polygons = dict()
polygons['SHOW'] = True
polygons['SHADING'] = 'FLAT'
- polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
- #polygons['HSR'] = 'NEWELL'
+ #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
+ polygons['HSR'] = 'NEWELL'
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
-# Debug utility function
-print_debug = False
+# Utility functions
+print_debug = True
def debug(msg):
if print_debug:
sys.stderr.write(msg)
+def sign(x):
+ if x == 0:
+ return 0
+ elif x < 0:
+ return -1
+ else:
+ return 1
+
# ---------------------------------------------------------------------
#
self.refresh_rate = 10
self.shows_counter = 0
+ self.quiet = False
+
self.progressModel = None
+ def setQuiet(self, value):
+ self.quiet = value
+
def setActivity(self, name, steps):
"""Initialize the Model.
assert(self.progressModel)
if self.progressModel.update():
+ if self.quiet:
+ return
+
self.show(self.progressModel.getProgress(),
self.progressModel.getName())
stroke_width = 1.0
if config.polygons['EXPANSION_TRICK']:
+ str_col = "#000000" # For debug
self.file.write(" stroke:%s;\n" % str_col)
self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
Objects = workScene.getChildren()
print "Total Objects: %d" % len(Objects)
for i,obj in enumerate(Objects):
+ print "\n\n-------"
print "Rendering Object: %d" % i
if obj.getType() != 'Mesh':
self._doModelingTransformation(mesh, obj.matrix)
self._doBackFaceCulling(mesh)
+ if True:
+ for f in mesh.faces:
+ f.sel = 1-f.sel
+ mesh.flipNormals()
+ for f in mesh.faces:
+ f.sel = 1
+
self._doLighting(mesh)
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
"""
- geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ #geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve']
Objects = scene.getChildren()
objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
mat = None
if materials:
mat = materials[f.mat]
- # Check if it is a shadeless material
- if mat.getMode() & Material.Modes['SHADELESS']:
- I = mat.getRGBCol()
- # Convert to a value between 0 and 255
- tmp_col = [ int(c * 255.0) for c in I]
-
- for c in f.col:
- c.r = tmp_col[0]
- c.g = tmp_col[1]
- c.b = tmp_col[2]
- #c.a = tmp_col[3]
-
- continue
-
-
# A new default material
if mat == None:
mat = Material.New('defMat')
+ # Check if it is a shadeless material
+ elif mat.getMode() & Material.Modes['SHADELESS']:
+ I = mat.getRGBCol()
+ # Convert to a value between 0 and 255
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ for c in f.col:
+ c.r = tmp_col[0]
+ c.g = tmp_col[1]
+ c.b = tmp_col[2]
+ #c.a = tmp_col[3]
+
+ continue
+
+
# do vertex color calculation
TotDiffSpec = Vector([0.0, 0.0, 0.0])
cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
)
- def Distance(point, face):
- """ Calculate the distance between a point and a face.
+ mesh.quadToTriangle(0)
- An alternative but more expensive method can be:
+ from split import Distance, isOnSegment
- ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
- Vector(face.no), Vector(point), 0)
+ def projectionsOverlap(P, Q):
- d = Vector(ip - point).length
- """
+ for i in range(0, len(P.v)):
+
+ v1 = Vector(P.v[i-1])
+ v1[2] = 0
+ v2 = Vector(P.v[i])
+ v2[2] = 0
+
+ EPS = 10e-7
+
+ for j in range(0, len(Q.v)):
+ v3 = Vector(Q.v[j-1])
+ v3[2] = 0
+ v4 = Vector(Q.v[j])
+ v4[2] = 0
+
+ ret = LineIntersect(v1, v2, v3, v4)
+ # if line v1-v2 and v3-v4 intersect both return
+ # values are the same.
+ if ret and ret[0] == ret[1] and isOnSegment(v1, v2,
+ ret[0], True) and isOnSegment(v3, v4, ret[1], True):
- plNormal = Vector(face.no)
- plVert0 = Vector(face[0])
- #d = abs( (point * plNormal ) - (plVert0 * plNormal) )
- d = (point * plNormal ) - (plVert0 * plNormal)
- debug("d: "+ str(d) + "\n")
+ l1 = (ret[0] - v1).length
+ l2 = (ret[0] - v2).length
- return d
+ l3 = (ret[1] - v3).length
+ l4 = (ret[1] - v4).length
+ if (l1 < EPS or l2 < EPS) and (l3 < EPS or l4 < EPS):
+ continue
+
+ debug("Projections OVERLAP!!\n")
+ debug("line1:"+
+ " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
+ " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
+ "\n")
+ debug("return: "+ str(ret)+"\n")
+ return True
+
+ return False
+
+
+ from facesplit import facesplit
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
facelist = nmesh.faces[:]
maplist = []
- EPS = 10e-7
+ EPS = 10e-8
+ #EPS = 0
global progress
+ # The steps are _at_least_ equal to len(facelist), we do not count the
+ # feces coming out from plitting!!
progress.setActivity("HSR: Newell", len(facelist))
+ progress.setQuiet(True)
+
+
+ steps = -1
+ split_done = 0
+ marked_face = 0
while len(facelist):
+ print "\n----------------------"
P = facelist[0]
+
+ #steps += 1
+ #if steps == 3:
+ # maplist = facelist
+ # break
+ print len(facelist)
+ if len(facelist) == 33:
+ #maplist = facelist
+ break
+
+
+ #pSign = 1
+ #if P.normal[2] < 0:
+ # pSign = -1
+ pSign = sign(P.normal[2])
+
+ # We can discard faces thar are perpendicular to the view
+ if pSign == 0:
+ facelist.remove(P)
+ continue
+
- pSign = 1
- if P.sel == 0:
- pSign = -1
+ split_done = 0
+ face_marked = 0
for Q in facelist[1:]:
debug("Q.smooth: " + str(Q.smooth) + "\n")
debug("\n")
- qSign = 1
- if Q.sel == 0:
- qSign = -1
-
+ #qSign = 1
+ #if Q.normal[2] < 0:
+ # qSign = -1
+ qSign = sign(Q.normal[2])
+
# We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
ZOverlap = min(zP) < max(zQ)
if not ZOverlap:
- if not Q.smooth:
- # We can safely print P
+ debug("\nTest 0\n")
+ debug("NOT Z OVERLAP!\n")
+ if Q.smooth == 0:
+ # If Q is not marked then we can safely print P
break
else:
+ debug("met a marked face\n")
continue
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
- notXOverlap = (max(xP) < min(xQ)) or (max(xQ) < min(xP))
+ notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
if notXOverlap:
+ debug("\nTest 1\n")
+ debug("NOT X OVERLAP!\n")
continue
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
- notYOverlap = (max(yP) < min(yQ)) or (max(yQ) < min(yP))
+ notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
if notYOverlap:
+ debug("\nTest 2\n")
+ debug("NOT Y OVERLAP!\n")
continue
n = 0
for Pi in P:
d = qSign * Distance(Vector(Pi), Q)
- if d < EPS:
+ if d >= -EPS:
n += 1
pVerticesBehindPlaneQ = (n == len(P))
n = 0
for Qi in Q:
d = pSign * Distance(Vector(Qi), P)
- if d >= EPS:
+ if d <= EPS:
n += 1
qVerticesInFrontPlaneP = (n == len(Q))
continue
# Test 5: Line Intersections... TODO
+ # Check if polygons effectively overlap each other, not only
+ # boundig boxes as done before.
+ # Since we We are working in normalized projection coordinates
+ # we kust check if polygons intersect.
+
+ if not projectionsOverlap(P, Q):
+ debug("\nTest 5\n")
+ debug("Projections do not overlap!\n")
+ continue
- # We do not know if P obscures Q.
+ # We still do not know if P obscures Q.
+
+ # But if Q is marked we do a split trying to resolve a
+ # difficulty (maybe a visibility cycle).
if Q.smooth == 1:
- # Split P or Q, TODO
+ # Split P or Q
+ debug("Possibly a cycle detected!\n")
debug("Split here!!\n")
- continue
+ old_facelist = facelist[:]
+ facelist = facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
# The question now is: Does Q obscure P?
n = 0
for Qi in Q:
d = pSign * Distance(Vector(Qi), P)
- if d < EPS:
+ if d >= -EPS:
n += 1
qVerticesBehindPlaneP = (n == len(Q))
+ if qVerticesBehindPlaneP:
+ debug("\nTest 3bis\n")
+ debug("Q BEHIND P!\n")
+
# Test 4bis: P vertices in front of the plane of Q
n = 0
for Pi in P:
d = qSign * Distance(Vector(Pi), Q)
- if d >= EPS:
+ if d <= EPS:
n += 1
pVerticesInFrontPlaneQ = (n == len(P))
+ if pVerticesInFrontPlaneQ:
+ debug("\nTest 4bis\n")
+ debug("P IN FRONT OF Q!\n")
- """
- import intersection
-
+
+ # We don't even know if Q does obscure P, so they should
+ # intersect each other, split one of them in two parts.
if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
- # Split P or Q, TODO
- print "Test 3bis or 4bis failed"
- print "Split here!!2\n"
-
- newfaces = intersection.splitOn(nmesh, P, Q, 0)
- facelist.remove(Q)
- for nf in newfaces:
- if nf:
- nf.col = Q.col
- facelist.append(nf)
-
- break
-
- # We do not know
- if Q.smooth:
- # split P or Q
- print "Split here!!\n"
- newfaces = intersection.splitOn(nmesh, P, Q, 0)
- facelist.remove(Q)
- for nf in newfaces:
- if nf:
- nf.col = Q.col
- facelist.append(nf)
-
- break
- """
+ debug("\nSimple Intersection?\n")
+ debug("Test 3bis or 4bis failed\n")
+ debug("Split here!!2\n")
- Q.smooth = 1
+ old_facelist = facelist[:]
+ facelist = facesplit(P, Q, facelist, nmesh)
+
+ steps += 1
+ if steps == 2:
+ maplist = [P, Q]
+ print P, Q
+ split_done = 1
+ break
+
+
facelist.remove(Q)
facelist.insert(0, Q)
+ Q.smooth = 1
+ face_marked = 1
+
+ # Make merked faces BLUE. so to see them
+ #for c in Q.col:
+ # c.r = 0
+ # c.g = 0
+ # c.b = 255
+ # c.a = 255
+
+ debug("Q marked!\n")
+ print [f.smooth for f in facelist]
+ break
# Write P!
- facelist.remove(P)
- maplist.append(P)
+ if split_done == 0 and face_marked == 0:
+ P = facelist[0]
+ facelist.remove(P)
+ maplist.append(P)
+
+ progress.update()
+ #if progress.progressModel.getProgress() == 100:
+ # break
+ if steps == 2:
+ """
+ for c in Q.col:
+ c.r = 0
+ c.g = 0
+ c.b = 255
+ c.a = 255
+ for c in P.col:
+ c.r = 0
+ c.g = 0
+ c.b = 255
+ c.a = 255
+ """
+ print steps
+ #maplist.append(P)
+ #maplist.append(Q)
- progress.update()
+ # for f in facelist:
+ # if f not in old_facelist:
+ # print "splitted?"
+ # maplist.append(f)
+
+ break
+ """
+ """
+
+
-
nmesh.faces = maplist
for f in nmesh.faces:
f.sel = 1
nmesh.update()
+ print nmesh.faces
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.
return
if config.polygons['HSR'] == 'PAINTER':
- print "\n\nUsing the Painter algorithm for HSR.\n"
+ print "\nUsing the Painter algorithm for HSR."
self.__simpleDepthSort(mesh)
elif config.polygons['HSR'] == 'NEWELL':
- print "\n\nUsing the Newell's algorithm for HSR.\n"
+ print "\nUsing the Newell's algorithm for HSR."
self.__newellDepthSort(mesh)