Cleanup Newell's algorithm implementation
[vrm.git] / vrm.py
diff --git a/vrm.py b/vrm.py
index 82922f8..5e2c128 100755 (executable)
--- a/vrm.py
+++ b/vrm.py
@@ -85,13 +85,16 @@ from Blender.Mathutils import *
 from math import *
 import sys, time
 
+# Constants
+EPS = 10e-5
+
 
 # Some global settings
 
 class config:
     polygons = dict()
     polygons['SHOW'] = True
-    polygons['SHADING'] = 'FLAT'
+    polygons['SHADING'] = 'TOON'
     #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
     polygons['HSR'] = 'NEWELL'
     # Hidden to the user for now
@@ -102,7 +105,7 @@ class config:
     edges = dict()
     edges['SHOW'] = False
     edges['SHOW_HIDDEN'] = False
-    edges['STYLE'] = 'MESH'
+    edges['STYLE'] = 'MESH' # or SILHOUETTE
     edges['WIDTH'] = 2
     edges['COLOR'] = [0, 0, 0]
 
@@ -114,18 +117,14 @@ class config:
 
 
 # Utility functions
-print_debug = True
-def debug(msg):
-    if print_debug:
-        sys.stderr.write(msg)
-
 def sign(x):
-    if x == 0:
-        return 0
-    elif x < 0:
+
+    if x < 0:
         return -1
-    else:
+    elif x > 0:
         return 1
+    #else:
+    #    return 0
 
 
 # ---------------------------------------------------------------------
@@ -809,6 +808,7 @@ class SVGVectorWriter(VectorWriter):
             if color[3] != 255:
                 opacity = float(color[3])/255.0
                 opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+                #opacity_string = "opacity: %g;" % (opacity)
 
             self.file.write("\tstyle=\"fill:" + str_col + ";")
             self.file.write(opacity_string)
@@ -818,8 +818,9 @@ class SVGVectorWriter(VectorWriter):
             # see http://www.antigrain.com/svg/index.html for more info
             stroke_width = 1.0
 
-            if config.polygons['EXPANSION_TRICK']:
-                str_col = "#000000" # For debug
+            # EXPANSION TRICK is not that useful where there is transparency
+            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+                # str_col = "#000000" # For debug
                 self.file.write(" stroke:%s;\n" % str_col)
                 self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
                 self.file.write(" stroke-linecap:round;stroke-linejoin:round")
@@ -1030,19 +1031,26 @@ class Renderer:
 
             mesh = obj.getData(mesh=1)
 
+            # Triangolarize the mesh??
+            for f in mesh.faces: f.sel = 1
+            mesh.quadToTriangle()
+
             self._doModelingTransformation(mesh, obj.matrix)
 
             self._doBackFaceCulling(mesh)
-            if True:
+
+            # When doing HSR with NEWELL we may want to flip all normals
+            # toward the viewer
+            if config.polygons['HSR'] == "NEWELL":
                 for f in mesh.faces:
                     f.sel = 1-f.sel
                 mesh.flipNormals()
                 for f in mesh.faces:
                     f.sel = 1
 
-
             self._doLighting(mesh)
 
+
             # Do "projection" now so we perform further processing
             # in Normalized View Coordinates
             self._doProjection(mesh, self.proj)
@@ -1159,8 +1167,8 @@ class Renderer:
     def _doConvertGeometricObjsToMesh(self, scene):
         """Convert all "geometric" objects to mesh ones.
         """
-        #geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
-        geometricObjTypes = ['Mesh', 'Surf', 'Curve']
+        geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+        #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
 
         Objects = scene.getChildren()
         objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
@@ -1349,7 +1357,7 @@ class Renderer:
             for l in self.lights:
                 light_obj = l
                 light_pos = self._getObjPosition(l)
-                light = light_obj.data
+                light = light_obj.getData()
             
                 L = Vector(light_pos).normalize()
 
@@ -1450,10 +1458,9 @@ class Renderer:
         # The sorting requires circa n*log(n) steps
         n = len(mesh.faces)
         progress.setActivity("HSR: Painter", n*log(n))
-        
 
         by_furthest_z = (lambda f1, f2: progress.update() and
-                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
+                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
                 )
 
         # FIXME: using NMesh to sort faces. We should avoid that!
@@ -1465,71 +1472,24 @@ class Renderer:
 
         nmesh.update()
 
-    def __topologicalDepthSort(self, mesh):
-        """Occlusion based on topological occlusion.
-        
-        Build the occlusion graph of the mesh,
-        and then do topological sort on that graph
-        """
-        return
-
     def __newellDepthSort(self, mesh):
         """Newell's depth sorting.
 
         """
-        by_furthest_z = (lambda f1, f2:
-                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
-                )
-
-        mesh.quadToTriangle(0)
 
-        from split import Distance, isOnSegment
+        from hsrtk import *
 
-        def projectionsOverlap(P, Q):
+        # Find non planar quads and convert them to triangle
+        #for f in mesh.faces:
+        #    f.sel = 0
+        #    if is_nonplanar_quad(f.v):
+        #        print "NON QUAD??"
+        #        f.sel = 1
 
-            for i in range(0, len(P.v)):
 
-                v1 = Vector(P.v[i-1])
-                v1[2] = 0
-                v2 = Vector(P.v[i])
-                v2[2] = 0
-
-                EPS = 10e-7
-
-                for j in range(0, len(Q.v)):
-                    v3 = Vector(Q.v[j-1])
-                    v3[2] = 0
-                    v4 = Vector(Q.v[j])
-                    v4[2] = 0
-                    
-                    ret = LineIntersect(v1, v2, v3, v4)
-                    # if line v1-v2 and v3-v4 intersect both return
-                    # values are the same.
-                    if ret and ret[0] == ret[1]  and isOnSegment(v1, v2,
-                            ret[0], True) and isOnSegment(v3, v4, ret[1], True):
-
-
-                        l1 = (ret[0] - v1).length
-                        l2 = (ret[0] - v2).length
-
-                        l3 = (ret[1] - v3).length
-                        l4 = (ret[1] - v4).length
-
-                        if  (l1 < EPS or l2 < EPS) and (l3 < EPS or l4 < EPS):
-                            continue
-
-                        debug("Projections OVERLAP!!\n")
-                        debug("line1:"+
-                                " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
-                                " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
-                                "\n")
-                        debug("return: "+ str(ret)+"\n")
-                        return True
-
-            return False
-
-
-        from facesplit import facesplit
+        # Now reselect all faces
+        for f in mesh.faces:
+            f.sel = 1
 
         # FIXME: using NMesh to sort faces. We should avoid that!
         nmesh = NMesh.GetRaw(mesh.name)
@@ -1548,45 +1508,26 @@ class Renderer:
         facelist = nmesh.faces[:]
         maplist = []
 
-        EPS = 10e-8
-        #EPS = 0
 
-        global progress
         # The steps are _at_least_ equal to len(facelist), we do not count the
-        # feces coming out from plitting!!
+        # feces coming out from splitting!!
+        global progress
         progress.setActivity("HSR: Newell", len(facelist))
-        progress.setQuiet(True)
+        #progress.setQuiet(True)
 
         
-        steps = -1
-        split_done = 0
-        marked_face = 0
-
         while len(facelist):
-            print "\n----------------------"
+            debug("\n----------------------\n")
+            debug("len(facelits): %d\n" % len(facelist))
             P = facelist[0]
-            
-            #steps += 1
-            #if steps == 3:
-            #    maplist = facelist
-            #    break
-            print len(facelist)
-            if len(facelist) == 33:
-                #maplist = facelist
-                break
-
 
-            #pSign = 1
-            #if P.normal[2] < 0:
-            #    pSign = -1
             pSign = sign(P.normal[2])
 
-            # We can discard faces thar are perpendicular to the view
-            if pSign == 0:
+            # We can discard faces parallel to the view vector
+            if P.normal[2] == 0:
                 facelist.remove(P)
                 continue
 
-
             split_done = 0
             face_marked = 0
 
@@ -1596,19 +1537,17 @@ class Renderer:
                 debug("Q.smooth: " + str(Q.smooth) + "\n")
                 debug("\n")
 
-                #qSign = 1
-                #if Q.normal[2] < 0:
-                #    qSign = -1
                 qSign = sign(Q.normal[2])
+                # TODO: check also if Q is parallel??
  
-                # We need to test only those Qs whose furthest vertex
+                # Test 0: We need to test only those Qs whose furthest vertex
                 # is closer to the observer than the closest vertex of P.
 
                 zP = [v.co[2] for v in P.v]
                 zQ = [v.co[2] for v in Q.v]
-                ZOverlap = min(zP) < max(zQ)
+                notZOverlap = min(zP) > max(zQ)+EPS
 
-                if not ZOverlap:
+                if notZOverlap:
                     debug("\nTest 0\n")
                     debug("NOT Z OVERLAP!\n")
                     if Q.smooth == 0:
@@ -1617,21 +1556,25 @@ class Renderer:
                     else:
                         debug("met a marked face\n")
                         continue
+
                 
                 # Test 1: X extent overlapping
                 xP = [v.co[0] for v in P.v]
                 xQ = [v.co[0] for v in Q.v]
-                notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+                #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+                notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
 
                 if notXOverlap:
                     debug("\nTest 1\n")
                     debug("NOT X OVERLAP!\n")
                     continue
 
+
                 # Test 2: Y extent Overlapping
                 yP = [v.co[1] for v in P.v]
                 yQ = [v.co[1] for v in Q.v]
-                notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+                #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+                notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
 
                 if notYOverlap:
                     debug("\nTest 2\n")
@@ -1643,7 +1586,7 @@ class Renderer:
                 n = 0
                 for Pi in P:
                     d = qSign * Distance(Vector(Pi), Q)
-                    if d >= -EPS:
+                    if d <= EPS:
                         n += 1
                 pVerticesBehindPlaneQ = (n == len(P))
 
@@ -1657,7 +1600,7 @@ class Renderer:
                 n = 0
                 for Qi in Q:
                     d = pSign * Distance(Vector(Qi), P)
-                    if d <= EPS:
+                    if d >= -EPS:
                         n += 1
                 qVerticesInFrontPlaneP = (n == len(Q))
 
@@ -1666,39 +1609,36 @@ class Renderer:
                     debug("Q IN FRONT OF P!\n")
                     continue
 
-                # Test 5: Line Intersections... TODO
-                # Check if polygons effectively overlap each other, not only
-                # boundig boxes as done before.
-                # Since we We are working in normalized projection coordinates
-                # we kust check if polygons intersect.
+
+                # Test 5: Check if projections of polygons effectively overlap,
+                # in previous tests we checked only bounding boxes.
 
                 if not projectionsOverlap(P, Q):
                     debug("\nTest 5\n")
                     debug("Projections do not overlap!\n")
                     continue
 
+                # We still can't say if P obscures Q.
 
-                # We still do not know if P obscures Q.
-
-                # But if Q is marked we do a split trying to resolve a
+                # But if Q is marked we do a face-split trying to resolve a
                 # difficulty (maybe a visibility cycle).
                 if Q.smooth == 1:
                     # Split P or Q
                     debug("Possibly a cycle detected!\n")
                     debug("Split here!!\n")
-                    old_facelist = facelist[:]
+
                     facelist = facesplit(P, Q, facelist, nmesh)
                     split_done = 1
                     break 
 
-
                 # The question now is: Does Q obscure P?
 
+
                 # Test 3bis: Q vertices are all behind the plane of P
                 n = 0
                 for Qi in Q:
                     d = pSign * Distance(Vector(Qi), P)
-                    if d >= -EPS:
+                    if d <= EPS:
                         n += 1
                 qVerticesBehindPlaneP = (n == len(Q))
 
@@ -1711,7 +1651,7 @@ class Renderer:
                 n = 0
                 for Pi in P:
                     d = qSign * Distance(Vector(Pi), Q)
-                    if d <= EPS:
+                    if d >= -EPS:
                         n += 1
                 pVerticesInFrontPlaneQ = (n == len(P))
 
@@ -1727,76 +1667,37 @@ class Renderer:
                     debug("Test 3bis or 4bis failed\n")
                     debug("Split here!!2\n")
 
-                    old_facelist = facelist[:]
                     facelist = facesplit(P, Q, facelist, nmesh)
-
-                    steps += 1
-                    if steps == 2:
-                        maplist = [P, Q]
-                        print P, Q
                     split_done = 1
                     break 
-
                     
                 facelist.remove(Q)
                 facelist.insert(0, Q)
                 Q.smooth = 1
                 face_marked = 1
-
-                # Make merked faces BLUE. so to see them
-                #for c in Q.col:
-                #    c.r = 0
-                #    c.g = 0
-                #    c.b = 255
-                #    c.a = 255
-                
                 debug("Q marked!\n")
-                print [f.smooth for f in facelist]
                 break
            
             # Write P!                     
             if split_done == 0 and face_marked == 0:
-                P = facelist[0]
                 facelist.remove(P)
                 maplist.append(P)
 
                 progress.update()
-                #if progress.progressModel.getProgress() == 100:
-                #    break
-            if steps == 2:
-                """
-                for c in Q.col:
-                    c.r = 0
-                    c.g = 0
-                    c.b = 255
-                    c.a = 255
-                for c in P.col:
-                    c.r = 0
-                    c.g = 0
-                    c.b = 255
-                    c.a = 255
-                """
-                print steps
-                #maplist.append(P)
-                #maplist.append(Q)
-
-               # for f in facelist:
-               #     if f not in old_facelist:
-               #         print "splitted?"
-               #         maplist.append(f)
 
+            if facelist == None:
+                maplist = [P, Q]
+                print [v.co for v in P]
+                print [v.co for v in Q]
                 break
-            """
-            """
 
+            # end of while len(facelist)
          
 
         nmesh.faces = maplist
 
-        for f in nmesh.faces:
-            f.sel = 1
         nmesh.update()
-        print nmesh.faces
+
 
     def _doHiddenSurfaceRemoval(self, mesh):
         """Do HSR for the given mesh.