-        # _before_ we do projection transformations.
-        self.proj = Projector(self.cameraObj, self.canvasRatio)
-
-        # Get the list of lighting sources
-        obj_lst = self._SCENE.getChildren()
-        self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
-
-        # When there are no lights we use a default lighting source
-        # that have the same position of the camera
-        if len(self.lights) == 0:
-            l = Lamp.New('Lamp')
-            lobj = Object.New('Lamp')
-            lobj.loc = self.cameraObj.loc
-            lobj.link(l) 
-            self.lights.append(lobj)
+        self.lights = []
 
 
     ##
@@ -939,13 +1940,13 @@ class Renderer:
 
     def doRendering(self, outputWriter, animation=False):
         """Render picture or animation and write it out.
-        
+
         The parameters are:
             - a Vector writer object that will be used to output the result.
             - a flag to tell if we want to render an animation or only the
               current frame.
         """
-        
+
         context = self._SCENE.getRenderingContext()
         origCurrentFrame = context.currentFrame()
 
@@ -958,17 +1959,30 @@ class Renderer:
             startFrame = context.startFrame()
             endFrame = context.endFrame()
             outputWriter.open(startFrame, endFrame)
-        
+
         # Do the rendering process frame by frame
-        print "Start Rendering of %d frames" % (endFrame-startFrame)
+        print "Start Rendering of %d frames" % (endFrame-startFrame+1)
         for f in xrange(startFrame, endFrame+1):
             print "\n\nFrame: %d" % f
-            context.currentFrame(f)
+
+            # FIXME To get the correct camera position we have to use +1 here.
+            # Is there a bug somewhere in the Scene module?
+            context.currentFrame(f+1)
+            self.cameraObj = self._SCENE.objects.camera
 
             # Use some temporary workspace, a full copy of the scene
             inputScene = self._SCENE.copy(2)
-            # And Set our camera accordingly
-            self.cameraObj = inputScene.getCurrentCamera()
+
+            # To get the objects at this frame remove the +1 ...
+            ctx = inputScene.getRenderingContext()
+            ctx.currentFrame(f)
+
+
+            # Get a projector for this camera.
+            # NOTE: the projector wants object in world coordinates,
+            # so we should remember to apply modelview transformations
+            # _before_ we do projection transformations.
+            self.proj = Projector(self.cameraObj, self.canvasRatio)
 
             try:
                 renderedScene = self.doRenderScene(inputScene)
@@ -978,7 +1992,7 @@ class Renderer:
                 print traceback.print_exc()
 
                 self._SCENE.makeCurrent()
-                Scene.unlink(inputScene)
+                Scene.Unlink(inputScene)
                 del inputScene
                 return
 
@@ -986,10 +2000,10 @@ class Renderer:
                     doPrintPolygons = config.polygons['SHOW'],
                     doPrintEdges    = config.edges['SHOW'],
                     showHiddenEdges = config.edges['SHOW_HIDDEN'])
-            
+
             # delete the rendered scene
             self._SCENE.makeCurrent()
-            Scene.unlink(renderedScene)
+            Scene.Unlink(renderedScene)
             del renderedScene
 
         outputWriter.close()
@@ -999,13 +2013,17 @@ class Renderer:
 
     def doRenderScene(self, workScene):
         """Control the rendering process.
-        
+
         Here we control the entire rendering process invoking the operation
         needed to transform and project the 3D scene in two dimensions.
         """
-        
+
         # global processing of the scene
 
+        self._filterHiddenObjects(workScene)
+
+        self._buildLightSetup(workScene)
+
         self._doSceneClipping(workScene)
 
         self._doConvertGeometricObjsToMesh(workScene)
@@ -1014,10 +2032,11 @@ class Renderer:
             self._joinMeshObjectsInScene(workScene)
 
         self._doSceneDepthSorting(workScene)
-        
+
         # Per object activities
 
-        Objects = workScene.getChildren()
+        Objects = workScene.objects
+
         print "Total Objects: %d" % len(Objects)
         for i,obj in enumerate(Objects):
             print "\n\n-------"
@@ -1031,14 +2050,11 @@ class Renderer:
 
             mesh = obj.getData(mesh=1)
 
-            # Triangolarize the mesh??
-            for f in mesh.faces: f.sel = 1
-            mesh.quadToTriangle()
-
             self._doModelingTransformation(mesh, obj.matrix)
 
             self._doBackFaceCulling(mesh)
 
+
             # When doing HSR with NEWELL we may want to flip all normals
             # toward the viewer
             if config.polygons['HSR'] == "NEWELL":
@@ -1050,7 +2066,6 @@ class Renderer:
 
             self._doLighting(mesh)
 
-
             # Do "projection" now so we perform further processing
             # in Normalized View Coordinates
             self._doProjection(mesh, self.proj)
@@ -1061,7 +2076,6 @@ class Renderer:
 
             self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
 
-            
             # Update the object data, important! :)
             mesh.update()
 
@@ -1089,7 +2103,7 @@ class Renderer:
 
     def _isFaceVisible(self, face):
         """Determine if a face of an object is visible from the current camera.
-        
+
         The view vector is calculated from the camera location and one of the
         vertices of the face (expressed in World coordinates, after applying
         modelview transformations).
@@ -1126,7 +2140,7 @@ class Renderer:
 
         # if d > 0 the face is visible from the camera
         d = view_vect * normal
-        
+
         if d > 0:
             return True
         else:
@@ -1135,13 +2149,45 @@ class Renderer:
 
     # Scene methods
 
+    def _filterHiddenObjects(self, scene):
+        """Discard object that are on hidden layers in the scene.
+        """
+
+        Objects = scene.objects
+
+        visible_obj_list = [ obj for obj in Objects if
+                set(obj.layers).intersection(set(scene.getLayers())) ]
+
+        for o in Objects:
+            if o not in visible_obj_list:
+                scene.objects.unlink(o)
+
+        scene.update()
+
+
+
+    def _buildLightSetup(self, scene):
+        # Get the list of lighting sources
+        obj_lst = scene.objects
+        self.lights = [ o for o in obj_lst if o.getType() == 'Lamp' ]
+
+        # When there are no lights we use a default lighting source
+        # that have the same position of the camera
+        if len(self.lights) == 0:
+            l = Lamp.New('Lamp')
+            lobj = Object.New('Lamp')
+            lobj.loc = self.cameraObj.loc
+            lobj.link(l)
+            self.lights.append(lobj)
+
+
     def _doSceneClipping(self, scene):
         """Clip whole objects against the View Frustum.
 
         For now clip away only objects according to their center position.
         """
 
-        cpos = self._getObjPosition(self.cameraObj)
+        cam_pos = self._getObjPosition(self.cameraObj)
         view_vect = self._cameraViewVector()
 
         near = self.cameraObj.data.clipStart
@@ -1151,18 +2197,44 @@ class Renderer:
         fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
         fovy = fovy * 360.0/pi
 
-        Objects = scene.getChildren()
+        Objects = scene.objects
+
         for o in Objects:
             if o.getType() != 'Mesh': continue;
 
-            obj_vect = Vector(cpos) - self._getObjPosition(o)
+            """
+            obj_vect = Vector(cam_pos) - self._getObjPosition(o)
 
             d = obj_vect*view_vect
             theta = AngleBetweenVecs(obj_vect, view_vect)
-            
+
             # if the object is outside the view frustum, clip it away
             if (d < near) or (d > far) or (theta > fovy):
-                scene.unlink(o)
+                scene.objects.unlink(o)
+            """
+
+            # Use the object bounding box
+            # (whose points are already in WorldSpace Coordinate)
+
+            bb = o.getBoundBox()
+
+            points_outside = 0
+            for p in bb:
+                p_vect = Vector(cam_pos) - Vector(p)
+
+                d = p_vect * view_vect
+                theta = AngleBetweenVecs(p_vect, view_vect)
+
+                # Is this point outside the view frustum?
+                if (d < near) or (d > far) or (theta > fovy):
+                    points_outside += 1
+
+            # If the bb is all outside the view frustum we clip the whole
+            # object away
+            if points_outside == len(bb):
+                scene.objects.unlink(o)
+
+
 
     def _doConvertGeometricObjsToMesh(self, scene):
         """Convert all "geometric" objects to mesh ones.
@@ -1170,13 +2242,14 @@ class Renderer:
         geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
         #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
 
-        Objects = scene.getChildren()
+        Objects = scene.objects
+
         objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
         for obj in objList:
             old_obj = obj
             obj = self._convertToRawMeshObj(obj)
-            scene.link(obj)
-            scene.unlink(old_obj)
+            scene.objects.link(obj)
+            scene.objects.unlink(old_obj)
 
 
             # XXX Workaround for Text and Curve which have some normals
@@ -1200,29 +2273,37 @@ class Renderer:
 
         c = self._getObjPosition(self.cameraObj)
 
-        by_center_pos = (lambda o1, o2:
+        by_obj_center_pos = (lambda o1, o2:
                 (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
                 cmp((self._getObjPosition(o1) - Vector(c)).length,
                     (self._getObjPosition(o2) - Vector(c)).length)
             )
 
-        # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
-        # then ob1 goes farther than obj2, useful when obj2 has holes
-        by_bbox = None
-        
-        Objects = scene.getChildren()
-        Objects.sort(by_center_pos)
-        
+        # Implement sorting by bounding box, the object with the bb
+        # nearest to the camera should be drawn as last.
+        by_nearest_bbox_point = (lambda o1, o2:
+                (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+                cmp( min( [(Vector(p) - Vector(c)).length for p in o1.getBoundBox()] ),
+                     min( [(Vector(p) - Vector(c)).length for p in o2.getBoundBox()] )
+                )
+            )
+
+
+        Objects = list(scene.objects)
+
+        #Objects.sort(by_obj_center_pos)
+        Objects.sort(by_nearest_bbox_point)
+
         # update the scene
         for o in Objects:
-            scene.unlink(o)
-            scene.link(o)
+            scene.objects.unlink(o)
+            scene.objects.link(o)
 
     def _joinMeshObjectsInScene(self, scene):
         """Merge all the Mesh Objects in a scene into a single Mesh Object.
         """
 
-        oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
+        oList = [o for o in scene.objects if o.getType()=='Mesh']
 
         # FIXME: Object.join() do not work if the list contains 1 object
         if len(oList) == 1:
@@ -1232,23 +2313,23 @@ class Renderer:
         bigObj = Object.New('Mesh', 'BigOne')
         bigObj.link(mesh)
 
-        scene.link(bigObj)
+        scene.objects.link(bigObj)
 
         try:
             bigObj.join(oList)
         except RuntimeError:
             print "\nWarning! - Can't Join Objects\n"
-            scene.unlink(bigObj)
+            scene.objects.unlink(bigObj)
             return
         except TypeError:
             print "Objects Type error?"
-        
+
         for o in oList:
-            scene.unlink(o)
+            scene.objects.unlink(o)
 
         scene.update()
 
+
     # Per object/mesh methods
 
     def _convertToRawMeshObj(self, object):
@@ -1284,16 +2365,16 @@ class Renderer:
 
     def _doBackFaceCulling(self, mesh):
         """Simple Backface Culling routine.
-        
+
         At this level we simply do a visibility test face by face and then
         select the vertices belonging to visible faces.
         """
-        
+
         # Select all vertices, so edges can be displayed even if there are no
         # faces
         for v in mesh.verts:
             v.sel = 1
-        
+
         Mesh.Mode(Mesh.SelectModes['FACE'])
         # Loop on faces
         for f in mesh.faces:
@@ -1358,7 +2439,7 @@ class Renderer:
                 light_obj = l
                 light_pos = self._getObjPosition(l)
                 light = light_obj.getData()
-            
+
                 L = Vector(light_pos).normalize()
 
                 V = (Vector(camPos) - Vector(f.cent)).normalize()
@@ -1446,6 +2527,72 @@ class Renderer:
         """Clip faces against the View Frustum.
         """
 
+        # The Canonical View Volume, 8 vertices, and 6 faces,
+        # We consider its face normals pointing outside
+
+        v1 = NMesh.Vert(1, 1, -1)
+        v2 = NMesh.Vert(1, -1, -1)
+        v3 = NMesh.Vert(-1, -1, -1)
+        v4 = NMesh.Vert(-1, 1, -1)
+        v5 = NMesh.Vert(1, 1, 1)
+        v6 = NMesh.Vert(1, -1, 1)
+        v7 = NMesh.Vert(-1, -1, 1)
+        v8 = NMesh.Vert(-1, 1, 1)
+
+        cvv = []
+        f1 = NMesh.Face([v1, v4, v3, v2])
+        cvv.append(f1)
+        f2 = NMesh.Face([v5, v6, v7, v8])
+        cvv.append(f2)
+        f3 = NMesh.Face([v1, v2, v6, v5])
+        cvv.append(f3)
+        f4 = NMesh.Face([v2, v3, v7, v6])
+        cvv.append(f4)
+        f5 = NMesh.Face([v3, v4, v8, v7])
+        cvv.append(f5)
+        f6 = NMesh.Face([v4, v1, v5, v8])
+        cvv.append(f6)
+
+        nmesh = NMesh.GetRaw(mesh.name)
+        clippedfaces = nmesh.faces[:]
+        facelist = clippedfaces[:]
+
+        for clipface in cvv:
+
+            clippedfaces = []
+
+            for f in facelist:
+
+                #newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
+                newfaces = None
+
+                if not newfaces:
+                    # Check if the face is all outside the view frustum
+                    # TODO: Do this test before, it is more efficient
+                    points_outside = 0
+                    for v in f:
+                        if abs(v[0]) > 1-EPS or abs(v[1]) > 1-EPS or abs(v[2]) > 1-EPS:
+                            points_outside += 1
+
+                    if points_outside != len(f):
+                        clippedfaces.append(f)
+                else:
+                    for nf in newfaces:
+                        for v in nf:
+                            nmesh.verts.append(v)
+
+                        nf.mat = f.mat
+                        nf.sel = f.sel
+                        nf.col = [f.col[0]] * len(nf.v)
+
+                        clippedfaces.append(nf)
+            facelist = clippedfaces[:]
+
+
+        nmesh.faces = facelist
+        nmesh.update()
+
+
     # HSR routines
     def __simpleDepthSort(self, mesh):
         """Sort faces by the furthest vertex.
@@ -1454,7 +2601,8 @@ class Renderer:
         solves HSR correctly only for convex meshes.
         """
 
-        global progress
+        #global progress
+
         # The sorting requires circa n*log(n) steps
         n = len(mesh.faces)
         progress.setActivity("HSR: Painter", n*log(n))
@@ -1472,12 +2620,13 @@ class Renderer:
 
         nmesh.update()
 
+
     def __newellDepthSort(self, mesh):
         """Newell's depth sorting.
 
         """
 
-        from hsrtk import *
+        #global progress
 
         # Find non planar quads and convert them to triangle
         #for f in mesh.faces:
@@ -1490,6 +2639,7 @@ class Renderer:
         # Now reselect all faces
         for f in mesh.faces:
             f.sel = 1
+        mesh.quadToTriangle()
 
         # FIXME: using NMesh to sort faces. We should avoid that!
         nmesh = NMesh.GetRaw(mesh.name)
@@ -1498,7 +2648,6 @@ class Renderer:
         nmesh.faces.sort(by_furthest_z)
         nmesh.faces.reverse()
 
-        
         # Begin depth sort tests
 
         # use the smooth flag to set marked faces
@@ -1511,11 +2660,10 @@ class Renderer:
 
         # The steps are _at_least_ equal to len(facelist), we do not count the
         # feces coming out from splitting!!
-        global progress
         progress.setActivity("HSR: Newell", len(facelist))
         #progress.setQuiet(True)
 
-        
+
         while len(facelist):
             debug("\n----------------------\n")
             debug("len(facelits): %d\n" % len(facelist))
@@ -1524,9 +2672,9 @@ class Renderer:
             pSign = sign(P.normal[2])
 
             # We can discard faces parallel to the view vector
-            if P.normal[2] == 0:
-                facelist.remove(P)
-                continue
+            #if P.normal[2] == 0:
+            #    facelist.remove(P)
+            #    continue
 
             split_done = 0
             face_marked = 0
@@ -1539,13 +2687,13 @@ class Renderer:
 
                 qSign = sign(Q.normal[2])
                 # TODO: check also if Q is parallel??
+
                 # Test 0: We need to test only those Qs whose furthest vertex
                 # is closer to the observer than the closest vertex of P.
 
                 zP = [v.co[2] for v in P.v]
                 zQ = [v.co[2] for v in Q.v]
-                notZOverlap = min(zP) > max(zQ)+EPS
+                notZOverlap = min(zP) > max(zQ) + EPS
 
                 if notZOverlap:
                     debug("\nTest 0\n")
@@ -1557,7 +2705,7 @@ class Renderer:
                         debug("met a marked face\n")
                         continue
 
-                
+
                 # Test 1: X extent overlapping
                 xP = [v.co[0] for v in P.v]
                 xQ = [v.co[0] for v in Q.v]
@@ -1580,12 +2728,12 @@ class Renderer:
                     debug("\nTest 2\n")
                     debug("NOT Y OVERLAP!\n")
                     continue
-                
+
 
                 # Test 3: P vertices are all behind the plane of Q
                 n = 0
                 for Pi in P:
-                    d = qSign * Distance(Vector(Pi), Q)
+                    d = qSign * HSR.Distance(Vector(Pi), Q)
                     if d <= EPS:
                         n += 1
                 pVerticesBehindPlaneQ = (n == len(P))
@@ -1599,7 +2747,7 @@ class Renderer:
                 # Test 4: Q vertices in front of the plane of P
                 n = 0
                 for Qi in Q:
-                    d = pSign * Distance(Vector(Qi), P)
+                    d = pSign * HSR.Distance(Vector(Qi), P)
                     if d >= -EPS:
                         n += 1
                 qVerticesInFrontPlaneP = (n == len(Q))
@@ -1613,7 +2761,8 @@ class Renderer:
                 # Test 5: Check if projections of polygons effectively overlap,
                 # in previous tests we checked only bounding boxes.
 
-                if not projectionsOverlap(P, Q):
+                #if not projectionsOverlap(P, Q):
+                if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
                     debug("\nTest 5\n")
                     debug("Projections do not overlap!\n")
                     continue
@@ -1627,9 +2776,9 @@ class Renderer:
                     debug("Possibly a cycle detected!\n")
                     debug("Split here!!\n")
 
-                    facelist = facesplit(P, Q, facelist, nmesh)
+                    facelist = HSR.facesplit(P, Q, facelist, nmesh)
                     split_done = 1
-                    break 
+                    break
 
                 # The question now is: Does Q obscure P?
 
@@ -1637,7 +2786,7 @@ class Renderer:
                 # Test 3bis: Q vertices are all behind the plane of P
                 n = 0
                 for Qi in Q:
-                    d = pSign * Distance(Vector(Qi), P)
+                    d = pSign * HSR.Distance(Vector(Qi), P)
                     if d <= EPS:
                         n += 1
                 qVerticesBehindPlaneP = (n == len(Q))
@@ -1650,7 +2799,7 @@ class Renderer:
                 # Test 4bis: P vertices in front of the plane of Q
                 n = 0
                 for Pi in P:
-                    d = qSign * Distance(Vector(Pi), Q)
+                    d = qSign * HSR.Distance(Vector(Pi), Q)
                     if d >= -EPS:
                         n += 1
                 pVerticesInFrontPlaneQ = (n == len(P))
@@ -1659,7 +2808,7 @@ class Renderer:
                     debug("\nTest 4bis\n")
                     debug("P IN FRONT OF Q!\n")
 
-                
+
                 # We don't even know if Q does obscure P, so they should
                 # intersect each other, split one of them in two parts.
                 if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
@@ -1667,34 +2816,41 @@ class Renderer:
                     debug("Test 3bis or 4bis failed\n")
                     debug("Split here!!2\n")
 
-                    facelist = facesplit(P, Q, facelist, nmesh)
+                    facelist = HSR.facesplit(P, Q, facelist, nmesh)
                     split_done = 1
-                    break 
-                    
+                    break
+
                 facelist.remove(Q)
                 facelist.insert(0, Q)
                 Q.smooth = 1
                 face_marked = 1
                 debug("Q marked!\n")
                 break
-           
-            # Write P!                     
+
+            # Write P!
             if split_done == 0 and face_marked == 0:
                 facelist.remove(P)
                 maplist.append(P)
+                dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg")
 
                 progress.update()
 
-            if facelist == None:
-                maplist = [P, Q]
-                print [v.co for v in P]
-                print [v.co for v in Q]
-                break
+            if len(facelist) == 870:
+                dumpfaces([P, Q], "loopdebug.svg")
+
+
+            #if facelist == None:
+            #    maplist = [P, Q]
+            #    print [v.co for v in P]
+            #    print [v.co for v in Q]
+            #    break
 
             # end of while len(facelist)
-         
+
 
         nmesh.faces = maplist
+        #for f in nmesh.faces:
+        #    f.sel = 1
 
         nmesh.update()
 
@@ -1744,7 +2900,7 @@ class Renderer:
             if edgestyleSelect(e, mesh):
                 e.sel = 1
         """
-                
+        #
 
 
 # ---------------------------------------------------------------------
@@ -1758,10 +2914,10 @@ from Blender import BGL, Draw
 from Blender.BGL import *
 
 class GUI:
-    
+
     def _init():
 
-        # Output Format menu 
+        # Output Format menu
         output_format = config.output['FORMAT']
         default_value = outputWriters.keys().index(output_format)+1
         GUI.outFormatMenu = Draw.Create(default_value)
@@ -1778,7 +2934,7 @@ class GUI:
         # Render filled polygons
         GUI.polygonsToggle = Draw.Create(config.polygons['SHOW'])
 
-        # Shading Style menu 
+        # Shading Style menu
         shading_style = config.polygons['SHADING']
         default_value = shadingStyles.keys().index(shading_style)+1
         GUI.shadingStyleMenu = Draw.Create(default_value)
@@ -1795,7 +2951,7 @@ class GUI:
         GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN'])
         GUI.evtShowHiddenEdgesToggle = 5
 
-        # Edge Style menu 
+        # Edge Style menu
         edge_style = config.edges['STYLE']
         default_value = edgeStyles.keys().index(edge_style)+1
         GUI.edgeStyleMenu = Draw.Create(default_value)
@@ -1816,6 +2972,9 @@ class GUI:
         # Exit Button
         GUI.evtExitButton = 9
 
+        # Save default button
+        GUI.evtSaveDefaultButton = 99
+
     def draw():
 
         # initialize static members
@@ -1823,9 +2982,12 @@ class GUI:
 
         glClear(GL_COLOR_BUFFER_BIT)
         glColor3f(0.0, 0.0, 0.0)
-        glRasterPos2i(10, 350)
+        glRasterPos2i(10, 380)
         Draw.Text("VRM: Vector Rendering Method script. Version %s." %
                 __version__)
+        glRasterPos2i(10, 365)
+        Draw.Text("%s (c) 2006, 2007" % __author__)
+
         glRasterPos2i(10, 335)
         Draw.Text("Press Q or ESC to quit.")
 
@@ -1853,6 +3015,9 @@ class GUI:
                 "Start Rendering")
         Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!")
 
+        Draw.Button("Save settings as default", GUI.evtSaveDefaultButton, 10, 210-50, 160, 18,
+               "Save settings as default")
+
         # Rendering Styles
         glRasterPos2i(200, 310)
         Draw.Text("Rendering Style:")
@@ -1879,7 +3044,7 @@ class GUI:
                 "Render polygon edges")
 
         if GUI.showEdgesToggle.val == 1:
-            
+
             # Edge Style
             edgeStyleMenuStruct = "Edge Style %t"
             for t in edgeStyles.keys():
@@ -1903,8 +3068,6 @@ class GUI:
                     200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
                     "Render hidden edges as dashed lines")
 
-        glRasterPos2i(10, 160)
-        Draw.Text("%s (c) 2006" % __author__)
 
     def event(evt, val):
 
@@ -1923,6 +3086,9 @@ class GUI:
         elif evt == GUI.evtOutFormatMenu:
             i = GUI.outFormatMenu.val - 1
             config.output['FORMAT']= outputWriters.keys()[i]
+            # Set the new output file
+            global outputfile
+            outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
 
         elif evt == GUI.evtAnimToggle:
             config.output['ANIMATION'] = bool(GUI.animToggle.val)
@@ -1959,6 +3125,9 @@ class GUI:
             global outputfile
             Blender.Window.FileSelector(vectorize, label, outputfile)
 
+        elif evt == GUI.evtSaveDefaultButton:
+            config.saveToRegistry()
+
         else:
             print "Event: %d not handled!" % evt
 
@@ -1982,7 +3151,7 @@ class GUI:
 # A wrapper function for the vectorizing process
 def vectorize(filename):
     """The vectorizing process is as follows:
-     
+
      - Instanciate the writer and the renderer
      - Render!
      """
@@ -1997,20 +3166,26 @@ def vectorize(filename):
 
     actualWriter = outputWriters[config.output['FORMAT']]
     writer = actualWriter(filename)
-    
+
     renderer = Renderer()
     renderer.doRendering(writer, config.output['ANIMATION'])
 
-    if editmode: Window.EditMode(1) 
+    if editmode: Window.EditMode(1)
+
 
-# We use a global progress Indicator Object
-progress = None
 
 # Here the main
 if __name__ == "__main__":
 
     global progress
 
+    config.loadFromRegistry()
+
+    # initialize writer setting also here to configure writer specific
+    # settings on startup
+    actualWriter = outputWriters[config.output['FORMAT']]
+    writer = actualWriter("")
+
     outputfile = ""
     basename = Blender.sys.basename(Blender.Get('filename'))
     if basename != "":