- NewPoint = []
- # Rotate X
- NewY = (PY * cos(AngleX))-(PZ * sin(AngleX))
- NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX))
- # Rotate Y
- PZ = NewZ
- PY = NewY
- NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY))
- NewX = (PX * cos(AngleY))+(PZ * sin(AngleY))
- PX = NewX
- PZ = NewZ
- # Rotate Z
- NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ))
- NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ))
- NewPoint.append(NewX)
- NewPoint.append(NewY)
- NewPoint.append(NewZ)
- return NewPoint
-
-def flatern(vertx, verty, vertz):
-
- cam = Camera.get() # Get the cameras in scene
- Lens = cam[0].getLens() # The First Blender camera lens
-
- camTyp = cam[0].getType()
-
- msize = scena.getWinSize()
- xres = msize[0] # X res for output
- yres = msize[1] # Y res for output
- ratio = xres/yres
-
- screenxy=[0,0]
- x=-vertx
- y=verty
- z=vertz
-
- fov = atan(ratio * 16.0 / Lens) # Get fov stuff
- dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane
-#----------------------------
-# calculate x'=dist*x/z & y'=dist*x/z
-#----------------------------
- screenxy[0]=int(xres/2+4*x*dist/z)
- screenxy[1]=int(yres/2+4*y*dist/z)
- return screenxy
-
-def writesvg(ob):
-
- for i in range(0, ob[0]+1):
- print ob[i], "\n"
- print "WriteSVG\n"
-
-########
-# Main #
-########
-
-scena = Scene.GetCurrent()
-init()
-
-tacka = [0,0,0]
-lice = [3,tacka,tacka,tacka,tacka]
-
-msize = scena.getWinSize()
-
-file=open("d:\proba.svg","w")
-
-file.write("<svg width=\"" + `msize[0]` + "\" height=\"" + `msize[1]` + "\"\n")
-file.write("xmlns=\"http://www.w3.org/2000/svg\" version=\"1.2\" streamable=\"true\">\n")
-#file.write("<pageSet>\n")
-
-Objects = Blender.Object.Get()
-NUMobjects = len(Objects)
-
-startFrm = scena.startFrame()
-endFrm = scena.endFrame()
-camera = scena.getCurrentCamera() # Get the current camera
-
-for f in range(startFrm, endFrm+1):
- #scena.currentFrame(f)
- Blender.Set('curframe', f)
-
- DrawProgressBar (f/(endFrm+1-startFrm),"Rendering ..." + str(scena.currentFrame()))
-
- print "Frame: ", f, "\n"
- if startFrm <> endFrm: file.write("<g id=\"Frame" + str(f) + "\" style=\"visibility:hidden\">\n")
- for o in range(NUMobjects):
-
- if Objects[o].getType() == "Mesh":
-
- obj = Objects[o] # Get the first selected object
- objname = obj.name # The object name
-
-
- OBJmesh = obj.getData() # Get the mesh data for the object
- numfaces=len(OBJmesh.faces) # The number of faces in the object
- numEachVert=len(OBJmesh.faces[0]) # The number of verts in each face
-
- #------------
- # Get the Material Colors
- #------------
-# MATinfo = OBJmesh.getMaterials()
-#
-# if len(MATinfo) > 0:
-# RGB=MATinfo[0].rgbCol
-# R=int(RGB[0]*255)
-# G=int(RGB[1]*255)
-# B=int(RGB[2]*255)
-# color=`R`+"."+`G`+"."+`B`
-# print color
-# else:
-# color="100.100.100"
-
- objekat = []
-
- objekat.append(0)
-
- for face in range(numfaces):
- numvert = len(OBJmesh.faces[face])
- objekat.append(numvert)
- objekat[0] += 1
-
-# backface cutting
- a = []
- a.append(OBJmesh.faces[face][0][0])
- a.append(OBJmesh.faces[face][0][1])
- a.append(OBJmesh.faces[face][0][2])
- a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
- a[0] += obj.LocX - camera.LocX
- a[1] += obj.LocY - camera.LocY
- a[2] += obj.LocZ - camera.LocZ
- b = []
- b.append(OBJmesh.faces[face][1][0])
- b.append(OBJmesh.faces[face][1][1])
- b.append(OBJmesh.faces[face][1][2])
- b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
- b[0] += obj.LocX - camera.LocX
- b[1] += obj.LocY - camera.LocY
- b[2] += obj.LocZ - camera.LocZ
- c = []
- c.append(OBJmesh.faces[face][numvert-1][0])
- c.append(OBJmesh.faces[face][numvert-1][1])
- c.append(OBJmesh.faces[face][numvert-1][2])
- c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
- c[0] += obj.LocX - camera.LocX
- c[1] += obj.LocY - camera.LocY
- c[2] += obj.LocZ - camera.LocZ
-
- norm = [0,0,0]
- norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
- norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
- norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
-
- d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
-
- if d < 0:
- file.write("<polygon points=\"")
- for vert in range(numvert):
-
- objekat[0] += 3
-
- vertxyz = []
-
- if vert != 0: file.write(", ")
-
- vertxyz.append(OBJmesh.faces[face][vert][0])
- vertxyz.append(OBJmesh.faces[face][vert][1])
- vertxyz.append(OBJmesh.faces[face][vert][2])
-
-# rotate object
-
- vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], obj.RotX, obj.RotY, obj.RotZ)
-
- vertxyz[0] += obj.LocX - camera.LocX
- vertxyz[1] += obj.LocY - camera.LocY
- vertxyz[2] += obj.LocZ - camera.LocZ
-
-# rotate camera
-
- vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], -camera.RotX, -camera.RotY, -camera.RotZ)
-
- objekat.append(Distance(vertxyz[0], vertxyz[1], vertxyz[2]))
-# dist = Distance(vertxyz[0], vertxyz[1], vertxyz[2])
- xy = flatern(vertxyz[0], vertxyz[1], vertxyz[2])
- px = int(xy[0])
- py = int(xy[1])
- objekat.append(px)
- objekat.append(py)
- # add/sorting in Z' direction
- #Dodaj(px,py,Distance(vertxyz[0], vertxyz[1], vertxyz[2]))
- file.write(`px` + ", " + `py`)
-# svetla = Blender.Lamp.Get()
-# svetlo = svetla[0]
-# print svetlo.LocX
- ambient = -200
- svetlo = [1,1,-1]
- vektori = (norm[0]*svetlo[0]+norm[1]*svetlo[1]+norm[2]*svetlo[2])
- vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(svetlo[0],2)+pow(svetlo[1],2)+pow(svetlo[2],2)))
- intensity = floor(ambient + 255 * acos(vektori/vduzine))
- print vektori/vduzine
- if intensity < 0: intensity = 0
- file.write("\"\n style=\"fill:rgb("+str(intensity)+","+str(intensity)+","+str(intensity)+");stroke:rgb(0,0,0);stroke-width:1\"/>\n")
- if startFrm <> endFrm:
- file.write("<animate attributeName=\"visibility\" begin=\""+str(f*0.08)+"s\" dur=\"0.08s\" fill=\"remove\" to=\"visible\">\n")
- file.write("</animate>\n")
- file.write("</g>\n")
-
-#flatern()
-#writesvg(objekat)
-file.write("</svg>")
-file.close()
-DrawProgressBar (1.0,"Finished.")
-print "Finished\n"
+ This class is responsible of the rendering process, transformation and
+ projection of the objects in the scene are invoked by the renderer.
+
+ The rendering is done using the active camera for the current scene.
+ """
+
+ def __init__(self):
+ """Make the rendering process only for the current scene by default.
+
+ We will work on a copy of the scene, be sure that the current scene do
+ not get modified in any way.
+ """
+
+ # Render the current Scene, this should be a READ-ONLY property
+ self._SCENE = Scene.GetCurrent()
+
+ # Use the aspect ratio of the scene rendering context
+ context = self._SCENE.getRenderingContext()
+
+ aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY())
+ self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio,
+ float(context.aspectRatioY())
+ )
+
+ # Render from the currently active camera
+ self.cameraObj = self._SCENE.getCurrentCamera()
+ print dir(self._SCENE)
+
+ # Get the list of lighting sources
+ obj_lst = self._SCENE.getChildren()
+ self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
+
+ if len(self.lights) == 0:
+ l = Lamp.New('Lamp')
+ lobj = Object.New('Lamp')
+ lobj.link(l)
+ self.lights.append(lobj)
+
+
+ ##
+ # Public Methods
+ #
+
+ def doRendering(self, outputWriter, animation=False):
+ """Render picture or animation and write it out.
+
+ The parameters are:
+ - a Vector writer object that will be used to output the result.
+ - a flag to tell if we want to render an animation or only the
+ current frame.
+ """
+
+ context = self._SCENE.getRenderingContext()
+ currentFrame = context.currentFrame()
+
+ # Handle the animation case
+ if not animation:
+ startFrame = currentFrame
+ endFrame = startFrame
+ outputWriter.open()
+ else:
+ startFrame = context.startFrame()
+ endFrame = context.endFrame()
+ outputWriter.open(startFrame, endFrame)
+
+ # Do the rendering process frame by frame
+ print "Start Rendering!"
+ for f in range(startFrame, endFrame+1):
+ context.currentFrame(f)
+
+ renderedScene = self.doRenderScene(self._SCENE)
+ outputWriter.printCanvas(renderedScene,
+ doPrintPolygons = PRINT_POLYGONS,
+ doPrintEdges = PRINT_EDGES,
+ showHiddenEdges = SHOW_HIDDEN_EDGES)
+
+ # clear the rendered scene
+ self._SCENE.makeCurrent()
+ Scene.unlink(renderedScene)
+ del renderedScene
+
+ outputWriter.close()
+ print "Done!"
+ context.currentFrame(currentFrame)
+
+
+ def doRenderScene(self, inputScene):
+ """Control the rendering process.
+
+ Here we control the entire rendering process invoking the operation
+ needed to transform and project the 3D scene in two dimensions.
+ """
+
+ # Use some temporary workspace, a full copy of the scene
+ workScene = inputScene.copy(2)
+
+ # Get a projector for this scene.
+ # NOTE: the projector wants object in world coordinates,
+ # so we should apply modelview transformations _before_
+ # projection transformations
+ proj = Projector(self.cameraObj, self.canvasRatio)
+
+ # global processing of the scene
+
+ self._doConvertGeometricObjToMesh(workScene)
+
+ self._doSceneClipping(workScene)
+
+ # FIXME: does not work in batch mode!
+ #if OPTIMIZE_FOR_SPACE:
+ # self._joinMeshObjectsInScene(workScene)
+
+ self._doSceneDepthSorting(workScene)
+
+ # Per object activities
+
+ Objects = workScene.getChildren()
+ for obj in Objects:
+
+ if obj.getType() != 'Mesh':
+ print "Only Mesh supported! - Skipping type:", obj.getType()
+ continue
+
+ print "Rendering: ", obj.getName()
+
+ mesh = obj.data
+
+ self._doModelToWorldCoordinates(mesh, obj.matrix)
+
+ self._doObjectDepthSorting(mesh)
+
+ self._doBackFaceCulling(mesh)
+
+ self._doColorAndLighting(mesh)
+
+ # TODO: 'style' can be a function that determine
+ # if an edge should be showed?
+ self._doEdgesStyle(mesh, style=None)
+
+ self._doProjection(mesh, proj)
+
+ # Update the object data, important! :)
+ mesh.update()
+
+ return workScene
+
+
+ ##
+ # Private Methods
+ #
+
+ # Utility methods
+
+ def _getObjPosition(self, obj):
+ """Return the obj position in World coordinates.
+ """
+ return obj.matrix.translationPart()
+
+ def _cameraViewDirection(self):
+ """Get the View Direction form the camera matrix.
+ """
+ return Vector(self.cameraObj.matrix[2]).resize3D()
+
+
+ # Faces methods
+
+ def _isFaceVisible(self, face):
+ """Determine if a face of an object is visible from the current camera.
+
+ The view vector is calculated from the camera location and one of the
+ vertices of the face (expressed in World coordinates, after applying
+ modelview transformations).
+
+ After those transformations we determine if a face is visible by
+ computing the angle between the face normal and the view vector, this
+ angle has to be between -90 and 90 degrees for the face to be visible.
+ This corresponds somehow to the dot product between the two, if it
+ results > 0 then the face is visible.
+
+ There is no need to normalize those vectors since we are only interested in
+ the sign of the cross product and not in the product value.
+
+ NOTE: here we assume the face vertices are in WorldCoordinates, so
+ please transform the object _before_ doing the test.
+ """
+
+ normal = Vector(face.no)
+ camPos = self._getObjPosition(self.cameraObj)
+ view_vect = None
+
+ # View Vector in orthographics projections is the view Direction of
+ # the camera
+ if self.cameraObj.data.getType() == 1:
+ view_vect = self._cameraViewDirection()
+
+ # View vector in perspective projections can be considered as
+ # the difference between the camera position and one point of
+ # the face, we choose the farthest point from the camera.
+ if self.cameraObj.data.getType() == 0:
+ vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
+ view_vect = vv[1]
+
+ # if d > 0 the face is visible from the camera
+ d = view_vect * normal
+
+ if d > 0:
+ return True
+ else:
+ return False
+
+
+ # Scene methods
+
+ def _doConvertGeometricObjToMesh(self, scene):
+ """Convert all "geometric" objects to mesh ones.
+ """
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+
+ Objects = scene.getChildren()
+ objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
+ for obj in objList:
+ old_obj = obj
+ obj = self._convertToRawMeshObj(obj)
+ scene.link(obj)
+ scene.unlink(old_obj)
+
+ # Mesh Cleanup
+ me = obj.getData(mesh=1)
+ for f in me.faces: f.sel = 1;
+ for v in me.verts: v.sel = 1;
+ me.remDoubles(0)
+ me.triangleToQuad()
+ me.recalcNormals()
+ me.update()
+
+ def _doSceneClipping(self, scene):
+ """Clip objects against the View Frustum.
+
+ For now clip away only objects according to their center position.
+ """
+
+ cpos = self._getObjPosition(self.cameraObj)
+ view_vect = self._cameraViewDirection()
+
+ near = self.cameraObj.data.clipStart
+ far = self.cameraObj.data.clipEnd
+
+ aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1])
+ fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
+ fovy = fovy * 360.0/pi
+
+ Objects = scene.getChildren()
+ for o in Objects:
+ if o.getType() != 'Mesh': continue;
+
+ obj_vect = Vector(cpos) - self._getObjPosition(o)
+
+ d = obj_vect*view_vect
+ theta = AngleBetweenVecs(obj_vect, view_vect)
+
+ # if the object is outside the view frustum, clip it away
+ if (d < near) or (d > far) or (theta > fovy):
+ scene.unlink(o)
+
+ def _doSceneDepthSorting(self, scene):
+ """Sort objects in the scene.
+
+ The object sorting is done accordingly to the object centers.
+ """
+
+ c = self._getObjPosition(self.cameraObj)
+
+ by_center_pos = (lambda o1, o2:
+ (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+ cmp((self._getObjPosition(o1) - Vector(c)).length,
+ (self._getObjPosition(o2) - Vector(c)).length)
+ )
+
+ # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
+ # then ob1 goes farther than obj2, useful when obj2 has holes
+ by_bbox = None
+
+ Objects = scene.getChildren()
+ Objects.sort(by_center_pos)
+
+ # update the scene
+ for o in Objects:
+ scene.unlink(o)
+ scene.link(o)
+
+ def _joinMeshObjectsInScene(self, scene):
+ """Merge all the Mesh Objects in a scene into a single Mesh Object.
+ """
+ mesh = Mesh.New()
+ bigObj = Object.New('Mesh', 'BigOne')
+ bigObj.link(mesh)
+
+ oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
+ bigObj.join(oList)
+ scene.link(bigObj)
+ for o in oList:
+ scene.unlink(o)
+
+ scene.update()
+
+
+ # Per object methods
+
+ def _convertToRawMeshObj(self, object):
+ """Convert geometry based object to a mesh object.
+ """
+ me = Mesh.New('RawMesh_'+object.name)
+ me.getFromObject(object.name)
+
+ newObject = Object.New('Mesh', 'RawMesh_'+object.name)
+ newObject.link(me)
+
+ # If the object has no materials set a default material
+ if not me.materials:
+ me.materials = [Material.New()]
+ #for f in me.faces: f.mat = 0
+
+ newObject.setMatrix(object.getMatrix())
+
+ return newObject
+
+ def _doModelToWorldCoordinates(self, mesh, matrix):
+ """Transform object coordinates to world coordinates.
+
+ This step is done simply applying to the object its tranformation
+ matrix and recalculating its normals.
+ """
+ mesh.transform(matrix, True)
+
+ def _doObjectDepthSorting(self, mesh):
+ """Sort faces in an object.
+
+ The faces in the object are sorted following the distance of the
+ vertices from the camera position.
+ """
+ c = self._getObjPosition(self.cameraObj)
+
+ # hackish sorting of faces
+
+ # Sort faces according to the max distance from the camera
+ by_max_vert_dist = (lambda f1, f2:
+ cmp(max([(Vector(v.co)-Vector(c)).length for v in f1]),
+ max([(Vector(v.co)-Vector(c)).length for v in f2])))
+
+ # Sort faces according to the min distance from the camera
+ by_min_vert_dist = (lambda f1, f2:
+ cmp(min([(Vector(v.co)-Vector(c)).length for v in f1]),
+ min([(Vector(v.co)-Vector(c)).length for v in f2])))
+
+ # Sort faces according to the avg distance from the camera
+ by_avg_vert_dist = (lambda f1, f2:
+ cmp(sum([(Vector(v.co)-Vector(c)).length for v in f1])/len(f1),
+ sum([(Vector(v.co)-Vector(c)).length for v in f2])/len(f2)))
+
+ mesh.faces.sort(by_max_vert_dist)
+ mesh.faces.reverse()
+
+ def _doBackFaceCulling(self, mesh):
+ """Simple Backface Culling routine.
+
+ At this level we simply do a visibility test face by face and then
+ select the vertices belonging to visible faces.
+ """
+
+ # Select all vertices, so edges can be displayed even if there are no
+ # faces
+ for v in mesh.verts:
+ v.sel = 1
+
+ Mesh.Mode(Mesh.SelectModes['FACE'])
+ # Loop on faces
+ for f in mesh.faces:
+ f.sel = 0
+ if self._isFaceVisible(f):
+ f.sel = 1
+
+ # Is this the correct way to propagate the face selection info to the
+ # vertices belonging to a face ??
+ # TODO: Using the Mesh module this should come for free. Right?
+ Mesh.Mode(Mesh.SelectModes['VERTEX'])
+ for f in mesh.faces:
+ if not f.sel:
+ for v in f: v.sel = 0;
+
+ for f in mesh.faces:
+ if f.sel:
+ for v in f: v.sel = 1;
+
+ def _doColorAndLighting(self, mesh):
+ """Apply an Illumination model to the object.
+
+ The Illumination model used is the Phong one, it may be inefficient,
+ but I'm just learning about rendering and starting from Phong seemed
+ the most natural way.
+ """
+
+ # If the mesh has vertex colors already, use them,
+ # otherwise turn them on and do some calculations
+ if mesh.hasVertexColours():
+ return
+ mesh.hasVertexColours(True)
+
+ materials = mesh.materials
+
+ # TODO: use multiple lighting sources
+ light_obj = self.lights[0]
+ light_pos = self._getObjPosition(light_obj)
+ light = light_obj.data
+
+ camPos = self._getObjPosition(self.cameraObj)
+
+ # We do per-face color calculation (FLAT Shading), we can easily turn
+ # to a per-vertex calculation if we want to implement some shading
+ # technique. For an example see:
+ # http://www.miralab.unige.ch/papers/368.pdf
+ for f in mesh.faces:
+ if not f.sel:
+ continue
+
+ mat = None
+ if materials:
+ mat = materials[f.mat]
+
+ # A new default material
+ if mat == None:
+ mat = Material.New('defMat')
+
+ L = Vector(light_pos).normalize()
+
+ V = (Vector(camPos) - Vector(f.v[0].co)).normalize()
+
+ N = Vector(f.no).normalize()
+
+ R = 2 * (N*L) * N - L
+
+ # TODO: Attenuation factor (not used for now)
+ a0 = 1; a1 = 0.0; a2 = 0.0
+ d = (Vector(f.v[0].co) - Vector(light_pos)).length
+ fd = min(1, 1.0/(a0 + a1*d + a2*d*d))
+
+ # Ambient component
+ Ia = 1.0
+ ka = mat.getAmb() * Vector([0.1, 0.1, 0.1])
+ Iamb = Ia * ka
+
+ # Diffuse component (add light.col for kd)
+ kd = mat.getRef() * Vector(mat.getRGBCol())
+ Ip = light.getEnergy()
+ Idiff = Ip * kd * (N*L)
+
+ # Specular component
+ ks = mat.getSpec() * Vector(mat.getSpecCol())
+ ns = mat.getHardness()
+ Ispec = Ip * ks * pow((V * R), ns)
+
+ # Emissive component
+ ki = Vector([mat.getEmit()]*3)
+
+ I = ki + Iamb + Idiff + Ispec
+
+ # Clamp I values between 0 and 1
+ I = [ min(c, 1) for c in I]
+ I = [ max(0, c) for c in I]
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ vcol = NMesh.Col(tmp_col[0], tmp_col[1], tmp_col[2], 255)
+ f.col = []
+ for v in f.v:
+ f.col.append(vcol)
+
+ def _doEdgesStyle(self, mesh, style):
+ """Process Mesh Edges.
+
+ Examples of algorithms:
+
+ Contours:
+ given an edge if its adjacent faces have the same normal (that is
+ they are complanar), than deselect it.
+
+ Silhouettes:
+ given an edge if one its adjacent faces is frontfacing and the
+ other is backfacing, than select it, else deselect.
+ """
+ #print "\tTODO: _doEdgeStyle()"
+ return
+
+ def _doProjection(self, mesh, projector):
+ """Calculate the Projection for the object.
+ """
+ # TODO: maybe using the object.transform() can be faster?
+
+ for v in mesh.verts:
+ p = projector.doProjection(v.co)
+ v.co[0] = p[0]
+ v.co[1] = p[1]
+ v.co[2] = p[2]
+
+
+
+# ---------------------------------------------------------------------
+#
+## Main Program
+#
+# ---------------------------------------------------------------------
+
+def vectorize(filename):
+ """The vectorizing process is as follows:
+
+ - Instanciate the writer and the renderer
+ - Render!
+ """
+ from Blender import Window
+ editmode = Window.EditMode()
+ if editmode: Window.EditMode(0)
+
+ writer = SVGVectorWriter(filename)
+
+ renderer = Renderer()
+ renderer.doRendering(writer, RENDER_ANIMATION)
+
+ if editmode: Window.EditMode(1)
+
+def vectorize_gui(filename):
+ """Draw the gui.
+
+ I would like to keep that simple, really.
+ """
+ Blender.Window.FileSelector (vectorize, 'Save SVG', filename)
+ Blender.Redraw()
+
+
+# Here the main
+if __name__ == "__main__":
+
+ basename = Blender.sys.basename(Blender.Get('filename'))
+ outputfile = Blender.sys.splitext(basename)[0]+".svg"
+
+ # with this trick we can run the script in batch mode
+ try:
+ vectorize_gui(outputfile)
+ except:
+ vectorize(outputfile)