Some stabilization work
[vrm.git] / vrm.py
diff --git a/vrm.py b/vrm.py
old mode 100644 (file)
new mode 100755 (executable)
index 380a65b..c694b77
--- a/vrm.py
+++ b/vrm.py
 #!BPY
-
 """
 Name: 'VRM'
-Blender: 228
+Blender: 241
 Group: 'Export'
-Tooltip: 'Vector Rendering Method Export Script'
+Tooltip: 'Vector Rendering Method Export Script 0.3'
 """
 
+# ---------------------------------------------------------------------
+#    Copyright (c) 2006 Antonio Ospite
+#
+#    This program is free software; you can redistribute it and/or modify
+#    it under the terms of the GNU General Public License as published by
+#    the Free Software Foundation; either version 2 of the License, or
+#    (at your option) any later version.
+#
+#    This program is distributed in the hope that it will be useful,
+#    but WITHOUT ANY WARRANTY; without even the implied warranty of
+#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#    GNU General Public License for more details.
+#
+#    You should have received a copy of the GNU General Public License
+#    along with this program; if not, write to the Free Software
+#    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+#
+# ---------------------------------------------------------------------
+#
+#    NOTE: I do not know who is the original author of 'vrm'.
+#    The present code is almost entirely rewritten from scratch,
+#    but if I have to give credits to anyone, please let me know,
+#    so I can update the copyright.
+#
+# ---------------------------------------------------------------------
+#
+# Additional credits:
+#   Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
+#   Thanks to Anthony C. D'Agostino for the original backface.py script   
+#
+# ---------------------------------------------------------------------
 
 import Blender
-from Blender import Scene, Object, Lamp, Camera
+from Blender import Scene, Object, Mesh, NMesh, Lamp, Camera
+from Blender.Mathutils import *
 from math import *
-from Blender.Window import *
-   
-def init():
 
-    print "Init\n"
 
-    renderDir = scena.getRenderdir()
+# ---------------------------------------------------------------------
+#
+## Projections classes
+#
+# ---------------------------------------------------------------------
+
+class Projector:
+    """Calculate the projection of an object given the camera.
+    
+    A projector is useful to so some per-object transformation to obtain the
+    projection of an object given the camera.
+    
+    The main method is #doProjection# see the method description for the
+    parameter list.
+    """
+
+    def __init__(self, cameraObj, canvasRatio):
+        """Calculate the projection matrix.
+
+        The projection matrix depends, in this case, on the camera settings,
+        and also on object transformation matrix.
+        """
+
+        camera = cameraObj.getData()
+
+        aspect = float(canvasRatio[0])/float(canvasRatio[1])
+        near = camera.clipStart
+        far = camera.clipEnd
+
+        fovy = atan(0.5/aspect/(camera.lens/32))
+        fovy = fovy * 360/pi
+        
+        # What projection do we want?
+        if camera.type:
+            m2 = self._calcOrthoMatrix(fovy, aspect, near, far, 17) #camera.scale) 
+        else:
+            m2 = self._calcPerspectiveMatrix(fovy, aspect, near, far) 
+        
+
+        # View transformation
+        cam = Matrix(cameraObj.getInverseMatrix())
+        cam.transpose() 
+        
+        # FIXME: remove the commented part, we used to pass object in local
+        # coordinates, but this is not very clean, we should apply modelview
+        # tranformations _before_ (at some other level).
+        #m1 = Matrix(obMesh.getMatrix())
+        #m1.transpose()
+        
+        #mP = cam * m1
+        mP = cam
+        mP = m2  * mP
+
+        self.projectionMatrix = mP
+
+    ##
+    # Public methods
+    #
+
+    def doProjection(self, v):
+        """Project the point on the view plane.
+
+        Given a vertex calculate the projection using the current projection
+        matrix.
+        """
+        
+        # Note that we need the vertex expressed using homogeneous coordinates
+        p = self.projectionMatrix * Vector(v).resize4D()
+
+        if p[3]>0:
+            p[0] = p[0]/p[3]
+            p[1] = p[1]/p[3]
+
+        return p
+
+    ##
+    # Private methods
+    #
+    
+    def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
+        """Return a perspective projection matrix."""
+        
+        top = near * tan(fovy * pi / 360.0)
+        bottom = -top
+        left = bottom*aspect
+        right= top*aspect
+        x = (2.0 * near) / (right-left)
+        y = (2.0 * near) / (top-bottom)
+        a = (right+left) / (right-left)
+        b = (top+bottom) / (top - bottom)
+        c = - ((far+near) / (far-near))
+        d = - ((2*far*near)/(far-near))
+        
+        m = Matrix(
+                [x,   0.0,    a,    0.0],
+                [0.0,   y,    b,    0.0],
+                [0.0, 0.0,    c,      d],
+                [0.0, 0.0, -1.0,    0.0])
+
+        return m
+
+    def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
+        """Return an orthogonal projection matrix."""
+        
+        top = near * tan(fovy * pi / 360.0) * (scale * 10)
+        bottom = -top 
+        left = bottom * aspect
+        right= top * aspect
+        rl = right-left
+        tb = top-bottom
+        fn = near-far 
+        tx = -((right+left)/rl)
+        ty = -((top+bottom)/tb)
+        tz = ((far+near)/fn)
+
+        m = Matrix(
+                [2.0/rl, 0.0,    0.0,     tx],
+                [0.0,    2.0/tb, 0.0,     ty],
+                [0.0,    0.0,    2.0/fn,  tz],
+                [0.0,    0.0,    0.0,    1.0])
+        
+        return m
+
+
+# ---------------------------------------------------------------------
+#
+## Object representation class
+#
+# ---------------------------------------------------------------------
+
+# TODO: a class to represent the needed properties of a 2D vector image
+# Just use a NMesh structure?
+
+
+# ---------------------------------------------------------------------
+#
+## Vector Drawing Classes
+#
+# ---------------------------------------------------------------------
+
+## A generic Writer
+
+class VectorWriter:
+    """
+    A class for printing output in a vectorial format.
+
+    Given a 2D representation of the 3D scene the class is responsible to
+    write it is a vector format.
+
+    Every subclasses of VectorWriter must have at last the following public
+    methods:
+        - printCanvas(mesh) --- where mesh is as specified before.
+    """
+    
+    def __init__(self, fileName):
+        """Open the file named #fileName# and set the canvas size."""
+        
+        self.file = open(fileName, "w")
+        print "Outputting to: ", fileName
+
 
-# distance from camera Z'
-def Distance(PX,PY,PZ):
+        context = Scene.GetCurrent().getRenderingContext()
+        self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
     
-    dist = sqrt(PX*PX+PY*PY+PZ*PZ)
-    return dist
 
-def Dodaj(x,y,z):
+    ##
+    # Public Methods
+    #
     
-    print ""
+    def printCanvas(mesh):
+        return
+        
+    ##
+    # Private Methods
+    #
+    
+    def _printHeader():
+        return
+
+    def _printFooter():
+        return
+
+
+## SVG Writer
+
+class SVGVectorWriter(VectorWriter):
+    """A concrete class for writing SVG output.
+
+    The class does not support animations, yet.
+    Sorry.
+    """
+
+    def __init__(self, file):
+        """Simply call the parent Contructor."""
+        VectorWriter.__init__(self, file)
 
-def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
+
+    ##
+    # Public Methods
+    #
+
+    def open(self):
+        self._printHeader()
+
+    def close(self):
+        self._printFooter()
+
+        
     
-    NewPoint = []
-    # Rotate X
-    NewY = (PY * cos(AngleX))-(PZ * sin(AngleX))
-    NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX))
-    # Rotate Y
-    PZ = NewZ
-    PY = NewY
-    NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY))
-    NewX = (PX * cos(AngleY))+(PZ * sin(AngleY))
-    PX = NewX
-    PZ = NewZ
-    # Rotate Z
-    NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ))
-    NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ))
-    NewPoint.append(NewX)
-    NewPoint.append(NewY)
-    NewPoint.append(NewZ)
-    return NewPoint
-
-def flatern(vertx, verty, vertz):
-
-    cam = Camera.get()            # Get the cameras in scene
-    Lens = cam[0].getLens()       # The First Blender camera lens
-
-    camTyp = cam[0].getType()
-
-    msize = scena.getWinSize()
-    xres = msize[0]             # X res for output
-    yres = msize[1]                # Y res for output
-    ratio = xres/yres
-
-    screenxy=[0,0]
-    x=-vertx
-    y=verty
-    z=vertz
-
-    fov = atan(ratio * 16.0 / Lens)  # Get fov stuff
-    dist = xres/2*tan(fov)         # Calculate dist from pinhole camera to image plane
-#----------------------------        
-# calculate x'=dist*x/z & y'=dist*x/z
-#----------------------------
-    screenxy[0]=int(xres/2+4*x*dist/z)
-    screenxy[1]=int(yres/2+4*y*dist/z)
-    return screenxy
-
-def writesvg(ob):
-
-    for i in range(0, ob[0]+1):
-      print ob[i], "\n"
-    print "WriteSVG\n"
-
-########
-# Main #
-########
-
-scena = Scene.GetCurrent()
-init()
-
-tacka = [0,0,0]
-lice = [3,tacka,tacka,tacka,tacka]
-
-msize = scena.getWinSize()
-
-file=open("d:\proba.svg","w")
-
-file.write("<svg width=\"" + `msize[0]` + "\" height=\"" + `msize[1]` + "\"\n")
-file.write("xmlns=\"http://www.w3.org/2000/svg\" version=\"1.2\" streamable=\"true\">\n")
-#file.write("<pageSet>\n")
-
-Objects = Blender.Object.Get()
-NUMobjects = len(Objects)
-
-startFrm = scena.startFrame()
-endFrm = scena.endFrame()
-camera = scena.getCurrentCamera() # Get the current camera
-
-for f in range(startFrm, endFrm+1):
-  #scena.currentFrame(f)
-  Blender.Set('curframe', f)
-
-  DrawProgressBar (f/(endFrm+1-startFrm),"Rendering ..." + str(scena.currentFrame()))
-
-  print "Frame: ", f, "\n"
-  if startFrm <> endFrm: file.write("<g id=\"Frame" + str(f) + "\" style=\"visibility:hidden\">\n")
-  for o in range(NUMobjects):
-
-    if Objects[o].getType() == "Mesh":
-
-      obj = Objects[o]                  # Get the first selected object
-      objname = obj.name                # The object name
-
-
-      OBJmesh = obj.getData()           # Get the mesh data for the object
-      numfaces=len(OBJmesh.faces)         # The number of faces in the object
-      numEachVert=len(OBJmesh.faces[0])    # The number of verts in each face
-
-      #------------
-      # Get the Material Colors
-      #------------
-#      MATinfo = OBJmesh.getMaterials()
-#    
-#      if len(MATinfo) > 0:
-#          RGB=MATinfo[0].rgbCol
-#          R=int(RGB[0]*255)
-#          G=int(RGB[1]*255)
-#          B=int(RGB[2]*255)
-#          color=`R`+"."+`G`+"."+`B`
-#          print color
-#      else:
-#          color="100.100.100"
-
-      objekat = []
-
-      objekat.append(0)
-
-      for face in range(numfaces):
-        numvert = len(OBJmesh.faces[face])
-        objekat.append(numvert)
-        objekat[0] += 1
-        
-# backface cutting
-        a = []
-        a.append(OBJmesh.faces[face][0][0])
-        a.append(OBJmesh.faces[face][0][1])
-        a.append(OBJmesh.faces[face][0][2])
-        a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
-        a[0] += obj.LocX - camera.LocX
-        a[1] += obj.LocY - camera.LocY
-        a[2] += obj.LocZ - camera.LocZ
-        b = []
-        b.append(OBJmesh.faces[face][1][0])
-        b.append(OBJmesh.faces[face][1][1])
-        b.append(OBJmesh.faces[face][1][2])
-        b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
-        b[0] += obj.LocX - camera.LocX
-        b[1] += obj.LocY - camera.LocY
-        b[2] += obj.LocZ - camera.LocZ
-        c = []
-        c.append(OBJmesh.faces[face][numvert-1][0])
-        c.append(OBJmesh.faces[face][numvert-1][1])
-        c.append(OBJmesh.faces[face][numvert-1][2])
-        c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
-        c[0] += obj.LocX - camera.LocX
-        c[1] += obj.LocY - camera.LocY
-        c[2] += obj.LocZ - camera.LocZ
-
-        norm = [0,0,0]
-        norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
-        norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
-        norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
-
-        d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
-
-        if d < 0:
-          file.write("<polygon points=\"")
-          for vert in range(numvert):
-
-            objekat[0] += 3
-
-            vertxyz = []
-
-            if vert != 0: file.write(", ")
-
-            vertxyz.append(OBJmesh.faces[face][vert][0])
-            vertxyz.append(OBJmesh.faces[face][vert][1])
-            vertxyz.append(OBJmesh.faces[face][vert][2])
-
-# rotate object
-
-            vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], obj.RotX, obj.RotY, obj.RotZ)
-
-            vertxyz[0] += obj.LocX - camera.LocX
-            vertxyz[1] += obj.LocY - camera.LocY
-            vertxyz[2] += obj.LocZ - camera.LocZ
-
-# rotate camera
-
-            vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], -camera.RotX, -camera.RotY, -camera.RotZ)
-
-            objekat.append(Distance(vertxyz[0], vertxyz[1], vertxyz[2]))
-#            dist = Distance(vertxyz[0], vertxyz[1], vertxyz[2])
-            xy = flatern(vertxyz[0], vertxyz[1], vertxyz[2])
-            px = int(xy[0])
-            py = int(xy[1])
-            objekat.append(px)
-            objekat.append(py)
-            # add/sorting in Z' direction
-            #Dodaj(px,py,Distance(vertxyz[0], vertxyz[1], vertxyz[2]))
-            file.write(`px` + ", " + `py`)
-#          svetla = Blender.Lamp.Get()
-#          svetlo = svetla[0]
-#          print svetlo.LocX
-          ambient = -200
-          svetlo = [1,1,-1]
-          vektori = (norm[0]*svetlo[0]+norm[1]*svetlo[1]+norm[2]*svetlo[2])
-          vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(svetlo[0],2)+pow(svetlo[1],2)+pow(svetlo[2],2)))
-          intensity = floor(ambient + 255 * acos(vektori/vduzine))
-          print vektori/vduzine
-          if intensity < 0: intensity = 0
-          file.write("\"\n style=\"fill:rgb("+str(intensity)+","+str(intensity)+","+str(intensity)+");stroke:rgb(0,0,0);stroke-width:1\"/>\n")
-  if startFrm <> endFrm:
-    file.write("<animate attributeName=\"visibility\" begin=\""+str(f*0.08)+"s\" dur=\"0.08s\" fill=\"remove\" to=\"visible\">\n")
-    file.write("</animate>\n")
-    file.write("</g>\n")
-
-#flatern()
-#writesvg(objekat)
-file.write("</svg>")
-file.close()
-DrawProgressBar (1.0,"Finished.")
-print "Finished\n"
+    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
+        """Convert the scene representation to SVG."""
+
+        Objects = scene.getChildren()
+        for obj in Objects:
+
+            if(obj.getType() != 'Mesh'):
+                continue
+            #
+
+            self.file.write("<g>\n")
+
+            
+            if doPrintPolygons:
+                for face in obj.getData().faces:
+                    self._printPolygon(face)
+
+            if doPrintEdges:
+                self._printEdges(obj.getData(), showHiddenEdges)
+            
+            self.file.write("</g>\n")
+        
+    
+    ##  
+    # Private Methods
+    #
+    
+    def _printHeader(self):
+        """Print SVG header."""
+
+        self.file.write("<?xml version=\"1.0\"?>\n")
+        self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n")
+        self.file.write("\t\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n")
+        self.file.write("<svg version=\"1.1\"\n")
+        self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
+        self.file.write("\twidth=\"%d\" height=\"%d\" streamable=\"true\">\n\n" %
+                self.canvasSize)
+
+    def _printFooter(self):
+        """Print the SVG footer."""
+
+        self.file.write("\n</svg>\n")
+        self.file.close()
+
+    def _printEdges(self, mesh, showHiddenEdges=False):
+        """Print the wireframe using mesh edges... is this the correct way?
+        """
+
+        stroke_width=0.5
+        stroke_col = [0, 0, 0]
+        
+        self.file.write("<g>\n")
+
+        for e in mesh.edges:
+            
+            hidden_stroke_style = ""
+            
+            # And edge is selected if both vertives are selected
+            if e.v1.sel == 0 or e.v2.sel == 0:
+                if showHiddenEdges == False:
+                    continue
+                else:
+                    hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+            p1 = self._calcCanvasCoord(e.v1)
+            p2 = self._calcCanvasCoord(e.v2)
+            
+            self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
+                    % ( p1[0], p1[1], p2[0], p2[1] ) )
+            self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
+            self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+            self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+            self.file.write(hidden_stroke_style)
+            self.file.write("\"/>\n")
+
+        self.file.write("</g>\n")
+            
+        
+
+    def _printPolygon(self, face):
+        """Print our primitive, finally.
+        """
+
+        wireframe = False
+        
+        stroke_width=0.5
+        
+        self.file.write("<polygon points=\"")
+
+        for v in face:
+            p = self._calcCanvasCoord(v)
+            self.file.write("%g,%g " % (p[0], p[1]))
+        
+        self.file.seek(-1,1) # get rid of the last space
+        self.file.write("\"\n")
+        
+        #take as face color the first vertex color
+        if face.col:
+            fcol = face.col[0]
+            color = [fcol.r, fcol.g, fcol.b]
+        else:
+            color = [ 255, 255, 255]
+
+        stroke_col = [0, 0, 0]
+        if not wireframe:
+            stroke_col = color
+
+        self.file.write("\tstyle=\"fill:rgb("+str(color[0])+","+str(color[1])+","+str(color[2])+");")
+        self.file.write(" stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
+        self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+        self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+        self.file.write("\"/>\n")
+
+    def _calcCanvasCoord(self, v):
+
+        pt = Vector([0, 0, 0])
+        
+        mW = self.canvasSize[0]/2
+        mH = self.canvasSize[1]/2
+
+        # rescale to canvas size
+        pt[0] = round(v[0]*mW)+mW
+        pt[1] = round(v[1]*mH)+mH
+         
+        # For now we want (0,0) in the top-left corner of the canvas
+        # Mirror and translate along y
+        pt[1] *= -1
+        pt[1] += self.canvasSize[1]
+        
+        return pt
+
+
+# ---------------------------------------------------------------------
+#
+## Rendering Classes
+#
+# ---------------------------------------------------------------------
+
+class Renderer:
+    """Render a scene viewed from a given camera.
+    
+    This class is responsible of the rendering process, hence transformation
+    and projection of the ojects in the scene are invoked by the renderer.
+
+    The user can optionally provide a specific camera for the rendering, see
+    the #doRendering# method for more informations.
+    """
+
+    def __init__(self):
+        """Make the rendering process only for the current scene by default.
+        """
+
+        # Render the current Scene set as a READ-ONLY property
+        self._SCENE = Scene.GetCurrent()
+        
+        # Use the aspect ratio of the scene rendering context
+        context = self._SCENE.getRenderingContext()
+        self.canvasRatio = (context.aspectRatioX(), context.aspectRatioY())
+
+        # Render from the currently active camera 
+        self.camera = self._SCENE.getCurrentCamera()
+
+
+    ##
+    # Public Methods
+    #
+
+    def doRendering(self, outputWriter, animation=0):
+        """Render picture or animation and write it out.
+        
+        The parameters are:
+            - a Vector writer object than will be used to output the result.
+            - a flag to tell if we want to render an animation or the only
+              current frame.
+        """
+        
+        context = self._SCENE.getRenderingContext()
+        currentFrame = context.currentFrame()
+
+        # Handle the animation case
+        if animation == 0:
+            startFrame = currentFrame
+            endFrame = startFrame
+        else:
+            startFrame = context.startFrame()
+            endFrame = context.endFrame()
+        
+        # Do the rendering process frame by frame
+        print "Start Rendering!"
+        for f in range(startFrame, endFrame+1):
+            context.currentFrame(f)
+            renderedScene = self.doRenderScene(self._SCENE)
+            outputWriter.printCanvas(renderedScene,
+                    doPrintPolygons=False, doPrintEdges=True, showHiddenEdges=True)
+            
+            # clear the rendered scene
+            self._SCENE.makeCurrent()
+            Scene.unlink(renderedScene)
+            del renderedScene
+
+        print "Done!"
+        context.currentFrame(currentFrame)
+
+
+
+    def doRenderScene(self, inputScene):
+        """Control the rendering process.
+        
+        Here we control the entire rendering process invoking the operation
+        needed to transform and project the 3D scene in two dimensions.
+        """
+        
+        # Use some temporary workspace, a full copy of the scene
+        workScene = inputScene.copy(2)
+
+        # Get a projector for this scene.
+        # NOTE: the projector wants object in world coordinates,
+        # so we should apply modelview transformations _before_
+        # projection transformations
+        proj = Projector(self.camera, self.canvasRatio)
+            
+        # global processing of the scene
+        self._doDepthSorting(workScene)
+        
+        # Per object activities
+        Objects = workScene.getChildren()
+        
+        for obj in Objects:
+            
+            if (obj.getType() != 'Mesh'):
+                print "Type:", obj.getType(), "\tSorry, only mesh Object supported!"
+                continue
+            #
+
+            self._doModelViewTransformations(obj)
+
+            self._doBackFaceCulling(obj)
+            
+            self._doColorAndLighting(obj)
+
+            # 'style' can be a function that determine
+            # if an edge should be showed?
+            self._doEdgesStyle(obj, style=None)
+           
+            self._doProjection(obj, proj)
+
+        return workScene
+
+
+    def oldRenderScene(scene):
+        
+        # Per object activities
+        Objects = workScene.getChildren()
+        
+        for obj in Objects:
+            
+            if (obj.getType() != 'Mesh'):
+                print "Type:", obj.getType(), "\tSorry, only mesh Object supported!"
+                continue
+            
+            # Get a projector for this object
+            proj = Projector(self.camera, obj, self.canvasSize)
+
+            # Let's store the transformed data
+            transformed_mesh = NMesh.New("flat"+obj.name)
+            transformed_mesh.hasVertexColours(1)
+
+            # process Edges
+            self._doProcessEdges(obj)
+            
+            for v in obj.getData().verts:
+                transformed_mesh.verts.append(v)
+            transformed_mesh.edges = self._processEdges(obj.getData().edges)
+            #print transformed_mesh.edges
+
+            
+            # Store the materials
+            materials = obj.getData().getMaterials()
+
+            meshfaces = obj.getData().faces
+
+            for face in meshfaces:
+
+                # if the face is visible flatten it on the "picture plane"
+                if self._isFaceVisible(face, obj, cameraObj):
+                    
+                    # Store transformed face
+                    newface = NMesh.Face()
+
+                    for vert in face:
+
+                        p = proj.doProjection(vert.co)
+
+                        tmp_vert = NMesh.Vert(p[0], p[1], p[2])
+
+                        # Add the vert to the mesh
+                        transformed_mesh.verts.append(tmp_vert)
+                        
+                        newface.v.append(tmp_vert)
+                        
+                    
+                    # Per-face color calculation
+                    # code taken mostly from the original vrm script
+                    # TODO: understand the code and rewrite it clearly
+                    ambient = -150
+                    
+                    fakelight = Object.Get("Lamp").loc
+                    if fakelight == None:
+                        fakelight = [1.0, 1.0, -0.3]
+
+                    norm = Vector(face.no)
+                    vektori = (norm[0]*fakelight[0]+norm[1]*fakelight[1]+norm[2]*fakelight[2])
+                    vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(fakelight[0],2)+pow(fakelight[1],2)+pow(fakelight[2],2)))
+                    intensity = floor(ambient + 200*acos(vektori/vduzine))/200
+                    if intensity < 0:
+                        intensity = 0
+
+                    if materials:
+                        tmp_col = materials[face.mat].getRGBCol()
+                    else:
+                        tmp_col = [0.5, 0.5, 0.5]
+                        
+                    tmp_col = [ (c>intensity) and int(round((c-intensity)*10)*25.5) for c in tmp_col ]
+
+                    vcol = NMesh.Col(tmp_col[0], tmp_col[1], tmp_col[2])
+                    newface.col = [vcol, vcol, vcol, 255]
+                    
+                    transformed_mesh.addFace(newface)
+
+            # at the end of the loop on obj
+            
+            transformed_obj = Object.New(obj.getType(), "flat"+obj.name)
+            transformed_obj.link(transformed_mesh)
+            transformed_obj.loc = obj.loc
+            newscene.link(transformed_obj)
+
+        
+        return workScene
+
+
+    ##
+    # Private Methods
+    #
+
+    # Faces methods
+
+    def _isFaceVisible(self, face, obj, camObj):
+        """Determine if a face of an object is visible from a given camera.
+        
+        The normals need to be transformed, but note that we should apply only the
+        rotation part of the tranformation matrix, since the normals are
+        normalized and they can be intended as starting from the origin.
+
+        The view vector is calculated from the camera location and one of the
+        vertices of the face (expressed in World coordinates, after applying
+        modelview transformations).
+
+        After those transformations we determine if a face is visible by computing
+        the angle between the face normal and the view vector, this angle
+        corresponds somehow to the dot product between the two. If the product
+        results <= 0 then the angle between the two vectors is less that 90
+        degrees and then the face is visible.
+
+        There is no need to normalize those vectors since we are only interested in
+        the sign of the cross product and not in the product value.
+        """
+
+        # The transformation matrix of the object
+        mObj = Matrix(obj.getMatrix())
+        mObj.transpose()
+
+        # The normal after applying the current object rotation
+        #normal = mObj.rotationPart() * Vector(face.no)
+        normal = Vector(face.no)
+
+        # View vector in orthographics projections can be considered simply s the
+        # camera position
+        #view_vect = Vector(camObj.loc)
+
+        # View vector as in perspective projections
+        # it is the dofference between the camera position and
+        # one point of the face, we choose the first point,
+        # but maybe a better choice may be the farthest point from the camera.
+        point = Vector(face[0].co)
+        #point = mObj * point.resize4D()
+        #point.resize3D()
+        view_vect = Vector(camObj.loc) - point
+        
+
+        # if d <= 0 the face is visible from the camera
+        d = view_vect * normal
+        
+        if d <= 0:
+            return False
+        else:
+            return True
+
+
+    # Scene methods
+
+    def _doClipping():
+        return
+
+    def _doDepthSorting(self, scene):
+
+        cameraObj = self.camera
+        Objects = scene.getChildren()
+
+        Objects.sort(lambda obj1, obj2: 
+                cmp(Vector(Vector(cameraObj.loc) - Vector(obj1.loc)).length,
+                    Vector(Vector(cameraObj.loc) - Vector(obj2.loc)).length
+                    )
+                )
+        
+        # hackish sorting of faces according to the max z value of a vertex
+        for o in Objects:
+
+            if (o.getType() != 'Mesh'):
+                continue
+            #
+
+            mesh = o.data
+            mesh.faces.sort(
+                lambda f1, f2:
+                    # Sort faces according to the min z coordinate in a face
+                    #cmp(min([v[2] for v in f1]), min([v[2] for v in f2])))
+
+                    # Sort faces according to the max z coordinate in a face
+                    cmp(max([v[2] for v in f1]), max([v[2] for v in f2])))
+                    
+                    # Sort faces according to the avg z coordinate in a face
+                    #cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2)))
+            mesh.faces.reverse()
+            mesh.update()
+            
+        # update the scene
+        # FIXME: check if it is correct
+        scene.update()
+        #for o in scene.getChildren():
+        #     scene.unlink(o)
+        #for o in Objects:
+        #   scene.link(o)
+
+    # Per object methods
+
+    def _doModelViewTransformations(self, object):
+        if(object.getType() != 'Mesh'):
+            return
+        
+        matMV = object.matrix
+        mesh = object.data
+        mesh.transform(matMV, True)
+        mesh.update()
+
+
+    def _doBackFaceCulling(self, object):
+        if(object.getType() != 'Mesh'):
+            return
+        
+        print "doing Backface Culling"
+        mesh = object.data
+        
+        # Select all vertices, so edges without faces can be displayed
+        for v in mesh.verts:
+            v.sel = 1
+        
+        Mesh.Mode(Mesh.SelectModes['FACE'])
+        # Loop on faces
+        for f in mesh.faces:
+            f.sel = 0
+            if self._isFaceVisible(f, object, self.camera):
+                f.sel = 1
+
+        for f in mesh.faces:
+            if not f.sel:
+                for v in f:
+                    v.sel = 0
+
+        for f in mesh.faces:
+            if f.sel:
+                for v in f:
+                    v.sel = 1
+
+        mesh.update()
+
+        
+
+        #Mesh.Mode(Mesh.SelectModes['VERTEX'])
+
+    def _doColorAndLighting(self, object):
+        return
+
+    def _doEdgesStyle(self, object, style):
+        """Process Mesh Edges. (For now copy the edge data, in next version it
+        can be a place where recognize silouhettes and/or contours).
+
+        input: an edge list
+        return: a processed edge list
+        """
+        return
+
+    def _doProjection(self, object, projector):
+
+        if(object.getType() != 'Mesh'):
+            return
+        
+        mesh = object.data
+        for v in mesh.verts:
+            p = projector.doProjection(v.co)
+            v[0] = p[0]
+            v[1] = p[1]
+            v[2] = p[2]
+        mesh.update()
+
+
+
+# ---------------------------------------------------------------------
+#
+## Main Program
+#
+# ---------------------------------------------------------------------
+
+
+# FIXME: really hackish code, just to test if the other parts work
+    
+def vectorize(filename):
+    """The vectorizing process is as follows:
+     
+     - Open the writer
+     - Render the scene
+     - Close the writer
+     
+     If you want to render an animation the second pass should be
+     repeated for any frame, and the frame number should be passed to the
+     renderer.
+     """
+    writer = SVGVectorWriter(filename)
+    
+    writer.open()
+    
+    renderer = Renderer()
+    renderer.doRendering(writer)
+
+    writer.close()
+
+
+# Here the main
+if __name__ == "__main__":
+    # with this trick we can run the script in batch mode
+    try:
+        Blender.Window.FileSelector (vectorize, 'Save SVG', "proba.svg")
+        Blender.Redraw()
+    except:
+        from Blender import Window
+        editmode = Window.EditMode()
+        if editmode: Window.EditMode(0)
+
+        vectorize("proba.svg")
+        if editmode: Window.EditMode(1) 
+
+
+