from math import *
import sys, time
+# Constants
+EPS = 10e-5
+
# Some global settings
class config:
polygons = dict()
polygons['SHOW'] = True
- polygons['SHADING'] = 'FLAT'
+ polygons['SHADING'] = 'TOON'
#polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
polygons['HSR'] = 'NEWELL'
# Hidden to the user for now
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
- edges['STYLE'] = 'MESH'
+ edges['STYLE'] = 'MESH' # or SILHOUETTE
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
# Utility functions
-print_debug = True
-def debug(msg):
- if print_debug:
- sys.stderr.write(msg)
-
def sign(x):
- if x == 0:
- return 0
- elif x < 0:
+
+ if x < 0:
return -1
- else:
+ elif x > 0:
return 1
+ #else:
+ # return 0
# ---------------------------------------------------------------------
if color[3] != 255:
opacity = float(color[3])/255.0
opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+ #opacity_string = "opacity: %g;" % (opacity)
self.file.write("\tstyle=\"fill:" + str_col + ";")
self.file.write(opacity_string)
# see http://www.antigrain.com/svg/index.html for more info
stroke_width = 1.0
- if config.polygons['EXPANSION_TRICK']:
- str_col = "#000000" # For debug
+ # EXPANSION TRICK is not that useful where there is transparency
+ if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+ # str_col = "#000000" # For debug
self.file.write(" stroke:%s;\n" % str_col)
self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
mesh = obj.getData(mesh=1)
+ # Triangolarize the mesh??
+ for f in mesh.faces: f.sel = 1
+ mesh.quadToTriangle()
+
self._doModelingTransformation(mesh, obj.matrix)
self._doBackFaceCulling(mesh)
- if True:
+
+ # When doing HSR with NEWELL we may want to flip all normals
+ # toward the viewer
+ if config.polygons['HSR'] == "NEWELL":
for f in mesh.faces:
f.sel = 1-f.sel
mesh.flipNormals()
for f in mesh.faces:
f.sel = 1
-
self._doLighting(mesh)
+
# Do "projection" now so we perform further processing
# in Normalized View Coordinates
self._doProjection(mesh, self.proj)
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
"""
- #geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
- geometricObjTypes = ['Mesh', 'Surf', 'Curve']
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
Objects = scene.getChildren()
objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
for l in self.lights:
light_obj = l
light_pos = self._getObjPosition(l)
- light = light_obj.data
+ light = light_obj.getData()
L = Vector(light_pos).normalize()
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
progress.setActivity("HSR: Painter", n*log(n))
-
by_furthest_z = (lambda f1, f2: progress.update() and
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
)
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh.update()
- def __topologicalDepthSort(self, mesh):
- """Occlusion based on topological occlusion.
-
- Build the occlusion graph of the mesh,
- and then do topological sort on that graph
- """
- return
-
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
"""
- by_furthest_z = (lambda f1, f2:
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
- )
-
- mesh.quadToTriangle(0)
- from split import Distance, isOnSegment
+ from hsrtk import *
- def projectionsOverlap(P, Q):
+ # Find non planar quads and convert them to triangle
+ #for f in mesh.faces:
+ # f.sel = 0
+ # if is_nonplanar_quad(f.v):
+ # print "NON QUAD??"
+ # f.sel = 1
- for i in range(0, len(P.v)):
- v1 = Vector(P.v[i-1])
- v1[2] = 0
- v2 = Vector(P.v[i])
- v2[2] = 0
-
- EPS = 10e-7
-
- for j in range(0, len(Q.v)):
- v3 = Vector(Q.v[j-1])
- v3[2] = 0
- v4 = Vector(Q.v[j])
- v4[2] = 0
-
- ret = LineIntersect(v1, v2, v3, v4)
- # if line v1-v2 and v3-v4 intersect both return
- # values are the same.
- if ret and ret[0] == ret[1] and isOnSegment(v1, v2,
- ret[0], True) and isOnSegment(v3, v4, ret[1], True):
-
-
- l1 = (ret[0] - v1).length
- l2 = (ret[0] - v2).length
-
- l3 = (ret[1] - v3).length
- l4 = (ret[1] - v4).length
-
- if (l1 < EPS or l2 < EPS) and (l3 < EPS or l4 < EPS):
- continue
-
- debug("Projections OVERLAP!!\n")
- debug("line1:"+
- " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
- " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
- "\n")
- debug("return: "+ str(ret)+"\n")
- return True
-
- return False
-
-
- from facesplit import facesplit
+ # Now reselect all faces
+ for f in mesh.faces:
+ f.sel = 1
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
facelist = nmesh.faces[:]
maplist = []
- EPS = 10e-8
- #EPS = 0
- global progress
# The steps are _at_least_ equal to len(facelist), we do not count the
- # feces coming out from plitting!!
+ # feces coming out from splitting!!
+ global progress
progress.setActivity("HSR: Newell", len(facelist))
- progress.setQuiet(True)
+ #progress.setQuiet(True)
- steps = -1
- split_done = 0
- marked_face = 0
-
while len(facelist):
- print "\n----------------------"
+ debug("\n----------------------\n")
+ debug("len(facelits): %d\n" % len(facelist))
P = facelist[0]
-
- #steps += 1
- #if steps == 3:
- # maplist = facelist
- # break
- print len(facelist)
- if len(facelist) == 33:
- #maplist = facelist
- break
-
- #pSign = 1
- #if P.normal[2] < 0:
- # pSign = -1
pSign = sign(P.normal[2])
- # We can discard faces thar are perpendicular to the view
- if pSign == 0:
+ # We can discard faces parallel to the view vector
+ if P.normal[2] == 0:
facelist.remove(P)
continue
-
split_done = 0
face_marked = 0
debug("Q.smooth: " + str(Q.smooth) + "\n")
debug("\n")
- #qSign = 1
- #if Q.normal[2] < 0:
- # qSign = -1
qSign = sign(Q.normal[2])
+ # TODO: check also if Q is parallel??
- # We need to test only those Qs whose furthest vertex
+ # Test 0: We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
zP = [v.co[2] for v in P.v]
zQ = [v.co[2] for v in Q.v]
- ZOverlap = min(zP) < max(zQ)
+ notZOverlap = min(zP) > max(zQ)+EPS
- if not ZOverlap:
+ if notZOverlap:
debug("\nTest 0\n")
debug("NOT Z OVERLAP!\n")
if Q.smooth == 0:
else:
debug("met a marked face\n")
continue
+
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
- notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
if notXOverlap:
debug("\nTest 1\n")
debug("NOT X OVERLAP!\n")
continue
+
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
- notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
if notYOverlap:
debug("\nTest 2\n")
n = 0
for Pi in P:
d = qSign * Distance(Vector(Pi), Q)
- if d >= -EPS:
+ if d <= EPS:
n += 1
pVerticesBehindPlaneQ = (n == len(P))
n = 0
for Qi in Q:
d = pSign * Distance(Vector(Qi), P)
- if d <= EPS:
+ if d >= -EPS:
n += 1
qVerticesInFrontPlaneP = (n == len(Q))
debug("Q IN FRONT OF P!\n")
continue
- # Test 5: Line Intersections... TODO
- # Check if polygons effectively overlap each other, not only
- # boundig boxes as done before.
- # Since we We are working in normalized projection coordinates
- # we kust check if polygons intersect.
+
+ # Test 5: Check if projections of polygons effectively overlap,
+ # in previous tests we checked only bounding boxes.
if not projectionsOverlap(P, Q):
debug("\nTest 5\n")
debug("Projections do not overlap!\n")
continue
+ # We still can't say if P obscures Q.
- # We still do not know if P obscures Q.
-
- # But if Q is marked we do a split trying to resolve a
+ # But if Q is marked we do a face-split trying to resolve a
# difficulty (maybe a visibility cycle).
if Q.smooth == 1:
# Split P or Q
debug("Possibly a cycle detected!\n")
debug("Split here!!\n")
- old_facelist = facelist[:]
+
facelist = facesplit(P, Q, facelist, nmesh)
split_done = 1
break
-
# The question now is: Does Q obscure P?
+
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
d = pSign * Distance(Vector(Qi), P)
- if d >= -EPS:
+ if d <= EPS:
n += 1
qVerticesBehindPlaneP = (n == len(Q))
n = 0
for Pi in P:
d = qSign * Distance(Vector(Pi), Q)
- if d <= EPS:
+ if d >= -EPS:
n += 1
pVerticesInFrontPlaneQ = (n == len(P))
debug("Test 3bis or 4bis failed\n")
debug("Split here!!2\n")
- old_facelist = facelist[:]
facelist = facesplit(P, Q, facelist, nmesh)
-
- steps += 1
- if steps == 2:
- maplist = [P, Q]
- print P, Q
split_done = 1
break
-
facelist.remove(Q)
facelist.insert(0, Q)
Q.smooth = 1
face_marked = 1
-
- # Make merked faces BLUE. so to see them
- #for c in Q.col:
- # c.r = 0
- # c.g = 0
- # c.b = 255
- # c.a = 255
-
debug("Q marked!\n")
- print [f.smooth for f in facelist]
break
# Write P!
if split_done == 0 and face_marked == 0:
- P = facelist[0]
facelist.remove(P)
maplist.append(P)
progress.update()
- #if progress.progressModel.getProgress() == 100:
- # break
- if steps == 2:
- """
- for c in Q.col:
- c.r = 0
- c.g = 0
- c.b = 255
- c.a = 255
- for c in P.col:
- c.r = 0
- c.g = 0
- c.b = 255
- c.a = 255
- """
- print steps
- #maplist.append(P)
- #maplist.append(Q)
-
- # for f in facelist:
- # if f not in old_facelist:
- # print "splitted?"
- # maplist.append(f)
+ if facelist == None:
+ maplist = [P, Q]
+ print [v.co for v in P]
+ print [v.co for v in Q]
break
- """
- """
+ # end of while len(facelist)
nmesh.faces = maplist
- for f in nmesh.faces:
- f.sel = 1
nmesh.update()
- print nmesh.faces
+
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.