polygons['SHOW'] = True
polygons['SHADING'] = 'FLAT'
polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
- #polygons['HSR'] = 'NEWELL'
+ polygons['HSR'] = 'NEWELL'
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
# Debug utility function
-print_debug = False
+print_debug = True
def debug(msg):
if print_debug:
sys.stderr.write(msg)
self.refresh_rate = 10
self.shows_counter = 0
+ self.quiet = False
+
self.progressModel = None
+ def setQuiet(self, value):
+ self.quiet = value
+
def setActivity(self, name, steps):
"""Initialize the Model.
assert(self.progressModel)
if self.progressModel.update():
+ if self.quiet:
+ return
+
self.show(self.progressModel.getProgress(),
self.progressModel.getName())
stroke_width = 1.0
if config.polygons['EXPANSION_TRICK']:
+ str_col = "#000000" # For debug
self.file.write(" stroke:%s;\n" % str_col)
self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
Objects = workScene.getChildren()
print "Total Objects: %d" % len(Objects)
for i,obj in enumerate(Objects):
+ print "\n\n-------"
print "Rendering Object: %d" % i
if obj.getType() != 'Mesh':
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
"""
- geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ #geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve']
Objects = scene.getChildren()
objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
mat = None
if materials:
mat = materials[f.mat]
- # Check if it is a shadeless material
- if mat.getMode() & Material.Modes['SHADELESS']:
- I = mat.getRGBCol()
- # Convert to a value between 0 and 255
- tmp_col = [ int(c * 255.0) for c in I]
-
- for c in f.col:
- c.r = tmp_col[0]
- c.g = tmp_col[1]
- c.b = tmp_col[2]
- #c.a = tmp_col[3]
-
- continue
-
-
# A new default material
if mat == None:
mat = Material.New('defMat')
+ # Check if it is a shadeless material
+ elif mat.getMode() & Material.Modes['SHADELESS']:
+ I = mat.getRGBCol()
+ # Convert to a value between 0 and 255
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ for c in f.col:
+ c.r = tmp_col[0]
+ c.g = tmp_col[1]
+ c.b = tmp_col[2]
+ #c.a = tmp_col[3]
+
+ continue
+
+
# do vertex color calculation
TotDiffSpec = Vector([0.0, 0.0, 0.0])
cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
)
+
+ def isOnSegment(v1, v2, p):
+
+ # when p is at extreme points
+ if p == v1 or p == v2:
+ return False
+
+
+ EPS = 10e-7
+
+ l1 = (v1-p).length
+ l2 = (v2-p).length
+ l = (v1-v2).length
+
+ print "l: ", l, " l1: ", l1, " l2: ", l2, "diff: %.9f" % (l - (l1+l2) )
+
+ if abs(l - (l1+l2)) < EPS:
+ return True
+ else:
+ return False
+
+
+
def Distance(point, face):
""" Calculate the distance between a point and a face.
#d = abs( (point * plNormal ) - (plVert0 * plNormal) )
d = (point * plNormal ) - (plVert0 * plNormal)
- debug("d: "+ str(d) + "\n")
+ debug("d: %.10f - sel: %d, %s\n" % (d, face.sel, str(point)) )
return d
facelist = nmesh.faces[:]
maplist = []
- EPS = 10e-7
+ #EPS = 10e-7
+ EPS = 0
global progress
progress.setActivity("HSR: Newell", len(facelist))
+ progress.setQuiet(True)
+ #while len(facelist)-1:
while len(facelist):
P = facelist[0]
if P.sel == 0:
pSign = -1
+ #while False:
for Q in facelist[1:]:
debug("P.smooth: " + str(P.smooth) + "\n")
qSign = 1
if Q.sel == 0:
qSign = -1
-
+
# We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
ZOverlap = min(zP) < max(zQ)
if not ZOverlap:
+ debug("\nTest 0\n")
+ debug("NOT Z OVERLAP!\n")
if not Q.smooth:
# We can safely print P
break
notXOverlap = (max(xP) < min(xQ)) or (max(xQ) < min(xP))
if notXOverlap:
+ debug("\nTest 1\n")
+ debug("NOT X OVERLAP!\n")
continue
# Test 2: Y extent Overlapping
notYOverlap = (max(yP) < min(yQ)) or (max(yQ) < min(yP))
if notYOverlap:
+ debug("\nTest 2\n")
+ debug("NOT Y OVERLAP!\n")
continue
# Test 3: P vertices are all behind the plane of Q
n = 0
for Pi in P:
+ print P.col[0]
d = qSign * Distance(Vector(Pi), Q)
- if d < EPS:
+ if d > EPS:
n += 1
pVerticesBehindPlaneQ = (n == len(P))
# Test 4: Q vertices in front of the plane of P
n = 0
for Qi in Q:
+ print Q.col[0]
d = pSign * Distance(Vector(Qi), P)
- if d >= EPS:
+ if d <= EPS:
n += 1
qVerticesInFrontPlaneP = (n == len(Q))
continue
# Test 5: Line Intersections... TODO
+ # Check if polygons effectively overlap each other, not only
+ # boundig boxes as dome before.
+ # Since we We are working in normalized projection coordinates
+ # we kust check if polygons intersect.
+
+ def projectionsOverlap(P, Q):
+
+ for i in range(0, len(P.v)):
+
+ v1 = Vector(P.v[i-1])
+ v1[2] = 0
+ v2 = Vector(P.v[i])
+ v2[2] = 0
+
+ for j in range(0, len(Q.v)):
+ v3 = Vector(Q.v[j-1])
+ v3[2] = 0
+ v4 = Vector(Q.v[j])
+ v4[2] = 0
+
+ ret = LineIntersect(v1, v2, v3, v4)
+ # if line v1-v2 and v3-v4 intersect both return
+ # values are the same.
+ if ret and ret[0] == ret[1] and isOnSegment(v1, v2,
+ ret[0]) and isOnSegment(v3, v4, ret[1]):
+ debug("Projections OVERLAP!!\n")
+ debug("line1:"+
+ " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
+ " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
+ "\n")
+ debug("return: "+ str(ret)+"\n")
+ return True
+
+ return False
+
+ if not projectionsOverlap(P, Q):
+ debug("\nTest 5\n")
+ debug("Projections do not overlap!\n")
+ continue
# We do not know if P obscures Q.
if Q.smooth == 1:
# Split P or Q, TODO
+ debug("Cycle detected!\n")
debug("Split here!!\n")
continue
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
+ print Q.col[0]
d = pSign * Distance(Vector(Qi), P)
- if d < EPS:
+ if d > EPS:
n += 1
qVerticesBehindPlaneP = (n == len(Q))
+ if qVerticesBehindPlaneP:
+ debug("\nTest 3bis\n")
+ debug("Q BEHIND P!\n")
+
# Test 4bis: P vertices in front of the plane of Q
n = 0
for Pi in P:
+ print P.col[0]
d = qSign * Distance(Vector(Pi), Q)
- if d >= EPS:
+ if d <= EPS:
n += 1
pVerticesInFrontPlaneQ = (n == len(P))
+ if pVerticesInFrontPlaneQ:
+ debug("\nTest 4bis\n")
+ debug("P IN FRONT OF Q!\n")
+
- """
import intersection
if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
+ debug("\nSimple Intersection?\n")
# Split P or Q, TODO
print "Test 3bis or 4bis failed"
print "Split here!!2\n"
- newfaces = intersection.splitOn(nmesh, P, Q, 0)
+ """newfaces = intersection.splitOn(P, Q, 0)
+ print newfaces
facelist.remove(Q)
for nf in newfaces:
if nf:
nf.col = Q.col
facelist.append(nf)
+ """
break
if Q.smooth:
# split P or Q
print "Split here!!\n"
- newfaces = intersection.splitOn(nmesh, P, Q, 0)
+ """
+ newfaces = intersection.splitOn(P, Q, 0)
facelist.remove(Q)
for nf in newfaces:
if nf:
nf.col = Q.col
facelist.append(nf)
+ """
break
- """
Q.smooth = 1
facelist.remove(Q)
facelist.insert(0, Q)
# Write P!
+ P = facelist[0]
facelist.remove(P)
maplist.append(P)
- progress.update()
+ progress .update()
nmesh.faces = maplist
return
if config.polygons['HSR'] == 'PAINTER':
- print "\n\nUsing the Painter algorithm for HSR.\n"
+ print "\nUsing the Painter algorithm for HSR."
self.__simpleDepthSort(mesh)
elif config.polygons['HSR'] == 'NEWELL':
- print "\n\nUsing the Newell's algorithm for HSR.\n"
+ print "\nUsing the Newell's algorithm for HSR."
self.__newellDepthSort(mesh)