+ #mesh.recalcNormals()
+ #mesh.update()
+
+ # We could reeset Camera matrix, since now
+ # we are in Normalized Viewing Coordinates,
+ # but doung that would affect World Coordinate
+ # processing for other objects
+
+ #self.cameraObj.data.type = 1
+ #self.cameraObj.data.scale = 2.0
+ #m = Matrix().identity()
+ #self.cameraObj.setMatrix(m)
+
+ def _doViewFrustumClipping(self, mesh):
+ """Clip faces against the View Frustum.
+ """
+
+ # HSR routines
+ def __simpleDepthSort(self, mesh):
+ """Sort faces by the furthest vertex.
+
+ This simple mesthod is known also as the painter algorithm, and it
+ solves HSR correctly only for convex meshes.
+ """
+
+ global progress
+ # The sorting requires circa n*log(n) steps
+ n = len(mesh.faces)
+ progress.setActivity("HSR: Painter", n*log(n))
+
+
+ by_furthest_z = (lambda f1, f2: progress.update() and
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
+ )
+
+ # FIXME: using NMesh to sort faces. We should avoid that!
+ nmesh = NMesh.GetRaw(mesh.name)
+
+ # remember that _higher_ z values mean further points
+ nmesh.faces.sort(by_furthest_z)
+ nmesh.faces.reverse()
+
+ nmesh.update()
+
+ def __topologicalDepthSort(self, mesh):
+ """Occlusion based on topological occlusion.
+
+ Build the occlusion graph of the mesh,
+ and then do topological sort on that graph
+ """
+ return
+
+ def __newellDepthSort(self, mesh):
+ """Newell's depth sorting.
+
+ """
+ by_furthest_z = (lambda f1, f2:
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
+ )
+
+ mesh.quadToTriangle(0)
+
+ from split import Distance, isOnSegment
+
+ def projectionsOverlap(P, Q):
+
+ for i in range(0, len(P.v)):
+
+ v1 = Vector(P.v[i-1])
+ v1[2] = 0
+ v2 = Vector(P.v[i])
+ v2[2] = 0
+
+ EPS = 10e-7
+
+ for j in range(0, len(Q.v)):
+ v3 = Vector(Q.v[j-1])
+ v3[2] = 0
+ v4 = Vector(Q.v[j])
+ v4[2] = 0
+
+ ret = LineIntersect(v1, v2, v3, v4)
+ # if line v1-v2 and v3-v4 intersect both return
+ # values are the same.
+ if ret and ret[0] == ret[1] and isOnSegment(v1, v2,
+ ret[0], True) and isOnSegment(v3, v4, ret[1], True):
+
+
+ l1 = (ret[0] - v1).length
+ l2 = (ret[0] - v2).length
+
+ l3 = (ret[1] - v3).length
+ l4 = (ret[1] - v4).length
+
+ if (l1 < EPS or l2 < EPS) and (l3 < EPS or l4 < EPS):
+ continue
+
+ debug("Projections OVERLAP!!\n")
+ debug("line1:"+
+ " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
+ " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
+ "\n")
+ debug("return: "+ str(ret)+"\n")
+ return True
+
+ return False
+
+
+ from facesplit import facesplit
+
+ # FIXME: using NMesh to sort faces. We should avoid that!
+ nmesh = NMesh.GetRaw(mesh.name)
+
+ # remember that _higher_ z values mean further points
+ nmesh.faces.sort(by_furthest_z)
+ nmesh.faces.reverse()
+
+
+ # Begin depth sort tests
+
+ # use the smooth flag to set marked faces
+ for f in nmesh.faces:
+ f.smooth = 0
+
+ facelist = nmesh.faces[:]
+ maplist = []
+
+ EPS = 10e-8
+ #EPS = 0
+
+ global progress
+ # The steps are _at_least_ equal to len(facelist), we do not count the
+ # feces coming out from plitting!!
+ progress.setActivity("HSR: Newell", len(facelist))
+ progress.setQuiet(True)
+
+
+ steps = -1
+ split_done = 0
+ marked_face = 0
+
+ while len(facelist):
+ print "\n----------------------"
+ P = facelist[0]
+
+ #steps += 1
+ #if steps == 3:
+ # maplist = facelist
+ # break
+ print len(facelist)
+ if len(facelist) == 33:
+ #maplist = facelist
+ break
+
+
+ #pSign = 1
+ #if P.normal[2] < 0:
+ # pSign = -1
+ pSign = sign(P.normal[2])
+
+ # We can discard faces thar are perpendicular to the view
+ if pSign == 0:
+ facelist.remove(P)
+ continue
+
+
+ split_done = 0
+ face_marked = 0
+
+ for Q in facelist[1:]:
+
+ debug("P.smooth: " + str(P.smooth) + "\n")
+ debug("Q.smooth: " + str(Q.smooth) + "\n")
+ debug("\n")
+
+ #qSign = 1
+ #if Q.normal[2] < 0:
+ # qSign = -1
+ qSign = sign(Q.normal[2])
+
+ # We need to test only those Qs whose furthest vertex
+ # is closer to the observer than the closest vertex of P.
+
+ zP = [v.co[2] for v in P.v]
+ zQ = [v.co[2] for v in Q.v]
+ ZOverlap = min(zP) < max(zQ)
+
+ if not ZOverlap:
+ debug("\nTest 0\n")
+ debug("NOT Z OVERLAP!\n")
+ if Q.smooth == 0:
+ # If Q is not marked then we can safely print P
+ break
+ else:
+ debug("met a marked face\n")
+ continue
+
+ # Test 1: X extent overlapping
+ xP = [v.co[0] for v in P.v]
+ xQ = [v.co[0] for v in Q.v]
+ notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+
+ if notXOverlap:
+ debug("\nTest 1\n")
+ debug("NOT X OVERLAP!\n")
+ continue
+
+ # Test 2: Y extent Overlapping
+ yP = [v.co[1] for v in P.v]
+ yQ = [v.co[1] for v in Q.v]
+ notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+
+ if notYOverlap:
+ debug("\nTest 2\n")
+ debug("NOT Y OVERLAP!\n")
+ continue
+
+
+ # Test 3: P vertices are all behind the plane of Q
+ n = 0
+ for Pi in P:
+ d = qSign * Distance(Vector(Pi), Q)
+ if d >= -EPS:
+ n += 1
+ pVerticesBehindPlaneQ = (n == len(P))
+
+ if pVerticesBehindPlaneQ:
+ debug("\nTest 3\n")
+ debug("P BEHIND Q!\n")
+ continue
+
+
+ # Test 4: Q vertices in front of the plane of P
+ n = 0
+ for Qi in Q:
+ d = pSign * Distance(Vector(Qi), P)
+ if d <= EPS:
+ n += 1
+ qVerticesInFrontPlaneP = (n == len(Q))
+
+ if qVerticesInFrontPlaneP:
+ debug("\nTest 4\n")
+ debug("Q IN FRONT OF P!\n")
+ continue
+
+ # Test 5: Line Intersections... TODO
+ # Check if polygons effectively overlap each other, not only
+ # boundig boxes as done before.
+ # Since we We are working in normalized projection coordinates
+ # we kust check if polygons intersect.
+
+ if not projectionsOverlap(P, Q):
+ debug("\nTest 5\n")
+ debug("Projections do not overlap!\n")
+ continue
+
+
+ # We still do not know if P obscures Q.
+
+ # But if Q is marked we do a split trying to resolve a
+ # difficulty (maybe a visibility cycle).
+ if Q.smooth == 1:
+ # Split P or Q
+ debug("Possibly a cycle detected!\n")
+ debug("Split here!!\n")
+ old_facelist = facelist[:]
+ facelist = facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
+
+
+ # The question now is: Does Q obscure P?
+
+ # Test 3bis: Q vertices are all behind the plane of P
+ n = 0
+ for Qi in Q:
+ d = pSign * Distance(Vector(Qi), P)
+ if d >= -EPS:
+ n += 1
+ qVerticesBehindPlaneP = (n == len(Q))
+
+ if qVerticesBehindPlaneP:
+ debug("\nTest 3bis\n")
+ debug("Q BEHIND P!\n")
+
+
+ # Test 4bis: P vertices in front of the plane of Q
+ n = 0
+ for Pi in P:
+ d = qSign * Distance(Vector(Pi), Q)
+ if d <= EPS:
+ n += 1
+ pVerticesInFrontPlaneQ = (n == len(P))
+
+ if pVerticesInFrontPlaneQ:
+ debug("\nTest 4bis\n")
+ debug("P IN FRONT OF Q!\n")
+
+
+ # We don't even know if Q does obscure P, so they should
+ # intersect each other, split one of them in two parts.
+ if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
+ debug("\nSimple Intersection?\n")
+ debug("Test 3bis or 4bis failed\n")
+ debug("Split here!!2\n")
+
+ old_facelist = facelist[:]
+ facelist = facesplit(P, Q, facelist, nmesh)
+
+ steps += 1
+ if steps == 2:
+ maplist = [P, Q]
+ print P, Q
+ split_done = 1
+ break
+
+
+ facelist.remove(Q)
+ facelist.insert(0, Q)
+ Q.smooth = 1
+ face_marked = 1
+
+ # Make merked faces BLUE. so to see them
+ #for c in Q.col:
+ # c.r = 0
+ # c.g = 0
+ # c.b = 255
+ # c.a = 255
+
+ debug("Q marked!\n")
+ print [f.smooth for f in facelist]
+ break
+
+ # Write P!
+ if split_done == 0 and face_marked == 0:
+ P = facelist[0]
+ facelist.remove(P)
+ maplist.append(P)
+
+ progress.update()
+ #if progress.progressModel.getProgress() == 100:
+ # break
+ if steps == 2:
+ """
+ for c in Q.col:
+ c.r = 0
+ c.g = 0
+ c.b = 255
+ c.a = 255
+ for c in P.col:
+ c.r = 0
+ c.g = 0
+ c.b = 255
+ c.a = 255
+ """
+ print steps
+ #maplist.append(P)
+ #maplist.append(Q)
+
+ # for f in facelist:
+ # if f not in old_facelist:
+ # print "splitted?"
+ # maplist.append(f)
+
+ break
+ """
+ """
+
+
+
+ nmesh.faces = maplist
+
+ for f in nmesh.faces:
+ f.sel = 1
+ nmesh.update()
+ print nmesh.faces
+
+ def _doHiddenSurfaceRemoval(self, mesh):
+ """Do HSR for the given mesh.
+ """
+ if len(mesh.faces) == 0:
+ return
+
+ if config.polygons['HSR'] == 'PAINTER':
+ print "\nUsing the Painter algorithm for HSR."
+ self.__simpleDepthSort(mesh)
+
+ elif config.polygons['HSR'] == 'NEWELL':
+ print "\nUsing the Newell's algorithm for HSR."
+ self.__newellDepthSort(mesh)
+
+
+ def _doEdgesStyle(self, mesh, edgestyleSelect):
+ """Process Mesh Edges accroding to a given selection style.
+
+ Examples of algorithms:
+
+ Contours:
+ given an edge if its adjacent faces have the same normal (that is
+ they are complanar), than deselect it.
+
+ Silhouettes:
+ given an edge if one its adjacent faces is frontfacing and the
+ other is backfacing, than select it, else deselect.
+ """
+
+ Mesh.Mode(Mesh.SelectModes['EDGE'])
+
+ edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
+
+ for i,edge_faces in enumerate(edge_cache):
+ mesh.edges[i].sel = 0
+ if edgestyleSelect(edge_faces):
+ mesh.edges[i].sel = 1
+
+ """
+ for e in mesh.edges:
+
+ e.sel = 0
+ if edgestyleSelect(e, mesh):
+ e.sel = 1
+ """
+