# * The SVG output is now SVG 1.0 valid.
# Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
# * Progress indicator during HSR.
+# * Initial SWF output support
+# * Fixed a bug in the animation code, now the projection matrix is
+# recalculated at each frame!
#
# ---------------------------------------------------------------------
from math import *
import sys, time
+# Constants
+EPS = 10e-5
+
+# We use a global progress Indicator Object
+progress = None
+
# Some global settings
polygons = dict()
polygons['SHOW'] = True
polygons['SHADING'] = 'FLAT'
- polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
- #polygons['HSR'] = 'NEWELL'
+ #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
+ polygons['HSR'] = 'PAINTER'
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
- edges['STYLE'] = 'MESH'
+ edges['STYLE'] = 'MESH' # or SILHOUETTE
+ edges['STYLE'] = 'SILHOUETTE'
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
output = dict()
output['FORMAT'] = 'SVG'
- output['ANIMATION'] = False
+ output['FORMAT'] = 'SWF'
+ output['ANIMATION'] = True
output['JOIN_OBJECTS'] = True
-# Debug utility function
-print_debug = False
-def debug(msg):
- if print_debug:
- sys.stderr.write(msg)
+# Utility functions
+def sign(x):
+
+ if x < -EPS:
+ return -1
+ elif x > EPS:
+ return 1
+ else:
+ return 0
# ---------------------------------------------------------------------
self.refresh_rate = 10
self.shows_counter = 0
+ self.quiet = False
+
self.progressModel = None
+ def setQuiet(self, value):
+ self.quiet = value
+
def setActivity(self, name, steps):
"""Initialize the Model.
assert(self.progressModel)
if self.progressModel.update():
+ if self.quiet:
+ return
+
self.show(self.progressModel.getProgress(),
self.progressModel.getName())
return
def close(self):
- self.file.close()
+ if self.file:
+ self.file.close()
return
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
if color[3] != 255:
opacity = float(color[3])/255.0
opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+ #opacity_string = "opacity: %g;" % (opacity)
self.file.write("\tstyle=\"fill:" + str_col + ";")
self.file.write(opacity_string)
# see http://www.antigrain.com/svg/index.html for more info
stroke_width = 1.0
- if config.polygons['EXPANSION_TRICK']:
+ # EXPANSION TRICK is not that useful where there is transparency
+ if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+ # str_col = "#000000" # For debug
self.file.write(" stroke:%s;\n" % str_col)
self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
self.file.write("</g>\n")
+## SWF Writer
+
+from ming import *
+
+class SWFVectorWriter(VectorWriter):
+ """A concrete class for writing SWF output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.movie = None
+ self.sprite = None
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+ self.movie = SWFMovie()
+ self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+ # set fps
+ self.movie.setRate(25)
+ numframes = endFrame - startFrame + 1
+ self.movie.setFrames(numframes)
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self.movie.save(self.outputFileName)
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ Objects = scene.getChildren()
+
+ if self.sprite:
+ self.movie.remove(self.sprite)
+
+ sprite = SWFSprite()
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh, sprite)
+
+ if doPrintEdges:
+ self._printEdges(mesh, sprite, showHiddenEdges)
+
+ sprite.nextFrame()
+ i = self.movie.add(sprite)
+ # Remove the instance the next time
+ self.sprite = i
+ if self.animation:
+ self.movie.nextFrame()
+
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printPolygons(self, mesh, sprite):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r, fcol.g, fcol.b, fcol.a]
+ else:
+ color = [255, 255, 255, 255]
+
+ s = SWFShape()
+ f = s.addFill(color[0], color[1], color[2], color[3])
+ s.setRightFill(f)
+
+ # The starting point of the shape
+ p0 = self._calcCanvasCoord(face.verts[0])
+ s.movePenTo(p0[0], p0[1])
+
+
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ s.drawLineTo(p[0], p[1])
+
+ # Closing the shape
+ s.drawLineTo(p0[0], p0[1])
+ s.end()
+ sprite.add(s)
+
+
+ """
+ # use the stroke property to alleviate the "adjacent edges" problem,
+ # we simulate polygon expansion using borders,
+ # see http://www.antigrain.com/svg/index.html for more info
+ stroke_width = 1.0
+
+ # EXPANSION TRICK is not that useful where there is transparency
+ if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+ # str_col = "#000000" # For debug
+ self.file.write(" stroke:%s;\n" % str_col)
+ self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+ self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+
+ """
+
+ def _printEdges(self, mesh, sprite, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ s = SWFShape()
+
+ for e in mesh.edges:
+
+ #Next, we set the line width and color for our shape.
+ s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+ 255)
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ # SWF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner and half-trasparent
+ s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
+ stroke_col[2], 128)
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ # FIXME: this is just a qorkaround, remove that after the
+ # implementation of propoer Viewport clipping
+ if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000:
+ s.movePenTo(p1[0], p1[1])
+ s.drawLineTo(p2[0], p2[1])
+
+
+ s.end()
+ sprite.add(s)
+
+
+
# ---------------------------------------------------------------------
#
## Rendering Classes
# A dictionary to collect the supported output formats
outputWriters = dict()
outputWriters['SVG'] = SVGVectorWriter
+outputWriters['SWF'] = SWFVectorWriter
class Renderer:
# Render from the currently active camera
self.cameraObj = self._SCENE.getCurrentCamera()
- # Get a projector for this camera.
- # NOTE: the projector wants object in world coordinates,
- # so we should remember to apply modelview transformations
- # _before_ we do projection transformations.
- self.proj = Projector(self.cameraObj, self.canvasRatio)
-
# Get the list of lighting sources
obj_lst = self._SCENE.getChildren()
self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
# And Set our camera accordingly
self.cameraObj = inputScene.getCurrentCamera()
+ # Get a projector for this camera.
+ # NOTE: the projector wants object in world coordinates,
+ # so we should remember to apply modelview transformations
+ # _before_ we do projection transformations.
+ self.proj = Projector(self.cameraObj, self.canvasRatio)
+
try:
renderedScene = self.doRenderScene(inputScene)
except :
Objects = workScene.getChildren()
print "Total Objects: %d" % len(Objects)
for i,obj in enumerate(Objects):
+ print "\n\n-------"
print "Rendering Object: %d" % i
if obj.getType() != 'Mesh':
self._doBackFaceCulling(mesh)
+
+ # When doing HSR with NEWELL we may want to flip all normals
+ # toward the viewer
+ if config.polygons['HSR'] == "NEWELL":
+ for f in mesh.faces:
+ f.sel = 1-f.sel
+ mesh.flipNormals()
+ for f in mesh.faces:
+ f.sel = 1
+
self._doLighting(mesh)
# Do "projection" now so we perform further processing
self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
-
# Update the object data, important! :)
mesh.update()
"""Convert all "geometric" objects to mesh ones.
"""
geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
Objects = scene.getChildren()
objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
mat = None
if materials:
mat = materials[f.mat]
- # Check if it is a shadeless material
- if mat.getMode() & Material.Modes['SHADELESS']:
- I = mat.getRGBCol()
- # Convert to a value between 0 and 255
- tmp_col = [ int(c * 255.0) for c in I]
-
- for c in f.col:
- c.r = tmp_col[0]
- c.g = tmp_col[1]
- c.b = tmp_col[2]
- #c.a = tmp_col[3]
-
- continue
-
-
# A new default material
if mat == None:
mat = Material.New('defMat')
+ # Check if it is a shadeless material
+ elif mat.getMode() & Material.Modes['SHADELESS']:
+ I = mat.getRGBCol()
+ # Convert to a value between 0 and 255
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ for c in f.col:
+ c.r = tmp_col[0]
+ c.g = tmp_col[1]
+ c.b = tmp_col[2]
+ #c.a = tmp_col[3]
+
+ continue
+
+
# do vertex color calculation
TotDiffSpec = Vector([0.0, 0.0, 0.0])
for l in self.lights:
light_obj = l
light_pos = self._getObjPosition(l)
- light = light_obj.data
+ light = light_obj.getData()
L = Vector(light_pos).normalize()
solves HSR correctly only for convex meshes.
"""
- global progress
+ #global progress
+
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
progress.setActivity("HSR: Painter", n*log(n))
-
by_furthest_z = (lambda f1, f2: progress.update() and
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
)
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh.update()
- def __topologicalDepthSort(self, mesh):
- """Occlusion based on topological occlusion.
-
- Build the occlusion graph of the mesh,
- and then do topological sort on that graph
- """
- return
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
"""
- by_furthest_z = (lambda f1, f2:
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
- )
-
- def Distance(point, face):
- """ Calculate the distance between a point and a face.
-
- An alternative but more expensive method can be:
-
- ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
- Vector(face.no), Vector(point), 0)
-
- d = Vector(ip - point).length
- """
+ from hsrtk import *
- plNormal = Vector(face.no)
- plVert0 = Vector(face[0])
+ #global progress
- #d = abs( (point * plNormal ) - (plVert0 * plNormal) )
- d = (point * plNormal ) - (plVert0 * plNormal)
- debug("d: "+ str(d) + "\n")
+ # Find non planar quads and convert them to triangle
+ #for f in mesh.faces:
+ # f.sel = 0
+ # if is_nonplanar_quad(f.v):
+ # print "NON QUAD??"
+ # f.sel = 1
- return d
+ # Now reselect all faces
+ for f in mesh.faces:
+ f.sel = 1
+ mesh.quadToTriangle()
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
nmesh.faces.sort(by_furthest_z)
nmesh.faces.reverse()
-
# Begin depth sort tests
# use the smooth flag to set marked faces
facelist = nmesh.faces[:]
maplist = []
- EPS = 10e-7
- global progress
+ # The steps are _at_least_ equal to len(facelist), we do not count the
+ # feces coming out from splitting!!
progress.setActivity("HSR: Newell", len(facelist))
+ #progress.setQuiet(True)
+
while len(facelist):
+ debug("\n----------------------\n")
+ debug("len(facelits): %d\n" % len(facelist))
P = facelist[0]
- pSign = 1
- if P.sel == 0:
- pSign = -1
+ pSign = sign(P.normal[2])
+
+ # We can discard faces parallel to the view vector
+ #if P.normal[2] == 0:
+ # facelist.remove(P)
+ # continue
+
+ split_done = 0
+ face_marked = 0
for Q in facelist[1:]:
debug("Q.smooth: " + str(Q.smooth) + "\n")
debug("\n")
- qSign = 1
- if Q.sel == 0:
- qSign = -1
-
- # We need to test only those Qs whose furthest vertex
+ qSign = sign(Q.normal[2])
+ # TODO: check also if Q is parallel??
+
+ # Test 0: We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
zP = [v.co[2] for v in P.v]
zQ = [v.co[2] for v in Q.v]
- ZOverlap = min(zP) < max(zQ)
+ notZOverlap = min(zP) > max(zQ) + EPS
- if not ZOverlap:
- if not Q.smooth:
- # We can safely print P
+ if notZOverlap:
+ debug("\nTest 0\n")
+ debug("NOT Z OVERLAP!\n")
+ if Q.smooth == 0:
+ # If Q is not marked then we can safely print P
break
else:
+ debug("met a marked face\n")
continue
+
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
- notXOverlap = (max(xP) < min(xQ)) or (max(xQ) < min(xP))
+ #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
if notXOverlap:
+ debug("\nTest 1\n")
+ debug("NOT X OVERLAP!\n")
continue
+
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
- notYOverlap = (max(yP) < min(yQ)) or (max(yQ) < min(yP))
+ #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
if notYOverlap:
+ debug("\nTest 2\n")
+ debug("NOT Y OVERLAP!\n")
continue
n = 0
for Pi in P:
d = qSign * Distance(Vector(Pi), Q)
- if d < EPS:
+ if d <= EPS:
n += 1
pVerticesBehindPlaneQ = (n == len(P))
n = 0
for Qi in Q:
d = pSign * Distance(Vector(Qi), P)
- if d >= EPS:
+ if d >= -EPS:
n += 1
qVerticesInFrontPlaneP = (n == len(Q))
debug("Q IN FRONT OF P!\n")
continue
- # Test 5: Line Intersections... TODO
+ # Test 5: Check if projections of polygons effectively overlap,
+ # in previous tests we checked only bounding boxes.
+
+ if not projectionsOverlap(P, Q):
+ debug("\nTest 5\n")
+ debug("Projections do not overlap!\n")
+ continue
+
+ # We still can't say if P obscures Q.
- # We do not know if P obscures Q.
+ # But if Q is marked we do a face-split trying to resolve a
+ # difficulty (maybe a visibility cycle).
if Q.smooth == 1:
- # Split P or Q, TODO
+ # Split P or Q
+ debug("Possibly a cycle detected!\n")
debug("Split here!!\n")
- continue
+ facelist = facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
# The question now is: Does Q obscure P?
+
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
d = pSign * Distance(Vector(Qi), P)
- if d < EPS:
+ if d <= EPS:
n += 1
qVerticesBehindPlaneP = (n == len(Q))
+ if qVerticesBehindPlaneP:
+ debug("\nTest 3bis\n")
+ debug("Q BEHIND P!\n")
+
# Test 4bis: P vertices in front of the plane of Q
n = 0
for Pi in P:
d = qSign * Distance(Vector(Pi), Q)
- if d >= EPS:
+ if d >= -EPS:
n += 1
pVerticesInFrontPlaneQ = (n == len(P))
+ if pVerticesInFrontPlaneQ:
+ debug("\nTest 4bis\n")
+ debug("P IN FRONT OF Q!\n")
- """
- import intersection
-
+
+ # We don't even know if Q does obscure P, so they should
+ # intersect each other, split one of them in two parts.
if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
- # Split P or Q, TODO
- print "Test 3bis or 4bis failed"
- print "Split here!!2\n"
-
- newfaces = intersection.splitOn(nmesh, P, Q, 0)
- facelist.remove(Q)
- for nf in newfaces:
- if nf:
- nf.col = Q.col
- facelist.append(nf)
-
- break
-
- # We do not know
- if Q.smooth:
- # split P or Q
- print "Split here!!\n"
- newfaces = intersection.splitOn(nmesh, P, Q, 0)
- facelist.remove(Q)
- for nf in newfaces:
- if nf:
- nf.col = Q.col
- facelist.append(nf)
-
- break
- """
-
- Q.smooth = 1
+ debug("\nSimple Intersection?\n")
+ debug("Test 3bis or 4bis failed\n")
+ debug("Split here!!2\n")
+
+ facelist = facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
+
facelist.remove(Q)
facelist.insert(0, Q)
+ Q.smooth = 1
+ face_marked = 1
+ debug("Q marked!\n")
+ break
# Write P!
- facelist.remove(P)
- maplist.append(P)
+ if split_done == 0 and face_marked == 0:
+ facelist.remove(P)
+ maplist.append(P)
- progress.update()
+ progress.update()
-
- nmesh.faces = maplist
+ #if facelist == None:
+ # maplist = [P, Q]
+ # print [v.co for v in P]
+ # print [v.co for v in Q]
+ # break
+
+ # end of while len(facelist)
+
+ nmesh.faces = maplist
for f in nmesh.faces:
f.sel = 1
+
nmesh.update()
+
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.
"""
return
if config.polygons['HSR'] == 'PAINTER':
- print "\n\nUsing the Painter algorithm for HSR.\n"
+ print "\nUsing the Painter algorithm for HSR."
self.__simpleDepthSort(mesh)
elif config.polygons['HSR'] == 'NEWELL':
- print "\n\nUsing the Newell's algorithm for HSR.\n"
+ print "\nUsing the Newell's algorithm for HSR."
self.__newellDepthSort(mesh)
if editmode: Window.EditMode(1)
-# We use a global progress Indicator Object
-progress = None
-
# Here the main
if __name__ == "__main__":