# * The SVG output is now SVG 1.0 valid.
# Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
# * Progress indicator during HSR.
+# * Initial SWF output support
+# * Fixed a bug in the animation code, now the projection matrix is
+# recalculated at each frame!
#
# ---------------------------------------------------------------------
from math import *
import sys, time
+# Constants
+EPS = 10e-5
+
+# We use a global progress Indicator Object
+progress = None
+
# Some global settings
polygons['SHOW'] = True
polygons['SHADING'] = 'FLAT'
#polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
- polygons['HSR'] = 'NEWELL'
+ polygons['HSR'] = 'PAINTER'
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
- edges['STYLE'] = 'MESH'
+ edges['STYLE'] = 'MESH' # or SILHOUETTE
+ edges['STYLE'] = 'SILHOUETTE'
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
output = dict()
output['FORMAT'] = 'SVG'
- output['ANIMATION'] = False
+ output['FORMAT'] = 'SWF'
+ output['ANIMATION'] = True
output['JOIN_OBJECTS'] = True
# Utility functions
-print_debug = True
-def debug(msg):
- if print_debug:
- sys.stderr.write(msg)
-
def sign(x):
- if x == 0:
- return 0
- elif x < 0:
+
+ if x < -EPS:
return -1
- else:
+ elif x > EPS:
return 1
+ else:
+ return 0
# ---------------------------------------------------------------------
return
def close(self):
- self.file.close()
+ if self.file:
+ self.file.close()
return
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
if color[3] != 255:
opacity = float(color[3])/255.0
opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+ #opacity_string = "opacity: %g;" % (opacity)
self.file.write("\tstyle=\"fill:" + str_col + ";")
self.file.write(opacity_string)
# see http://www.antigrain.com/svg/index.html for more info
stroke_width = 1.0
- if config.polygons['EXPANSION_TRICK']:
- str_col = "#000000" # For debug
+ # EXPANSION TRICK is not that useful where there is transparency
+ if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+ # str_col = "#000000" # For debug
self.file.write(" stroke:%s;\n" % str_col)
self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
self.file.write("</g>\n")
+## SWF Writer
+
+from ming import *
+
+class SWFVectorWriter(VectorWriter):
+ """A concrete class for writing SWF output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.movie = None
+ self.sprite = None
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+ self.movie = SWFMovie()
+ self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+ # set fps
+ self.movie.setRate(25)
+ numframes = endFrame - startFrame + 1
+ self.movie.setFrames(numframes)
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self.movie.save(self.outputFileName)
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ Objects = scene.getChildren()
+
+ if self.sprite:
+ self.movie.remove(self.sprite)
+
+ sprite = SWFSprite()
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh, sprite)
+
+ if doPrintEdges:
+ self._printEdges(mesh, sprite, showHiddenEdges)
+
+ sprite.nextFrame()
+ i = self.movie.add(sprite)
+ # Remove the instance the next time
+ self.sprite = i
+ if self.animation:
+ self.movie.nextFrame()
+
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printPolygons(self, mesh, sprite):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r, fcol.g, fcol.b, fcol.a]
+ else:
+ color = [255, 255, 255, 255]
+
+ s = SWFShape()
+ f = s.addFill(color[0], color[1], color[2], color[3])
+ s.setRightFill(f)
+
+ # The starting point of the shape
+ p0 = self._calcCanvasCoord(face.verts[0])
+ s.movePenTo(p0[0], p0[1])
+
+
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ s.drawLineTo(p[0], p[1])
+
+ # Closing the shape
+ s.drawLineTo(p0[0], p0[1])
+ s.end()
+ sprite.add(s)
+
+
+ """
+ # use the stroke property to alleviate the "adjacent edges" problem,
+ # we simulate polygon expansion using borders,
+ # see http://www.antigrain.com/svg/index.html for more info
+ stroke_width = 1.0
+
+ # EXPANSION TRICK is not that useful where there is transparency
+ if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+ # str_col = "#000000" # For debug
+ self.file.write(" stroke:%s;\n" % str_col)
+ self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+ self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+
+ """
+
+ def _printEdges(self, mesh, sprite, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ s = SWFShape()
+
+ for e in mesh.edges:
+
+ #Next, we set the line width and color for our shape.
+ s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+ 255)
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ # SWF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner and half-trasparent
+ s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
+ stroke_col[2], 128)
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ # FIXME: this is just a qorkaround, remove that after the
+ # implementation of propoer Viewport clipping
+ if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000:
+ s.movePenTo(p1[0], p1[1])
+ s.drawLineTo(p2[0], p2[1])
+
+
+ s.end()
+ sprite.add(s)
+
+
+
# ---------------------------------------------------------------------
#
## Rendering Classes
# A dictionary to collect the supported output formats
outputWriters = dict()
outputWriters['SVG'] = SVGVectorWriter
+outputWriters['SWF'] = SWFVectorWriter
class Renderer:
# Render from the currently active camera
self.cameraObj = self._SCENE.getCurrentCamera()
- # Get a projector for this camera.
- # NOTE: the projector wants object in world coordinates,
- # so we should remember to apply modelview transformations
- # _before_ we do projection transformations.
- self.proj = Projector(self.cameraObj, self.canvasRatio)
-
# Get the list of lighting sources
obj_lst = self._SCENE.getChildren()
self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
# And Set our camera accordingly
self.cameraObj = inputScene.getCurrentCamera()
+ # Get a projector for this camera.
+ # NOTE: the projector wants object in world coordinates,
+ # so we should remember to apply modelview transformations
+ # _before_ we do projection transformations.
+ self.proj = Projector(self.cameraObj, self.canvasRatio)
+
try:
renderedScene = self.doRenderScene(inputScene)
except :
self._doModelingTransformation(mesh, obj.matrix)
self._doBackFaceCulling(mesh)
- if True:
+
+
+ # When doing HSR with NEWELL we may want to flip all normals
+ # toward the viewer
+ if config.polygons['HSR'] == "NEWELL":
for f in mesh.faces:
f.sel = 1-f.sel
mesh.flipNormals()
for f in mesh.faces:
f.sel = 1
-
self._doLighting(mesh)
# Do "projection" now so we perform further processing
self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
-
# Update the object data, important! :)
mesh.update()
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
"""
- #geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
- geometricObjTypes = ['Mesh', 'Surf', 'Curve']
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
Objects = scene.getChildren()
objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
for l in self.lights:
light_obj = l
light_pos = self._getObjPosition(l)
- light = light_obj.data
+ light = light_obj.getData()
L = Vector(light_pos).normalize()
solves HSR correctly only for convex meshes.
"""
- global progress
+ #global progress
+
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
progress.setActivity("HSR: Painter", n*log(n))
-
by_furthest_z = (lambda f1, f2: progress.update() and
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
)
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh.update()
- def __topologicalDepthSort(self, mesh):
- """Occlusion based on topological occlusion.
-
- Build the occlusion graph of the mesh,
- and then do topological sort on that graph
- """
- return
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
"""
- by_furthest_z = (lambda f1, f2:
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
- )
-
- mesh.quadToTriangle(0)
+ from hsrtk import *
- from split import Distance, isOnSegment
+ #global progress
- def projectionsOverlap(P, Q):
+ # Find non planar quads and convert them to triangle
+ #for f in mesh.faces:
+ # f.sel = 0
+ # if is_nonplanar_quad(f.v):
+ # print "NON QUAD??"
+ # f.sel = 1
- for i in range(0, len(P.v)):
- v1 = Vector(P.v[i-1])
- v1[2] = 0
- v2 = Vector(P.v[i])
- v2[2] = 0
-
- EPS = 10e-7
-
- for j in range(0, len(Q.v)):
- v3 = Vector(Q.v[j-1])
- v3[2] = 0
- v4 = Vector(Q.v[j])
- v4[2] = 0
-
- ret = LineIntersect(v1, v2, v3, v4)
- # if line v1-v2 and v3-v4 intersect both return
- # values are the same.
- if ret and ret[0] == ret[1] and isOnSegment(v1, v2,
- ret[0], True) and isOnSegment(v3, v4, ret[1], True):
-
-
- l1 = (ret[0] - v1).length
- l2 = (ret[0] - v2).length
-
- l3 = (ret[1] - v3).length
- l4 = (ret[1] - v4).length
-
- if (l1 < EPS or l2 < EPS) and (l3 < EPS or l4 < EPS):
- continue
-
- debug("Projections OVERLAP!!\n")
- debug("line1:"+
- " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
- " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
- "\n")
- debug("return: "+ str(ret)+"\n")
- return True
-
- return False
-
-
- from facesplit import facesplit
+ # Now reselect all faces
+ for f in mesh.faces:
+ f.sel = 1
+ mesh.quadToTriangle()
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
nmesh.faces.sort(by_furthest_z)
nmesh.faces.reverse()
-
# Begin depth sort tests
# use the smooth flag to set marked faces
facelist = nmesh.faces[:]
maplist = []
- EPS = 10e-8
- #EPS = 0
- global progress
# The steps are _at_least_ equal to len(facelist), we do not count the
- # feces coming out from plitting!!
+ # feces coming out from splitting!!
progress.setActivity("HSR: Newell", len(facelist))
- progress.setQuiet(True)
+ #progress.setQuiet(True)
- steps = -1
- split_done = 0
- marked_face = 0
-
while len(facelist):
- print "\n----------------------"
+ debug("\n----------------------\n")
+ debug("len(facelits): %d\n" % len(facelist))
P = facelist[0]
-
- #steps += 1
- #if steps == 3:
- # maplist = facelist
- # break
- print len(facelist)
- if len(facelist) == 33:
- #maplist = facelist
- break
-
- #pSign = 1
- #if P.normal[2] < 0:
- # pSign = -1
pSign = sign(P.normal[2])
- # We can discard faces thar are perpendicular to the view
- if pSign == 0:
- facelist.remove(P)
- continue
-
+ # We can discard faces parallel to the view vector
+ #if P.normal[2] == 0:
+ # facelist.remove(P)
+ # continue
split_done = 0
face_marked = 0
debug("Q.smooth: " + str(Q.smooth) + "\n")
debug("\n")
- #qSign = 1
- #if Q.normal[2] < 0:
- # qSign = -1
qSign = sign(Q.normal[2])
+ # TODO: check also if Q is parallel??
- # We need to test only those Qs whose furthest vertex
+ # Test 0: We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
zP = [v.co[2] for v in P.v]
zQ = [v.co[2] for v in Q.v]
- ZOverlap = min(zP) < max(zQ)
+ notZOverlap = min(zP) > max(zQ) + EPS
- if not ZOverlap:
+ if notZOverlap:
debug("\nTest 0\n")
debug("NOT Z OVERLAP!\n")
if Q.smooth == 0:
else:
debug("met a marked face\n")
continue
+
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
- notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
if notXOverlap:
debug("\nTest 1\n")
debug("NOT X OVERLAP!\n")
continue
+
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
- notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
if notYOverlap:
debug("\nTest 2\n")
n = 0
for Pi in P:
d = qSign * Distance(Vector(Pi), Q)
- if d >= -EPS:
+ if d <= EPS:
n += 1
pVerticesBehindPlaneQ = (n == len(P))
n = 0
for Qi in Q:
d = pSign * Distance(Vector(Qi), P)
- if d <= EPS:
+ if d >= -EPS:
n += 1
qVerticesInFrontPlaneP = (n == len(Q))
debug("Q IN FRONT OF P!\n")
continue
- # Test 5: Line Intersections... TODO
- # Check if polygons effectively overlap each other, not only
- # boundig boxes as done before.
- # Since we We are working in normalized projection coordinates
- # we kust check if polygons intersect.
+
+ # Test 5: Check if projections of polygons effectively overlap,
+ # in previous tests we checked only bounding boxes.
if not projectionsOverlap(P, Q):
debug("\nTest 5\n")
debug("Projections do not overlap!\n")
continue
+ # We still can't say if P obscures Q.
- # We still do not know if P obscures Q.
-
- # But if Q is marked we do a split trying to resolve a
+ # But if Q is marked we do a face-split trying to resolve a
# difficulty (maybe a visibility cycle).
if Q.smooth == 1:
# Split P or Q
debug("Possibly a cycle detected!\n")
debug("Split here!!\n")
- old_facelist = facelist[:]
+
facelist = facesplit(P, Q, facelist, nmesh)
split_done = 1
break
-
# The question now is: Does Q obscure P?
+
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
d = pSign * Distance(Vector(Qi), P)
- if d >= -EPS:
+ if d <= EPS:
n += 1
qVerticesBehindPlaneP = (n == len(Q))
n = 0
for Pi in P:
d = qSign * Distance(Vector(Pi), Q)
- if d <= EPS:
+ if d >= -EPS:
n += 1
pVerticesInFrontPlaneQ = (n == len(P))
debug("Test 3bis or 4bis failed\n")
debug("Split here!!2\n")
- old_facelist = facelist[:]
facelist = facesplit(P, Q, facelist, nmesh)
-
- steps += 1
- if steps == 2:
- maplist = [P, Q]
- print P, Q
split_done = 1
break
-
facelist.remove(Q)
facelist.insert(0, Q)
Q.smooth = 1
face_marked = 1
-
- # Make merked faces BLUE. so to see them
- #for c in Q.col:
- # c.r = 0
- # c.g = 0
- # c.b = 255
- # c.a = 255
-
debug("Q marked!\n")
- print [f.smooth for f in facelist]
break
# Write P!
if split_done == 0 and face_marked == 0:
- P = facelist[0]
facelist.remove(P)
maplist.append(P)
progress.update()
- #if progress.progressModel.getProgress() == 100:
- # break
- if steps == 2:
- """
- for c in Q.col:
- c.r = 0
- c.g = 0
- c.b = 255
- c.a = 255
- for c in P.col:
- c.r = 0
- c.g = 0
- c.b = 255
- c.a = 255
- """
- print steps
- #maplist.append(P)
- #maplist.append(Q)
-
- # for f in facelist:
- # if f not in old_facelist:
- # print "splitted?"
- # maplist.append(f)
- break
- """
- """
+ #if facelist == None:
+ # maplist = [P, Q]
+ # print [v.co for v in P]
+ # print [v.co for v in Q]
+ # break
+ # end of while len(facelist)
nmesh.faces = maplist
-
for f in nmesh.faces:
f.sel = 1
+
nmesh.update()
- print nmesh.faces
+
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.
if editmode: Window.EditMode(1)
-# We use a global progress Indicator Object
-progress = None
-
# Here the main
if __name__ == "__main__":