#!BPY
-
"""
Name: 'VRM'
-Blender: 237
-Group: 'Export'
-Tooltip: 'Vector Rendering Method Export Script'
+Blender: 242
+Group: 'Render'
+Tooltip: 'Vector Rendering Method script'
+"""
+
+__author__ = "Antonio Ospite"
+__url__ = ["http://projects.blender.org/projects/vrm"]
+__version__ = "0.3"
+
+__bpydoc__ = """\
+ Render the scene and save the result in vector format.
"""
+# ---------------------------------------------------------------------
+# Copyright (c) 2006 Antonio Ospite
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+#
+# ---------------------------------------------------------------------
+#
+# Additional credits:
+# Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
+# Thanks to Nikola Radovanovic, the author of the original VRM script,
+# the code you read here has been rewritten _almost_ entirely
+# from scratch but Nikola gave me the idea, so I thank him publicly.
+#
+# ---------------------------------------------------------------------
+#
+# Things TODO for a next release:
+# - Use multiple lighting sources in color calculation,
+# (this is part of the "shading refactor") and use light color!
+# - FIX the issue with negative scales in object tranformations!
+# - Use a better depth sorting algorithm
+# - Implement clipping of primitives and do handle object intersections.
+# (for now only clipping away whole objects is supported).
+# - Review how selections are made (this script uses selection states of
+# primitives to represent visibility infos)
+# - Use a data structure other than Mesh to represent the 2D image?
+# Think to a way to merge (adjacent) polygons that have the same color.
+# Or a way to use paths for silhouettes and contours.
+# - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
+# not support SMIL for animations)
+# - Switch to the Mesh structure, should be considerably faster
+# (partially done, but with Mesh we cannot sort faces, yet)
+# - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
+# - Implement Shading Styles? (for now we use Flat Shading) (partially done).
+# - Add Vector Writers other than SVG.
+#
+# ---------------------------------------------------------------------
+#
+# Changelog:
+#
+# vrm-0.3.py - 2006-05-19
+# * First release after code restucturing.
+# Now the script offers a useful set of functionalities
+# and it can render animations, too.
+#
+# ---------------------------------------------------------------------
+
import Blender
-from Blender import Scene, Object, Lamp, Camera
+from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera
+from Blender.Mathutils import *
from math import *
-from Blender.Window import *
-from Blender.Scene import Render
-# distance from camera Z'
-def Distance(PX,PY,PZ):
+# Some global settings
+
+class config:
+ polygons = dict()
+ polygons['SHOW'] = True
+ polygons['SHADING'] = 'TOON'
+ # Hidden to the user for now
+ polygons['EXPANSION_TRICK'] = True
+
+ edges = dict()
+ edges['SHOW'] = True
+ edges['SHOW_HIDDEN'] = False
+ edges['STYLE'] = 'SILHOUETTE'
+ edges['WIDTH'] = 2
+ edges['COLOR'] = [0, 0, 0]
+
+ output = dict()
+ output['FORMAT'] = 'SVG'
+ output['ANIMATION'] = False
+ output['JOIN_OBJECTS'] = True
+
+
+
+# ---------------------------------------------------------------------
+#
+## Utility Mesh class
+#
+# ---------------------------------------------------------------------
+class MeshUtils:
+
+ def getEdgeAdjacentFaces(edge, mesh):
+ """Get the faces adjacent to a given edge.
+
+ There can be 0, 1 or more (usually 2) faces adjacent to an edge.
+ """
+ adjface_list = []
+
+ for f in mesh.faces:
+ if (edge.v1 in f.v) and (edge.v2 in f.v):
+ adjface_list.append(f)
+
+ return adjface_list
+
+ def isMeshEdge(e, mesh):
+ """Mesh edge rule.
+
+ A mesh edge is visible if _any_ of its adjacent faces is selected.
+ Note: if the edge has no adjacent faces we want to show it as well,
+ useful for "edge only" portion of objects.
+ """
+
+ adjacent_faces = MeshUtils.getEdgeAdjacentFaces(e, mesh)
+
+ if len(adjacent_faces) == 0:
+ return True
+
+ selected_faces = [f for f in adjacent_faces if f.sel]
+
+ if len(selected_faces) != 0:
+ return True
+ else:
+ return False
+
+ def isSilhouetteEdge(e, mesh):
+ """Silhuette selection rule.
+
+ An edge is a silhuette edge if it is shared by two faces with
+ different selection status or if it is a boundary edge of a selected
+ face.
+ """
+
+ adjacent_faces = MeshUtils.getEdgeAdjacentFaces(e, mesh)
+
+ if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or
+ (len(adjacent_faces) == 2 and
+ adjacent_faces[0].sel != adjacent_faces[1].sel)
+ ):
+ return True
+ else:
+ return False
- dist = sqrt(PX*PX+PY*PY+PZ*PZ)
- return dist
+ def toonShading(u):
+
+ levels = 2
+ texels = 2*levels - 1
+ map = [0.0] + [(i)/float(texels-1) for i in range(1, texels-1) ] + [1.0]
+
+ v = 1.0
+ for i in range(0, len(map)-1):
+ pivot = (map[i]+map[i+1])/2.0
+ j = int(u>pivot)
+
+ v = map[i+j]
+
+ if v<map[i+1]:
+ return v
+
+ return v
+
+
+ getEdgeAdjacentFaces = staticmethod(getEdgeAdjacentFaces)
+ isMeshEdge = staticmethod(isMeshEdge)
+ isSilhouetteEdge = staticmethod(isSilhouetteEdge)
+ toonShading = staticmethod(toonShading)
-def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
+
+
+# ---------------------------------------------------------------------
+#
+## Projections classes
+#
+# ---------------------------------------------------------------------
+
+class Projector:
+ """Calculate the projection of an object given the camera.
- NewPoint = []
- # Rotate X
- NewY = (PY * cos(AngleX))-(PZ * sin(AngleX))
- NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX))
- # Rotate Y
- PZ = NewZ
- PY = NewY
- NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY))
- NewX = (PX * cos(AngleY))+(PZ * sin(AngleY))
- PX = NewX
- PZ = NewZ
- # Rotate Z
- NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ))
- NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ))
- NewPoint.append(NewX)
- NewPoint.append(NewY)
- NewPoint.append(NewZ)
- return NewPoint
-
-def vetmatmult(v, M):
+ A projector is useful to so some per-object transformation to obtain the
+ projection of an object given the camera.
- v2 = [0, 0, 0, 0]
+ The main method is #doProjection# see the method description for the
+ parameter list.
+ """
+
+ def __init__(self, cameraObj, canvasRatio):
+ """Calculate the projection matrix.
+
+ The projection matrix depends, in this case, on the camera settings.
+ TAKE CARE: This projector expects vertices in World Coordinates!
+ """
+
+ camera = cameraObj.getData()
+
+ aspect = float(canvasRatio[0])/float(canvasRatio[1])
+ near = camera.clipStart
+ far = camera.clipEnd
+
+ scale = float(camera.scale)
+
+ fovy = atan(0.5/aspect/(camera.lens/32))
+ fovy = fovy * 360.0/pi
+
+ # What projection do we want?
+ if camera.type == 0:
+ mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+ elif camera.type == 1:
+ mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
+
+ # View transformation
+ cam = Matrix(cameraObj.getInverseMatrix())
+ cam.transpose()
+
+ mP = mP * cam
+
+ self.projectionMatrix = mP
+
+ ##
+ # Public methods
+ #
+
+ def doProjection(self, v):
+ """Project the point on the view plane.
+
+ Given a vertex calculate the projection using the current projection
+ matrix.
+ """
+
+ # Note that we have to work on the vertex using homogeneous coordinates
+ p = self.projectionMatrix * Vector(v).resize4D()
+
+ # Perspective division
+ if p[3] != 0:
+ p[0] = p[0]/p[3]
+ p[1] = p[1]/p[3]
+ p[2] = p[2]/p[3]
+
+ # restore the size
+ p[3] = 1.0
+ p.resize3D()
+
+ return p
+
+
+ ##
+ # Private methods
+ #
- for i in range(0, 3):
- for j in range(0, 3):
- v2[i] += (v[i]*M[i][j])
+ def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
+ """Return a perspective projection matrix.
+ """
+
+ top = near * tan(fovy * pi / 360.0)
+ bottom = -top
+ left = bottom*aspect
+ right= top*aspect
+ x = (2.0 * near) / (right-left)
+ y = (2.0 * near) / (top-bottom)
+ a = (right+left) / (right-left)
+ b = (top+bottom) / (top - bottom)
+ c = - ((far+near) / (far-near))
+ d = - ((2*far*near)/(far-near))
+
+ m = Matrix(
+ [x, 0.0, a, 0.0],
+ [0.0, y, b, 0.0],
+ [0.0, 0.0, c, d],
+ [0.0, 0.0, -1.0, 0.0])
+
+ return m
+
+ def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
+ """Return an orthogonal projection matrix.
+ """
+
+ # The 11 in the formula was found emiprically
+ top = near * tan(fovy * pi / 360.0) * (scale * 11)
+ bottom = -top
+ left = bottom * aspect
+ right= top * aspect
+ rl = right-left
+ tb = top-bottom
+ fn = near-far
+ tx = -((right+left)/rl)
+ ty = -((top+bottom)/tb)
+ tz = ((far+near)/fn)
- return v2
+ m = Matrix(
+ [2.0/rl, 0.0, 0.0, tx],
+ [0.0, 2.0/tb, 0.0, ty],
+ [0.0, 0.0, 2.0/fn, tz],
+ [0.0, 0.0, 0.0, 1.0])
+
+ return m
-def flatern(vertx, verty, vertz):
- cam = Camera.get() # Get the cameras in scene
- Lens = cam[0].getLens() # The First Blender camera lens
- camTyp = cam[0].getType()
+# ---------------------------------------------------------------------
+#
+## 2D Object representation class
+#
+# ---------------------------------------------------------------------
+
+# TODO: a class to represent the needed properties of a 2D vector image
+# For now just using a [N]Mesh structure.
+
+
+# ---------------------------------------------------------------------
+#
+## Vector Drawing Classes
+#
+# ---------------------------------------------------------------------
+
+## A generic Writer
+
+class VectorWriter:
+ """
+ A class for printing output in a vectorial format.
+
+ Given a 2D representation of the 3D scene the class is responsible to
+ write it is a vector format.
+
+ Every subclasses of VectorWriter must have at last the following public
+ methods:
+ - open(self)
+ - close(self)
+ - printCanvas(self, scene,
+ doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
+ """
+
+ def __init__(self, fileName):
+ """Set the output file name and other properties"""
+
+ self.outputFileName = fileName
+ self.file = None
+
+ context = Scene.GetCurrent().getRenderingContext()
+ self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
+
+ self.startFrame = 1
+ self.endFrame = 1
+ self.animation = False
- msize = (context.imageSizeX(), context.imageSizeY())
- xres = msize[0] # X res for output
- yres = msize[1] # Y res for output
- ratio = xres/yres
- fov = atan(ratio * 16.0 / Lens) # Get fov stuff
+ ##
+ # Public Methods
+ #
- dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane
+ def open(self, startFrame=1, endFrame=1):
+ if startFrame != endFrame:
+ self.startFrame = startFrame
+ self.endFrame = endFrame
+ self.animation = True
+
+ self.file = open(self.outputFileName, "w")
+ print "Outputting to: ", self.outputFileName
+
+ return
+
+ def close(self):
+ self.file.close()
+ return
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """This is the interface for the needed printing routine.
+ """
+ return
+
+
+## SVG Writer
+
+class SVGVectorWriter(VectorWriter):
+ """A concrete class for writing SVG output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+ self._printHeader()
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self._printFooter()
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+
+ Objects = scene.getChildren()
+
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ if self.animation:
+ framestyle = "display:none"
+ else:
+ framestyle = "display:block"
+
+ # Assign an id to this group so we can set properties on it using DOM
+ self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
+ (framenumber, framestyle) )
+
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ self.file.write("<g id=\"%s\">\n" % obj.getName())
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh)
+
+ if doPrintEdges:
+ self._printEdges(mesh, showHiddenEdges)
+
+ self.file.write("</g>\n")
+
+ self.file.write("</g>\n")
+
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printHeader(self):
+ """Print SVG header."""
+
+ self.file.write("<?xml version=\"1.0\"?>\n")
+ self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n")
+ self.file.write("\t\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n")
+ self.file.write("<svg version=\"1.1\"\n")
+ self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
+ self.file.write("\twidth=\"%d\" height=\"%d\" streamable=\"true\">\n\n" %
+ self.canvasSize)
+
+ if self.animation:
+
+ self.file.write("""\n<script><![CDATA[
+ globalStartFrame=%d;
+ globalEndFrame=%d;
+
+ /* FIXME: Use 1000 as interval as lower values gives problems */
+ timerID = setInterval("NextFrame()", 1000);
+ globalFrameCounter=%d;
+
+ function NextFrame()
+ {
+ currentElement = document.getElementById('frame'+globalFrameCounter)
+ previousElement = document.getElementById('frame'+(globalFrameCounter-1))
+
+ if (!currentElement)
+ {
+ return;
+ }
+
+ if (globalFrameCounter > globalEndFrame)
+ {
+ clearInterval(timerID)
+ }
+ else
+ {
+ if(previousElement)
+ {
+ previousElement.style.display="none";
+ }
+ currentElement.style.display="block";
+ globalFrameCounter++;
+ }
+ }
+ \n]]></script>\n
+ \n""" % (self.startFrame, self.endFrame, self.startFrame) )
+
+ def _printFooter(self):
+ """Print the SVG footer."""
+
+ self.file.write("\n</svg>\n")
+
+ def _printPolygons(self, mesh):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ self.file.write("<g>\n")
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ self.file.write("<path d=\"")
+
+ p = self._calcCanvasCoord(face.verts[0])
+ self.file.write("M %g,%g L " % (p[0], p[1]))
+
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ self.file.write("%g,%g " % (p[0], p[1]))
+
+ # get rid of the last blank space, just cosmetics here.
+ self.file.seek(-1, 1)
+ self.file.write("\"\n")
+
+ # take as face color the first vertex color
+ # TODO: the average of vetrex colors?
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r, fcol.g, fcol.b, fcol.a]
+ else:
+ color = [255, 255, 255, 255]
+
+ # Convert the color to the #RRGGBB form
+ str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
+
+ # use the stroke property to alleviate the "adjacent edges" problem,
+ # we simulate polygon expansion using borders,
+ # see http://www.antigrain.com/svg/index.html for more info
+ stroke_width = 0.5
+
+ # Handle transparent polygons
+ opacity_string = ""
+ if color[3] != 255:
+ opacity = float(color[3])/255.0
+ opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+
+ self.file.write("\tstyle=\"fill:" + str_col + ";")
+ self.file.write(opacity_string)
+ if config.polygons['EXPANSION_TRICK']:
+ self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+ self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+ self.file.write("\"/>\n")
+
+ self.file.write("</g>\n")
+
+ def _printEdges(self, mesh, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ self.file.write("<g>\n")
+
+ for e in mesh.edges:
+
+ hidden_stroke_style = ""
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
+ % ( p1[0], p1[1], p2[0], p2[1] ) )
+ self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
+ self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+ self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+ self.file.write(hidden_stroke_style)
+ self.file.write("\"/>\n")
+
+ self.file.write("</g>\n")
+
+
+
+# ---------------------------------------------------------------------
+#
+## Rendering Classes
+#
+# ---------------------------------------------------------------------
+
+# A dictionary to collect different shading style methods
+shadingStyles = dict()
+shadingStyles['FLAT'] = None
+shadingStyles['TOON'] = None
+
+# A dictionary to collect different edge style methods
+edgeStyles = dict()
+edgeStyles['MESH'] = MeshUtils.isMeshEdge
+edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
+
+# A dictionary to collect the supported output formats
+outputWriters = dict()
+outputWriters['SVG'] = SVGVectorWriter
+
+
+class Renderer:
+ """Render a scene viewed from a given camera.
+
+ This class is responsible of the rendering process, transformation and
+ projection of the objects in the scene are invoked by the renderer.
+
+ The rendering is done using the active camera for the current scene.
+ """
+
+ def __init__(self):
+ """Make the rendering process only for the current scene by default.
+
+ We will work on a copy of the scene, be sure that the current scene do
+ not get modified in any way.
+ """
+
+ # Render the current Scene, this should be a READ-ONLY property
+ self._SCENE = Scene.GetCurrent()
+
+ # Use the aspect ratio of the scene rendering context
+ context = self._SCENE.getRenderingContext()
+
+ aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY())
+ self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio,
+ float(context.aspectRatioY())
+ )
+
+ # Render from the currently active camera
+ self.cameraObj = self._SCENE.getCurrentCamera()
+
+ # Get a projector for this camera.
+ # NOTE: the projector wants object in world coordinates,
+ # so we should remember to apply modelview transformations
+ # _before_ we do projection transformations.
+ self.proj = Projector(self.cameraObj, self.canvasRatio)
+
+ # Get the list of lighting sources
+ obj_lst = self._SCENE.getChildren()
+ self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
+
+ # When there are no lights we use a default lighting source
+ # that have the same position of the camera
+ if len(self.lights) == 0:
+ l = Lamp.New('Lamp')
+ lobj = Object.New('Lamp')
+ lobj.loc = self.cameraObj.loc
+ lobj.link(l)
+ self.lights.append(lobj)
+
+
+ ##
+ # Public Methods
+ #
+
+ def doRendering(self, outputWriter, animation=False):
+ """Render picture or animation and write it out.
+
+ The parameters are:
+ - a Vector writer object that will be used to output the result.
+ - a flag to tell if we want to render an animation or only the
+ current frame.
+ """
+
+ context = self._SCENE.getRenderingContext()
+ origCurrentFrame = context.currentFrame()
+
+ # Handle the animation case
+ if not animation:
+ startFrame = origCurrentFrame
+ endFrame = startFrame
+ outputWriter.open()
+ else:
+ startFrame = context.startFrame()
+ endFrame = context.endFrame()
+ outputWriter.open(startFrame, endFrame)
+
+ # Do the rendering process frame by frame
+ print "Start Rendering!"
+ for f in range(startFrame, endFrame+1):
+ context.currentFrame(f)
+
+ # Use some temporary workspace, a full copy of the scene
+ inputScene = self._SCENE.copy(2)
+ # And Set our camera accordingly
+ self.cameraObj = inputScene.getCurrentCamera()
+
+ try:
+ renderedScene = self.doRenderScene(inputScene)
+ except :
+ print "There was an error! Aborting."
+ import traceback
+ print traceback.print_exc()
+
+ self._SCENE.makeCurrent()
+ Scene.unlink(inputScene)
+ del inputScene
+ return
+
+ outputWriter.printCanvas(renderedScene,
+ doPrintPolygons = config.polygons['SHOW'],
+ doPrintEdges = config.edges['SHOW'],
+ showHiddenEdges = config.edges['SHOW_HIDDEN'])
+
+ # clear the rendered scene
+ self._SCENE.makeCurrent()
+ #Scene.unlink(renderedScene)
+ #del renderedScene
+
+ outputWriter.close()
+ print "Done!"
+ context.currentFrame(origCurrentFrame)
+
+
+ def doRenderScene(self, workScene):
+ """Control the rendering process.
+
+ Here we control the entire rendering process invoking the operation
+ needed to transform and project the 3D scene in two dimensions.
+ """
+
+ # global processing of the scene
+
+ self._doSceneClipping(workScene)
+
+ self._doConvertGeometricObjToMesh(workScene)
+
+ if config.output['JOIN_OBJECTS']:
+ self._joinMeshObjectsInScene(workScene)
+
+ self._doSceneDepthSorting(workScene)
+
+ # Per object activities
+
+ Objects = workScene.getChildren()
+ for obj in Objects:
+
+ if obj.getType() != 'Mesh':
+ print "Only Mesh supported! - Skipping type:", obj.getType()
+ continue
+
+ print "Rendering: ", obj.getName()
+
+ mesh = obj.getData(mesh=1)
- screenxy=[0,0]
- x=-vertx
- y=verty
- z=vertz
+ self._doModelingTransformation(mesh, obj.matrix)
- #----------------------------
- # calculate x'=dist*x/z & y'=dist*x/z
- #----------------------------
- screenxy[0]=int(xres/2.0+4*x*dist/z)
- screenxy[1]=int(yres/2.0+4*y*dist/z)
- return screenxy
+ self._doBackFaceCulling(mesh)
+ self._doPerVertexLighting(mesh)
-########
-# Main #
-########
+ # Do "projection" now so we perform further processing
+ # in Normalized View Coordinates
+ self._doProjection(mesh, self.proj)
-scena = Scene.GetCurrent()
-context = scena.getRenderingContext()
-renderDir = context.getRenderPath()
+ self._doViewFrustumClipping(mesh)
-msize = (context.imageSizeX(), context.imageSizeY())
+ self._doMeshDepthSorting(mesh)
-file=open("proba.svg","w")
+ self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
-file.write("<?xml version=\"1.0\"?>\n")
-file.write("<svg width=\"" + `msize[0]` + "\" height=\"" + `msize[1]` + "\"\n")
-file.write("\txmlns=\"http://www.w3.org/2000/svg\" version=\"1.2\" streamable=\"true\">\n")
-#file.write("<pageSet>\n")
+
+ # Update the object data, important! :)
+ mesh.update()
+
+ return workScene
+
+
+ ##
+ # Private Methods
+ #
+
+ # Utility methods
+
+ def _getObjPosition(self, obj):
+ """Return the obj position in World coordinates.
+ """
+ return obj.matrix.translationPart()
+
+ def _cameraViewVector(self):
+ """Get the View Direction form the camera matrix.
+ """
+ return Vector(self.cameraObj.matrix[2]).resize3D()
+
+
+ # Faces methods
+
+ def _isFaceVisible(self, face):
+ """Determine if a face of an object is visible from the current camera.
+
+ The view vector is calculated from the camera location and one of the
+ vertices of the face (expressed in World coordinates, after applying
+ modelview transformations).
+
+ After those transformations we determine if a face is visible by
+ computing the angle between the face normal and the view vector, this
+ angle has to be between -90 and 90 degrees for the face to be visible.
+ This corresponds somehow to the dot product between the two, if it
+ results > 0 then the face is visible.
-Objects = Blender.Object.Get()
-NUMobjects = len(Objects)
+ There is no need to normalize those vectors since we are only interested in
+ the sign of the cross product and not in the product value.
-startFrm = context.startFrame()
-endFrm = startFrm
-#endFrm = context.endFrame()
-frames = range(startFrm, endFrm+1)
+ NOTE: here we assume the face vertices are in WorldCoordinates, so
+ please transform the object _before_ doing the test.
+ """
-# are we rendering an animation ?
-animation = (len(frames) > 1)
+ normal = Vector(face.no)
+ camPos = self._getObjPosition(self.cameraObj)
+ view_vect = None
-camera = scena.getCurrentCamera() # Get the current camera
+ # View Vector in orthographics projections is the view Direction of
+ # the camera
+ if self.cameraObj.data.getType() == 1:
+ view_vect = self._cameraViewVector()
-for f in frames:
- context.currentFrame(f)
- Blender.Set('curframe', f)
+ # View vector in perspective projections can be considered as
+ # the difference between the camera position and one point of
+ # the face, we choose the farthest point from the camera.
+ if self.cameraObj.data.getType() == 0:
+ vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
+ view_vect = vv[1]
- DrawProgressBar (f/len(frames),"Rendering ..." + str(f))
- print "Frame: ", f, "\n"
- if animation :
- file.write("<g id=\"Frame" + str(f) + "\" style=\"visibility:hidden\">\n")
+ # if d > 0 the face is visible from the camera
+ d = view_vect * normal
+
+ if d > 0:
+ return True
+ else:
+ return False
- for o in Objects:
- if o.getType() == "Mesh":
+ # Scene methods
- obj = o # Get the first selected object
- objname = obj.name # The object name
+ def _doSceneClipping(self, scene):
+ """Clip whole objects against the View Frustum.
+ For now clip away only objects according to their center position.
+ """
- OBJmesh = obj.getData() # Get the mesh data for the object
- meshfaces = OBJmesh.faces # The number of faces in the object
+ cpos = self._getObjPosition(self.cameraObj)
+ view_vect = self._cameraViewVector()
- #------------
- # Get the Material Colors
- #------------
+ near = self.cameraObj.data.clipStart
+ far = self.cameraObj.data.clipEnd
+
+ aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1])
+ fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
+ fovy = fovy * 360.0/pi
+
+ Objects = scene.getChildren()
+ for o in Objects:
+ if o.getType() != 'Mesh': continue;
+
+ obj_vect = Vector(cpos) - self._getObjPosition(o)
+
+ d = obj_vect*view_vect
+ theta = AngleBetweenVecs(obj_vect, view_vect)
- #MATinfo = OBJmesh.getMaterials()
- #
- #if len(MATinfo) > 0:
- # RGB=MATinfo[0].rgbCol
- # R=int(RGB[0]*255)
- # G=int(RGB[1]*255)
- # B=int(RGB[2]*255)
- # color=`R`+"."+`G`+"."+`B`
- # print color
- #else:
- # color="100.100.100"
-
-
- for face in range(0, len(meshfaces)):
- numvert = len(OBJmesh.faces[face])
+ # if the object is outside the view frustum, clip it away
+ if (d < near) or (d > far) or (theta > fovy):
+ scene.unlink(o)
+
+ def _doConvertGeometricObjToMesh(self, scene):
+ """Convert all "geometric" objects to mesh ones.
+ """
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+
+ Objects = scene.getChildren()
+ objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
+ for obj in objList:
+ old_obj = obj
+ obj = self._convertToRawMeshObj(obj)
+ scene.link(obj)
+ scene.unlink(old_obj)
+
+
+ # XXX Workaround for Text and Curve which have some normals
+ # inverted when they are converted to Mesh, REMOVE that when
+ # blender will fix that!!
+ if old_obj.getType() in ['Curve', 'Text']:
+ me = obj.getData(mesh=1)
+ for f in me.faces: f.sel = 1;
+ for v in me.verts: v.sel = 1;
+ me.remDoubles(0)
+ me.triangleToQuad()
+ me.recalcNormals()
+ me.update()
+
+
+ def _doSceneDepthSorting(self, scene):
+ """Sort objects in the scene.
+
+ The object sorting is done accordingly to the object centers.
+ """
+
+ c = self._getObjPosition(self.cameraObj)
+
+ by_center_pos = (lambda o1, o2:
+ (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+ cmp((self._getObjPosition(o1) - Vector(c)).length,
+ (self._getObjPosition(o2) - Vector(c)).length)
+ )
+
+ # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
+ # then ob1 goes farther than obj2, useful when obj2 has holes
+ by_bbox = None
+
+ Objects = scene.getChildren()
+ Objects.sort(by_center_pos)
+
+ # update the scene
+ for o in Objects:
+ scene.unlink(o)
+ scene.link(o)
+
+ def _joinMeshObjectsInScene(self, scene):
+ """Merge all the Mesh Objects in a scene into a single Mesh Object.
+ """
+
+ oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
+
+ # FIXME: Object.join() do not work if the list contains 1 object
+ if len(oList) == 1:
+ return
+
+ mesh = Mesh.New('BigOne')
+ bigObj = Object.New('Mesh', 'BigOne')
+ bigObj.link(mesh)
+
+ scene.link(bigObj)
+
+ try:
+ bigObj.join(oList)
+ except RuntimeError:
+ print "\nCan't Join Objects\n"
+ scene.unlink(bigObj)
+ return
+ except TypeError:
+ print "Objects Type error?"
+
+ for o in oList:
+ scene.unlink(o)
+
+ scene.update()
+
+
+ # Per object methods
+
+ def _convertToRawMeshObj(self, object):
+ """Convert geometry based object to a mesh object.
+ """
+ me = Mesh.New('RawMesh_'+object.name)
+ me.getFromObject(object.name)
+
+ newObject = Object.New('Mesh', 'RawMesh_'+object.name)
+ newObject.link(me)
+
+ # If the object has no materials set a default material
+ if not me.materials:
+ me.materials = [Material.New()]
+ #for f in me.faces: f.mat = 0
+
+ newObject.setMatrix(object.getMatrix())
+
+ return newObject
+
+ def _doModelingTransformation(self, mesh, matrix):
+ """Transform object coordinates to world coordinates.
+
+ This step is done simply applying to the object its tranformation
+ matrix and recalculating its normals.
+ """
+ # XXX FIXME: blender do not transform normals in the right way when
+ # there are negative scale values
+ if matrix[0][0] < 0 or matrix[1][1] < 0 or matrix[2][2] < 0:
+ print "WARNING: Negative scales, expect incorrect results!"
+
+ mesh.transform(matrix, True)
+
+ def _doBackFaceCulling(self, mesh):
+ """Simple Backface Culling routine.
+
+ At this level we simply do a visibility test face by face and then
+ select the vertices belonging to visible faces.
+ """
+
+ # Select all vertices, so edges can be displayed even if there are no
+ # faces
+ for v in mesh.verts:
+ v.sel = 1
+
+ Mesh.Mode(Mesh.SelectModes['FACE'])
+ # Loop on faces
+ for f in mesh.faces:
+ f.sel = 0
+ if self._isFaceVisible(f):
+ f.sel = 1
+
+ def _doPerVertexLighting(self, mesh):
+ """Apply an Illumination ans shading model to the object.
+
+ The model used is the Phong one, it may be inefficient,
+ but I'm just learning about rendering and starting from Phong seemed
+ the most natural way.
+ """
+
+ # If the mesh has vertex colors already, use them,
+ # otherwise turn them on and do some calculations
+ if mesh.vertexColors:
+ return
+ mesh.vertexColors = 1
+
+ materials = mesh.materials
+
+ # TODO: use multiple lighting sources
+ light_obj = self.lights[0]
+ light_pos = self._getObjPosition(light_obj)
+ light = light_obj.data
+
+ camPos = self._getObjPosition(self.cameraObj)
+
+ # We do per-face color calculation (FLAT Shading), we can easily turn
+ # to a per-vertex calculation if we want to implement some shading
+ # technique. For an example see:
+ # http://www.miralab.unige.ch/papers/368.pdf
+ for f in mesh.faces:
+ if not f.sel:
+ continue
+
+ mat = None
+ if materials:
+ mat = materials[f.mat]
+
+ # A new default material
+ if mat == None:
+ mat = Material.New('defMat')
+
+ L = Vector(light_pos).normalize()
+
+ V = (Vector(camPos) - Vector(f.cent)).normalize()
+
+ N = Vector(f.no).normalize()
+
+ R = 2 * (N*L) * N - L
+
+ # TODO: Attenuation factor (not used for now)
+ a0 = 1.0; a1 = 0.0; a2 = 1.0
+ d = (Vector(f.v[0].co) - Vector(light_pos)).length
+ fd = min(1, 1.0/(a0 + a1*d + a2*(d*d)))
+
+ # Ambient component
+ Ia = 1.0
+ ka = mat.getAmb() * Vector([0.1, 0.1, 0.1])
+ Iamb = Ia * ka
+
+ # Diffuse component (add light.col for kd)
+ kd = mat.getRef() * Vector(mat.getRGBCol())
+ Ip = light.getEnergy()
+
+ if config.polygons['SHADING'] == 'FLAT':
+ Idiff = Ip * kd * max(0, (N*L))
+ elif config.polygons['SHADING'] == 'TOON':
+ Idiff = Ip * kd * MeshUtils.toonShading(N*L)
+
+ # Specular component
+ ks = mat.getSpec() * Vector(mat.getSpecCol())
+ ns = mat.getHardness()
+ Ispec = Ip * ks * pow(max(0, (V*R)), ns)
+
+ # Emissive component
+ ki = Vector([mat.getEmit()]*3)
+
+ I = ki + Iamb + (Idiff + Ispec)
+
+
+ # Set Alpha component
+ I = list(I)
+ I.append(mat.getAlpha())
+
+ # Clamp I values between 0 and 1
+ I = [ min(c, 1) for c in I]
+ I = [ max(0, c) for c in I]
+
+ # Convert to a value between 0 and 255
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ for c in f.col:
+ c.r = tmp_col[0]
+ c.g = tmp_col[1]
+ c.b = tmp_col[2]
+ c.a = tmp_col[3]
+
+ def _doProjection(self, mesh, projector):
+ """Apply Viewing and Projection tranformations.
+ """
+
+ for v in mesh.verts:
+ p = projector.doProjection(v.co)
+ v.co[0] = p[0]
+ v.co[1] = p[1]
+ v.co[2] = p[2]
+
+ # We could reeset Camera matrix, since now
+ # we are in Normalized Viewing Coordinates,
+ # but doung that would affect World Coordinate
+ # processing for other objects
+
+ #self.cameraObj.data.type = 1
+ #self.cameraObj.data.scale = 2.0
+ #m = Matrix().identity()
+ #self.cameraObj.setMatrix(m)
+
+ def _doViewFrustumClipping(self, mesh):
+ """Clip faces against the View Frustum.
+ """
+
+ def test_extensions(self, f1, f2):
+ for v1, v2 in [ (v1, v2) for v1 in f1 for v2 in f2 ]:
+ pass
+
+ def depth_sort(self, faces):
+ return
+
+
+ def _doMeshDepthSorting(self, mesh):
+ """Sort faces in an object.
+
+ The faces in the object are sorted following the distance of the
+ vertices from the camera position.
+ """
+ if len(mesh.faces) == 0:
+ return
+
+ #c = self._getObjPosition(self.cameraObj)
+
+ # In NVC
+ c = [0, 0, 1]
+
+ # hackish sorting of faces
+
+ # Sort faces according to the max distance from the camera
+ by_max_vert_dist = (lambda f1, f2:
+ cmp(max([(Vector(v.co)-Vector(c)).length for v in f2]),
+ max([(Vector(v.co)-Vector(c)).length for v in f1])))
+
+ # Sort faces according to the min distance from the camera
+ by_min_vert_dist = (lambda f1, f2:
+ cmp(min([(Vector(v.co)-Vector(c)).length for v in f1]),
+ min([(Vector(v.co)-Vector(c)).length for v in f2])))
+
+ # Sort faces according to the avg distance from the camera
+ by_avg_vert_dist = (lambda f1, f2:
+ cmp(sum([(Vector(v.co)-Vector(c)).length for v in f1])/len(f1),
+ sum([(Vector(v.co)-Vector(c)).length for v in f2])/len(f2)))
+
+
+ # FIXME: using NMesh to sort faces. We should avoid that!
+ nmesh = NMesh.GetRaw(mesh.name)
+ nmesh.faces.sort(by_max_vert_dist)
+ #nmesh.faces.reverse()
+
+ # Depth sort tests
+
+ self.depth_sort(nmesh.faces)
+
+
+ mesh.faces.delete(1, range(0, len(mesh.faces)))
+
+ for i,f in enumerate(nmesh.faces):
+ fv = [v.index for v in f.v]
+ mesh.faces.extend(fv)
+ mesh.faces[i].mat = f.mat
+ mesh.faces[i].sel = f.sel
+ for i,c in enumerate(mesh.faces[i].col):
+ c.r = f.col[i].r
+ c.g = f.col[i].g
+ c.b = f.col[i].b
+ c.a = f.col[i].a
+
+ def _doEdgesStyle(self, mesh, edgestyleSelect):
+ """Process Mesh Edges accroding to a given selection style.
+
+ Examples of algorithms:
+
+ Contours:
+ given an edge if its adjacent faces have the same normal (that is
+ they are complanar), than deselect it.
+
+ Silhouettes:
+ given an edge if one its adjacent faces is frontfacing and the
+ other is backfacing, than select it, else deselect.
+ """
+
+ Mesh.Mode(Mesh.SelectModes['EDGE'])
+
+ for e in mesh.edges:
+
+ e.sel = 0
+ if edgestyleSelect(e, mesh):
+ e.sel = 1
- #if (isVisible(face)):
- # print "face visible"
-
- # backface culling
- a = []
- a.append(OBJmesh.faces[face][0][0])
- a.append(OBJmesh.faces[face][0][1])
- a.append(OBJmesh.faces[face][0][2])
- a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
- a[0] += obj.LocX - camera.LocX
- a[1] += obj.LocY - camera.LocY
- a[2] += obj.LocZ - camera.LocZ
- b = []
- b.append(OBJmesh.faces[face][1][0])
- b.append(OBJmesh.faces[face][1][1])
- b.append(OBJmesh.faces[face][1][2])
- b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
- b[0] += obj.LocX - camera.LocX
- b[1] += obj.LocY - camera.LocY
- b[2] += obj.LocZ - camera.LocZ
- c = []
- c.append(OBJmesh.faces[face][numvert-1][0])
- c.append(OBJmesh.faces[face][numvert-1][1])
- c.append(OBJmesh.faces[face][numvert-1][2])
- c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
- c[0] += obj.LocX - camera.LocX
- c[1] += obj.LocY - camera.LocY
- c[2] += obj.LocZ - camera.LocZ
-
- norm = [0,0,0]
- norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
- norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
- norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
-
- d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
-
- # if the face is visible flatten it on the "picture plane"
- if d < 0:
- file.write("<polygon points=\"")
- for vert in range(numvert):
-
- vertxyz = []
-
- if vert != 0: file.write(", ")
-
- vertxyz.append(OBJmesh.faces[face][vert][0])
- vertxyz.append(OBJmesh.faces[face][vert][1])
- vertxyz.append(OBJmesh.faces[face][vert][2])
-
- # rotate object
- vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], obj.RotX, obj.RotY, obj.RotZ)
-
- # original setting for translate
- vertxyz[0] += (obj.LocX - camera.LocX)
- vertxyz[1] += (obj.LocY - camera.LocY)
- vertxyz[2] += (obj.LocZ - camera.LocZ)
-
- # rotate camera
- vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], -camera.RotX, -camera.RotY, -camera.RotZ)
-
- #dist = Distance(vertxyz[0], vertxyz[1], vertxyz[2])
- xy = flatern(vertxyz[0], vertxyz[1], vertxyz[2])
- px = int(xy[0])
- py = int(xy[1])
- # add/sorting in Z' direction
- #Dodaj(px,py,Distance(vertxyz[0], vertxyz[1], vertxyz[2]))
- file.write(`px` + ", " + `py`)
-
- # per face color calculation
- ambient = -200
- #svetlo = [1, 1, -1] #original
- svetlo = [1, 1, -0.3]
- vektori = (norm[0]*svetlo[0]+norm[1]*svetlo[1]+norm[2]*svetlo[2])
- vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(svetlo[0],2)+pow(svetlo[1],2)+pow(svetlo[2],2)))
- intensity = floor(ambient + 255 * acos(vektori/vduzine))
- if intensity < 0:
- intensity = 0
-
- wireframe = True
- if wireframe:
- stroke_width=1
- else:
- stroke_width=0
- file.write("\"\n style=\"fill:rgb("+str(intensity)+","+str(intensity)+","+str(intensity)+");stroke:rgb(0,0,0);stroke-width:"+str(stroke_width)+"\"/>\n")
- if animation:
- file.write("<animate attributeName=\"visibility\" begin=\""+str(f*0.08)+"s\" dur=\"0.08s\" fill=\"remove\" to=\"visible\">\n")
- file.write("</animate>\n")
- file.write("</g>\n")
-
-file.write("</svg>")
-file.close()
-DrawProgressBar (1.0,"Finished.")
-print "Finished\n"
+
+
+# ---------------------------------------------------------------------
+#
+## GUI Class and Main Program
+#
+# ---------------------------------------------------------------------
+
+
+from Blender import BGL, Draw
+from Blender.BGL import *
+
+class GUI:
+
+ def _init():
+
+ # Output Format menu
+ output_format = config.output['FORMAT']
+ default_value = outputWriters.keys().index(output_format)+1
+ GUI.outFormatMenu = Draw.Create(default_value)
+ GUI.evtOutFormatMenu = 0
+
+ # Animation toggle button
+ GUI.animToggle = Draw.Create(config.output['ANIMATION'])
+ GUI.evtAnimToggle = 1
+
+ # Join Objects toggle button
+ GUI.joinObjsToggle = Draw.Create(config.output['JOIN_OBJECTS'])
+ GUI.evtJoinObjsToggle = 2
+
+ # Render filled polygons
+ GUI.polygonsToggle = Draw.Create(config.polygons['SHOW'])
+
+ # Shading Style menu
+ shading_style = config.polygons['SHADING']
+ default_value = shadingStyles.keys().index(shading_style)+1
+ GUI.shadingStyleMenu = Draw.Create(default_value)
+ GUI.evtShadingStyleMenu = 21
+
+ GUI.evtPolygonsToggle = 3
+ # We hide the config.polygons['EXPANSION_TRICK'], for now
+
+ # Render polygon edges
+ GUI.showEdgesToggle = Draw.Create(config.edges['SHOW'])
+ GUI.evtShowEdgesToggle = 4
+
+ # Render hidden edges
+ GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN'])
+ GUI.evtShowHiddenEdgesToggle = 5
+
+ # Edge Style menu
+ edge_style = config.edges['STYLE']
+ default_value = edgeStyles.keys().index(edge_style)+1
+ GUI.edgeStyleMenu = Draw.Create(default_value)
+ GUI.evtEdgeStyleMenu = 6
+
+ # Edge Width slider
+ GUI.edgeWidthSlider = Draw.Create(config.edges['WIDTH'])
+ GUI.evtEdgeWidthSlider = 7
+
+ # Edge Color Picker
+ c = config.edges['COLOR']
+ GUI.edgeColorPicker = Draw.Create(c[0]/255.0, c[1]/255.0, c[2]/255.0)
+ GUI.evtEdgeColorPicker = 71
+
+ # Render Button
+ GUI.evtRenderButton = 8
+
+ # Exit Button
+ GUI.evtExitButton = 9
+
+ def draw():
+
+ # initialize static members
+ GUI._init()
+
+ glClear(GL_COLOR_BUFFER_BIT)
+ glColor3f(0.0, 0.0, 0.0)
+ glRasterPos2i(10, 350)
+ Draw.Text("VRM: Vector Rendering Method script.")
+ glRasterPos2i(10, 335)
+ Draw.Text("Press Q or ESC to quit.")
+
+ # Build the output format menu
+ glRasterPos2i(10, 310)
+ Draw.Text("Select the output Format:")
+ outMenuStruct = "Output Format %t"
+ for t in outputWriters.keys():
+ outMenuStruct = outMenuStruct + "|%s" % t
+ GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu,
+ 10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
+
+ # Animation toggle
+ GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle,
+ 10, 260, 160, 18, GUI.animToggle.val,
+ "Toggle rendering of animations")
+
+ # Join Objects toggle
+ GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle,
+ 10, 235, 160, 18, GUI.joinObjsToggle.val,
+ "Join objects in the rendered file")
+
+ # Render Button
+ Draw.Button("Render", GUI.evtRenderButton, 10, 210-25, 75, 25+18,
+ "Start Rendering")
+ Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!")
+
+ # Rendering Styles
+ glRasterPos2i(200, 310)
+ Draw.Text("Rendering Style:")
+
+ # Render Polygons
+ GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle,
+ 200, 285, 160, 18, GUI.polygonsToggle.val,
+ "Render filled polygons")
+
+ if GUI.polygonsToggle.val == 1:
+
+ # Polygon Shading Style
+ shadingStyleMenuStruct = "Shading Style %t"
+ for t in shadingStyles.keys():
+ shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower()
+ GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu,
+ 200, 260, 160, 18, GUI.shadingStyleMenu.val,
+ "Choose the shading style")
+
+
+ # Render Edges
+ GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle,
+ 200, 235, 160, 18, GUI.showEdgesToggle.val,
+ "Render polygon edges")
+
+ if GUI.showEdgesToggle.val == 1:
+
+ # Edge Style
+ edgeStyleMenuStruct = "Edge Style %t"
+ for t in edgeStyles.keys():
+ edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower()
+ GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu,
+ 200, 210, 160, 18, GUI.edgeStyleMenu.val,
+ "Choose the edge style")
+
+ # Edge size
+ GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider,
+ 200, 185, 140, 18, GUI.edgeWidthSlider.val,
+ 0.0, 10.0, 0, "Change Edge Width")
+
+ # Edge Color
+ GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker,
+ 342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
+
+ # Show Hidden Edges
+ GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges",
+ GUI.evtShowHiddenEdgesToggle,
+ 200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
+ "Render hidden edges as dashed lines")
+
+ glRasterPos2i(10, 160)
+ Draw.Text("Antonio Ospite (c) 2006")
+
+ def event(evt, val):
+
+ if evt == Draw.ESCKEY or evt == Draw.QKEY:
+ Draw.Exit()
+ else:
+ return
+
+ Draw.Redraw(1)
+
+ def button_event(evt):
+
+ if evt == GUI.evtExitButton:
+ Draw.Exit()
+
+ elif evt == GUI.evtOutFormatMenu:
+ i = GUI.outFormatMenu.val - 1
+ config.output['FORMAT']= outputWriters.keys()[i]
+
+ elif evt == GUI.evtAnimToggle:
+ config.outpur['ANIMATION'] = bool(GUI.animToggle.val)
+
+ elif evt == GUI.evtJoinObjsToggle:
+ config.output['JOIN_OBJECTS'] = bool(GUI.joinObjsToggle.val)
+
+ elif evt == GUI.evtPolygonsToggle:
+ config.polygons['SHOW'] = bool(GUI.polygonsToggle.val)
+
+ elif evt == GUI.evtShadingStyleMenu:
+ i = GUI.shadingStyleMenu.val - 1
+ config.polygons['SHADING'] = shadingStyles.keys()[i]
+
+ elif evt == GUI.evtShowEdgesToggle:
+ config.edges['SHOW'] = bool(GUI.showEdgesToggle.val)
+
+ elif evt == GUI.evtShowHiddenEdgesToggle:
+ config.edges['SHOW_HIDDEN'] = bool(GUI.showHiddenEdgesToggle.val)
+
+ elif evt == GUI.evtEdgeStyleMenu:
+ i = GUI.edgeStyleMenu.val - 1
+ config.edges['STYLE'] = edgeStyles.keys()[i]
+
+ elif evt == GUI.evtEdgeWidthSlider:
+ config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val)
+
+ elif evt == GUI.evtEdgeColorPicker:
+ config.edges['COLOR'] = [int(c*255.0) for c in GUI.edgeColorPicker.val]
+
+ elif evt == GUI.evtRenderButton:
+ label = "Save %s" % config.output['FORMAT']
+ # Show the File Selector
+ global outputfile
+ Blender.Window.FileSelector(vectorize, label, outputfile)
+
+ else:
+ print "Event: %d not handled!" % evt
+
+ if evt:
+ Draw.Redraw(1)
+ #GUI.conf_debug()
+
+ def conf_debug():
+ from pprint import pprint
+ print "\nConfig"
+ pprint(config.output)
+ pprint(config.polygons)
+ pprint(config.edges)
+
+ _init = staticmethod(_init)
+ draw = staticmethod(draw)
+ event = staticmethod(event)
+ button_event = staticmethod(button_event)
+ conf_debug = staticmethod(conf_debug)
+
+# A wrapper function for the vectorizing process
+def vectorize(filename):
+ """The vectorizing process is as follows:
+
+ - Instanciate the writer and the renderer
+ - Render!
+ """
+
+ if filename == "":
+ print "\nERROR: invalid file name!"
+ return
+
+ from Blender import Window
+ editmode = Window.EditMode()
+ if editmode: Window.EditMode(0)
+
+ actualWriter = outputWriters[config.output['FORMAT']]
+ writer = actualWriter(filename)
+
+ renderer = Renderer()
+ renderer.doRendering(writer, config.output['ANIMATION'])
+
+ if editmode: Window.EditMode(1)
+
+
+# Here the main
+if __name__ == "__main__":
+
+ outputfile = ""
+ basename = Blender.sys.basename(Blender.Get('filename'))
+ if basename != "":
+ outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
+
+ if Blender.mode == 'background':
+ vectorize(outputfile)
+ else:
+ Draw.Register(GUI.draw, GUI.event, GUI.button_event)