#!BPY
-
"""
Name: 'VRM'
-Blender: 237
+Blender: 241
Group: 'Export'
-Tooltip: 'Vector Rendering Method Export Script'
+Tooltip: 'Vector Rendering Method Export Script 0.3'
"""
+# ---------------------------------------------------------------------
+# Copyright (c) 2006 Antonio Ospite
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+#
+# ---------------------------------------------------------------------
+#
+# NOTE: I do not know who is the original author of 'vrm'.
+# The present code is almost entirely rewritten from scratch,
+# but if I have to give credits to anyone, please let me know,
+# so I can update the copyright.
+#
+# ---------------------------------------------------------------------
+#
+# Additional credits:
+# Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
+# Thanks to Anthony C. D'Agostino for the backface.py script
+#
+# ---------------------------------------------------------------------
+
import Blender
-from Blender import Scene, Object, Lamp, Camera
+from Blender import Scene, Object, NMesh, Lamp, Camera
+from Blender.Mathutils import *
from math import *
-from Blender.Window import *
-from Blender.Scene import Render
-# distance from camera Z'
-def Distance(PX,PY,PZ):
+# ---------------------------------------------------------------------
+#
+## Projections classes
+#
+# ---------------------------------------------------------------------
+
+class Projector:
+ """Calculate the projection of an object given the camera.
+
+ A projector is useful to so some per-object transformation to obtain the
+ projection of an object given the camera.
+
+ The main method is #doProjection# see the method description for the
+ parameter list.
+ """
+
+ def __init__(self, cameraObj, obMesh, canvasSize):
+ """Calculate the projection matrix.
+
+ The projection matrix depends, in this case, on the camera settings,
+ and also on object transformation matrix.
+ """
+
+ self.size = canvasSize
+
+ camera = cameraObj.getData()
+
+ aspect = float(canvasSize[0])/float(canvasSize[1])
+ near = camera.clipStart
+ far = camera.clipEnd
+
+ fovy = atan(0.5/aspect/(camera.lens/32))
+ fovy = fovy * 360/pi
+
+ # What projection do we want?
+ if camera.type:
+ m2 = self._calcOrthoMatrix(fovy, aspect, near, far, 17) #camera.scale)
+ else:
+ m2 = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+
+ m1 = Matrix()
+ mP = Matrix()
+
+ # View transformation
+ cam = cameraObj.getInverseMatrix()
+ cam.transpose()
+
+ m1 = obMesh.getMatrix()
+ m1.transpose()
+
+ mP = cam * m1
+ mP = m2 * mP
+
+ self.projectionMatrix = mP
+
+ ##
+ # Public methods
+ #
+
+ def doProjection(self, v):
+ """Project the point on the view plane.
+
+ Given a vertex calculate the projection using the current projection
+ matrix.
+ """
+
+ # Note that we need the vertex expressed using homogeneous coordinates
+ p = self.projectionMatrix * Vector([v[0], v[1], v[2], 1.0])
+
+ mW = self.size[0]/2
+ mH = self.size[1]/2
+
+ if p[3]<=0:
+ p[0] = int(p[0]*mW)+mW
+ p[1] = int(p[1]*mH)+mH
+ else:
+ p[0] = int((p[0]/p[3])*mW)+mW
+ p[1] = int((p[1]/p[3])*mH)+mH
+
+ # For now we want (0,0) in the top-left corner of the canvas
+ # Mirror and translate along y
+ p[1] *= -1
+ p[1] += self.size[1]
+
+ return p
+
+ ##
+ # Private methods
+ #
+
+ def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
+ """Return a perspective projection matrix."""
+
+ top = near * tan(fovy * pi / 360.0)
+ bottom = -top
+ left = bottom*aspect
+ right= top*aspect
+ x = (2.0 * near) / (right-left)
+ y = (2.0 * near) / (top-bottom)
+ a = (right+left) / (right-left)
+ b = (top+bottom) / (top - bottom)
+ c = - ((far+near) / (far-near))
+ d = - ((2*far*near)/(far-near))
+
+ m = Matrix(
+ [x, 0.0, a, 0.0],
+ [0.0, y, b, 0.0],
+ [0.0, 0.0, c, d],
+ [0.0, 0.0, -1.0, 0.0])
+
+ return m
+
+ def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
+ """Return an orthogonal projection matrix."""
+
+ top = near * tan(fovy * pi / 360.0) * (scale * 10)
+ bottom = -top
+ left = bottom * aspect
+ right= top * aspect
+ rl = right-left
+ tb = top-bottom
+ fn = near-far
+ tx = -((right+left)/rl)
+ ty = -((top+bottom)/tb)
+ tz = ((far+near)/fn)
+
+ m = Matrix(
+ [2.0/rl, 0.0, 0.0, tx],
+ [0.0, 2.0/tb, 0.0, ty],
+ [0.0, 0.0, 2.0/fn, tz],
+ [0.0, 0.0, 0.0, 1.0])
+
+ return m
+
+
+# ---------------------------------------------------------------------
+#
+## Mesh representation class
+#
+# ---------------------------------------------------------------------
+
+# TODO: a class to represent the needed properties of a 2D vector image
+# Just use a NMesh structure?
+
+
+# ---------------------------------------------------------------------
+#
+## Vector Drawing Classes
+#
+# ---------------------------------------------------------------------
+
+## A generic Writer
+
+class VectorWriter:
+ """
+ A class for printing output in a vectorial format.
+
+ Given a 2D representation of the 3D scene the class is responsible to
+ write it is a vector format.
+
+ Every subclasses of VectorWriter must have at last the following public
+ methods:
+ - printCanvas(mesh) --- where mesh is as specified before.
+ """
+
+ def __init__(self, fileName, canvasSize):
+ """Open the file named #fileName# and set the canvas size."""
+
+ self.file = open(fileName, "w")
+ print "Outputting to: ", fileName
+
+ self.canvasSize = canvasSize
+
+
+ ##
+ # Public Methods
+ #
+
+ def printCanvas(mesh):
+ return
+
+ ##
+ # Private Methods
+ #
+
+ def _printHeader():
+ return
+
+ def _printFooter():
+ return
+
+
+## SVG Writer
+
+class SVGVectorWriter(VectorWriter):
+ """A concrete class for writing SVG output.
+
+ The class does not support animations, yet.
+ Sorry.
+ """
+
+ def __init__(self, file, canvasSize):
+ """Simply call the parent Contructor."""
+ VectorWriter.__init__(self, file, canvasSize)
+
+
+ ##
+ # Public Methods
+ #
+
+ def printCanvas(self, scene):
+ """Convert the scene representation to SVG."""
+
+ self._printHeader()
+
+ for obj in scene:
+ self.file.write("<g>\n")
+
+ for face in obj.faces:
+ self._printPolygon(face)
+
+ self.file.write("</g>\n")
+
+ self._printFooter()
- dist = sqrt(PX*PX+PY*PY+PZ*PZ)
- return dist
+ ##
+ # Private Methods
+ #
+
+ def _printHeader(self):
+ """Print SVG header."""
+
+ self.file.write("<?xml version=\"1.0\"?>\n")
+ self.file.write("<svg version=\"1.2\"\n")
+ self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
+ self.file.write("\twidth=\"%d\" height=\"%d\" streamable=\"true\">\n\n" %
+ self.canvasSize)
+
+ def _printFooter(self):
+ """Print the SVG footer."""
+
+ self.file.write("\n</svg>\n")
+ self.file.close()
+
+ def _printPolygon(self, face):
+ """Print our primitive, finally.
+
+ There is no color Handling for now, *FIX!*
+ """
+
+ stroke_width=1
+
+ self.file.write("<polygon points=\"")
+
+ i = 0
+ for v in face:
+ if i != 0:
+ self.file.write(", ")
+
+ i+=1
+
+ self.file.write("%g, %g" % (v[0], v[1]))
+
+ color = [ int(c*255) for c in face.col]
+
+ self.file.write("\"\n")
+ self.file.write("\tstyle=\"fill:rgb("+str(color[0])+","+str(color[1])+","+str(color[2])+");")
+ self.file.write(" stroke:rgb(0,0,0);")
+ self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+ self.file.write(" stroke-linecap:round;stroke-linejoin:round\"/>\n")
+
+
+# ---------------------------------------------------------------------
+#
+## Rendering Classes
+#
+# ---------------------------------------------------------------------
def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
NewPoint.append(NewZ)
return NewPoint
-def vetmatmult(v, M):
-
- v2 = [0, 0, 0, 0]
-
- for i in range(0, 3):
- for j in range(0, 3):
- v2[i] += (v[i]*M[i][j])
-
- return v2
-
-def flatern(vertx, verty, vertz):
-
- cam = Camera.get() # Get the cameras in scene
- Lens = cam[0].getLens() # The First Blender camera lens
-
- camTyp = cam[0].getType()
-
- msize = (context.imageSizeX(), context.imageSizeY())
- xres = msize[0] # X res for output
- yres = msize[1] # Y res for output
- ratio = xres/yres
-
- fov = atan(ratio * 16.0 / Lens) # Get fov stuff
+class Renderer:
+ """Render a scene viewed from a given camera.
- dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane
-
- screenxy=[0,0]
- x=-vertx
- y=verty
- z=vertz
-
- #----------------------------
- # calculate x'=dist*x/z & y'=dist*x/z
- #----------------------------
- screenxy[0]=int(xres/2.0+4*x*dist/z)
- screenxy[1]=int(yres/2.0+4*y*dist/z)
- return screenxy
-
-
-########
-# Main #
-########
-
-scena = Scene.GetCurrent()
-context = scena.getRenderingContext()
-renderDir = context.getRenderPath()
-
-msize = (context.imageSizeX(), context.imageSizeY())
+ This class is responsible of the rendering process, hence transormation
+ and projection of the ojects in the scene are invoked by the renderer.
+
+ The user can optionally provide a specific camera for the rendering, see
+ the #doRendering# method for more informations.
+ """
+
+ def __init__(self):
+ """Set the canvas size to a defaulr value.
+
+ The only instance attribute here is the canvas size, which can be
+ queryed to the renderer by other entities.
+ """
+ self.canvasSize = (0.0, 0.0)
+
+
+ ##
+ # Public Methods
+ #
+
+ def getCanvasSize(self):
+ """Return the current canvas size read from Blender rendering context"""
+ return self.canvasSize
+
+ def doRendering(self, scene, cameraObj=None):
+ """Control the rendering process.
+
+ Here we control the entire rendering process invoking the operation
+ needed to transforma project the 3D scene in two dimensions.
+
+ Parameters:
+ scene --- the Blender Scene to render
+ cameraObj --- the camera object to use for the viewing processing
+ """
+
+ if cameraObj == None:
+ cameraObj = scene.getCurrentCamera()
+
+ context = scene.getRenderingContext()
+ self.canvasSize = (context.imageSizeX(), context.imageSizeY())
+
+ Objects = scene.getChildren()
+
+ # A structure to store the transformed scene
+ newscene = []
+
+ for obj in Objects:
+
+ if (obj.getType() != "Mesh"):
+ print "Type:", obj.getType(), "\tSorry, only mesh Object supported!"
+ continue
-file=open("proba.svg","w")
+ # Get a projector for this object
+ proj = Projector(cameraObj, obj, self.canvasSize)
-file.write("<?xml version=\"1.0\"?>\n")
-file.write("<svg width=\"" + `msize[0]` + "\" height=\"" + `msize[1]` + "\"\n")
-file.write("\txmlns=\"http://www.w3.org/2000/svg\" version=\"1.2\" streamable=\"true\">\n")
-#file.write("<pageSet>\n")
+ # Let's store the transformed data
+ transformed_mesh = NMesh.New(obj.name)
-Objects = Blender.Object.Get()
-NUMobjects = len(Objects)
+ # Store the materials
+ materials = obj.getData().getMaterials()
-startFrm = context.startFrame()
-endFrm = startFrm
-#endFrm = context.endFrame()
-frames = range(startFrm, endFrm+1)
+ meshfaces = obj.getData().faces
-# are we rendering an animation ?
-animation = (len(frames) > 1)
+ for face in meshfaces:
-camera = scena.getCurrentCamera() # Get the current camera
+ # if the face is visible flatten it on the "picture plane"
+ if self._isFaceVisible(face, obj, cameraObj):
+
+ # Store transformed face
+ transformed_face = []
-for f in frames:
- context.currentFrame(f)
- Blender.Set('curframe', f)
+ for vert in face:
- DrawProgressBar (f/len(frames),"Rendering ..." + str(f))
+ p = proj.doProjection(vert.co)
- print "Frame: ", f, "\n"
- if animation :
- file.write("<g id=\"Frame" + str(f) + "\" style=\"visibility:hidden\">\n")
+ transformed_vert = NMesh.Vert(p[0], p[1], p[2])
+ transformed_face.append(transformed_vert)
- for o in Objects:
+ newface = NMesh.Face(transformed_face)
+
+ # Per-face color calculation
+ # code taken mostly from the original vrm script
+ # TODO: understand the code and rewrite it clearly
+ ambient = -250
+ fakelight = [10, 10, 15]
+ norm = face.normal
+ vektori = (norm[0]*fakelight[0]+norm[1]*fakelight[1]+norm[2]*fakelight[2])
+ vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(fakelight[0],2)+pow(fakelight[1],2)+pow(fakelight[2],2)))
+ intensity = floor(ambient + 200*acos(vektori/vduzine))/200
+ if intensity < 0:
+ intensity = 0
- if o.getType() == "Mesh":
+ if materials:
+ newface.col = materials[face.mat].getRGBCol()
+ else:
+ newface.col = [0.5, 0.5, 0.5]
+
+ newface.col = [ (c>0) and (c-intensity) for c in newface.col]
+
+ transformed_mesh.addFace(newface)
- obj = o # Get the first selected object
- objname = obj.name # The object name
+ # at the end of the loop on obj
+
+ #transformed_object = NMesh.PutRaw(transformed_mesh)
+ newscene.append(transformed_mesh)
+
+ # reverse the order (TODO: See how is the object order in NMesh)
+ #newscene.reverse()
+
+ return newscene
+
+
+ ##
+ # Private Methods
+ #
+
+ def _isFaceVisible(self, face, obj, cameraObj):
+ """Determine if the face is visible from the current camera.
+
+ The following code is taken basicly from the original vrm script.
+ """
+
+ camera = cameraObj
+
+ numvert = len(face)
+
+ # backface culling
+
+ # translate and rotate according to the object matrix
+ # and then translate according to the camera position
+ #m = obj.getMatrix()
+ #m.transpose()
+
+ #a = m*Vector(face[0]) - Vector(cameraObj.loc)
+ #b = m*Vector(face[1]) - Vector(cameraObj.loc)
+ #c = m*Vector(face[numvert-1]) - Vector(cameraObj.loc)
+
+ a = []
+ a.append(face[0][0])
+ a.append(face[0][1])
+ a.append(face[0][2])
+ a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
+ a[0] += obj.LocX - camera.LocX
+ a[1] += obj.LocY - camera.LocY
+ a[2] += obj.LocZ - camera.LocZ
+ b = []
+ b.append(face[1][0])
+ b.append(face[1][1])
+ b.append(face[1][2])
+ b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
+ b[0] += obj.LocX - camera.LocX
+ b[1] += obj.LocY - camera.LocY
+ b[2] += obj.LocZ - camera.LocZ
+ c = []
+ c.append(face[numvert-1][0])
+ c.append(face[numvert-1][1])
+ c.append(face[numvert-1][2])
+ c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
+ c[0] += obj.LocX - camera.LocX
+ c[1] += obj.LocY - camera.LocY
+ c[2] += obj.LocZ - camera.LocZ
+
+ norm = Vector([0,0,0])
+ norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
+ norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
+ norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
+
+ d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
+ # d = DotVecs(norm, Vector(a))
+
+ return (d<0)
+
+ def _doClipping(face):
+ return
+
+
+# ---------------------------------------------------------------------
+#
+## Main Program
+#
+# ---------------------------------------------------------------------
+
+
+# hackish sorting of faces according to the max z value of a vertex
+def zSorting(scene):
+ for o in scene:
+ o.faces.sort(lambda f1, f2:
+ # Sort faces according to the min z coordinate in a face
+ #cmp(min([v[2] for v in f1]), min([v[2] for v in f2])))
+
+ # Sort faces according to the max z coordinate in a face
+ cmp(max([v[2] for v in f1]), max([v[2] for v in f2])))
+
+ # Sort faces according to the avg z coordinate in a face
+ #cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2)))
+ o.faces.reverse()
+
+from Blender import sys
+def vectorize(filename):
+
+ print "Filename: %s" % filename
+ print
+ filename = filename.replace('/', sys.sep)
+ print filename
+ print
+
+ scene = Scene.GetCurrent()
+ renderer = Renderer()
+ flatScene = renderer.doRendering(scene)
+ canvasSize = renderer.getCanvasSize()
- OBJmesh = obj.getData() # Get the mesh data for the object
- meshfaces = OBJmesh.faces # The number of faces in the object
+ zSorting(flatScene)
- #------------
- # Get the Material Colors
- #------------
-
- #MATinfo = OBJmesh.getMaterials()
- #
- #if len(MATinfo) > 0:
- # RGB=MATinfo[0].rgbCol
- # R=int(RGB[0]*255)
- # G=int(RGB[1]*255)
- # B=int(RGB[2]*255)
- # color=`R`+"."+`G`+"."+`B`
- # print color
- #else:
- # color="100.100.100"
-
-
- for face in range(0, len(meshfaces)):
- numvert = len(OBJmesh.faces[face])
-
- #if (isVisible(face)):
- # print "face visible"
-
- # backface culling
- a = []
- a.append(OBJmesh.faces[face][0][0])
- a.append(OBJmesh.faces[face][0][1])
- a.append(OBJmesh.faces[face][0][2])
- a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
- a[0] += obj.LocX - camera.LocX
- a[1] += obj.LocY - camera.LocY
- a[2] += obj.LocZ - camera.LocZ
- b = []
- b.append(OBJmesh.faces[face][1][0])
- b.append(OBJmesh.faces[face][1][1])
- b.append(OBJmesh.faces[face][1][2])
- b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
- b[0] += obj.LocX - camera.LocX
- b[1] += obj.LocY - camera.LocY
- b[2] += obj.LocZ - camera.LocZ
- c = []
- c.append(OBJmesh.faces[face][numvert-1][0])
- c.append(OBJmesh.faces[face][numvert-1][1])
- c.append(OBJmesh.faces[face][numvert-1][2])
- c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
- c[0] += obj.LocX - camera.LocX
- c[1] += obj.LocY - camera.LocY
- c[2] += obj.LocZ - camera.LocZ
-
- norm = [0,0,0]
- norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
- norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
- norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
-
- d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
+ writer = SVGVectorWriter(filename, canvasSize)
+ writer.printCanvas(flatScene)
+
+try:
+ Blender.Window.FileSelector (vectorize, 'Save SVG', "proba.svg")
+except:
+ vectorize("proba.svg")
- # if the face is visible flatten it on the "picture plane"
- if d < 0:
- file.write("<polygon points=\"")
- for vert in range(numvert):
-
- vertxyz = []
-
- if vert != 0: file.write(", ")
-
- vertxyz.append(OBJmesh.faces[face][vert][0])
- vertxyz.append(OBJmesh.faces[face][vert][1])
- vertxyz.append(OBJmesh.faces[face][vert][2])
-
- # rotate object
- vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], obj.RotX, obj.RotY, obj.RotZ)
-
- # original setting for translate
- vertxyz[0] += (obj.LocX - camera.LocX)
- vertxyz[1] += (obj.LocY - camera.LocY)
- vertxyz[2] += (obj.LocZ - camera.LocZ)
-
- # rotate camera
- vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], -camera.RotX, -camera.RotY, -camera.RotZ)
-
- #dist = Distance(vertxyz[0], vertxyz[1], vertxyz[2])
- xy = flatern(vertxyz[0], vertxyz[1], vertxyz[2])
- px = int(xy[0])
- py = int(xy[1])
- # add/sorting in Z' direction
- #Dodaj(px,py,Distance(vertxyz[0], vertxyz[1], vertxyz[2]))
- file.write(`px` + ", " + `py`)
-
- # per face color calculation
- ambient = -200
- #svetlo = [1, 1, -1] #original
- svetlo = [1, 1, -0.3]
- vektori = (norm[0]*svetlo[0]+norm[1]*svetlo[1]+norm[2]*svetlo[2])
- vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(svetlo[0],2)+pow(svetlo[1],2)+pow(svetlo[2],2)))
- intensity = floor(ambient + 255 * acos(vektori/vduzine))
- if intensity < 0:
- intensity = 0
-
- wireframe = True
- if wireframe:
- stroke_width=1
- else:
- stroke_width=0
- file.write("\"\n style=\"fill:rgb("+str(intensity)+","+str(intensity)+","+str(intensity)+");stroke:rgb(0,0,0);stroke-width:"+str(stroke_width)+"\"/>\n")
- if animation:
- file.write("<animate attributeName=\"visibility\" begin=\""+str(f*0.08)+"s\" dur=\"0.08s\" fill=\"remove\" to=\"visible\">\n")
- file.write("</animate>\n")
- file.write("</g>\n")
-
-file.write("</svg>")
-file.close()
-DrawProgressBar (1.0,"Finished.")
-print "Finished\n"