"""
Name: 'VRM'
Blender: 241
-Group: 'Export'
-Tooltip: 'Vector Rendering Method Export Script'
+Group: 'Render'
+Tooltip: 'Vector Rendering Method script'
"""
__author__ = "Antonio Ospite"
-__url__ = ["blender"]
+__url__ = ["http://vrm.projects.blender.org"]
__version__ = "0.3"
__bpydoc__ = """\
#
# Things TODO for a next release:
# - Switch to the Mesh structure, should be considerably faster
-# (partially done, but cannot sort faces, yet)
+# (partially done, but with Mesh we cannot sort faces, yet)
# - Use a better depth sorting algorithm
# - Review how selections are made (this script uses selection states of
# primitives to represent visibility infos)
-# - Implement Clipping and do handle object intersections
-# - Implement Edge Styles (silhouettes, contours, etc.)
+# - Implement clipping of primitives and do handle object intersections.
+# (for now only clipping for whole objects is supported).
+# - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
# - Implement Edge coloring
# - Use multiple lighting sources in color calculation
-# - Implement Shading Styles?
-# - Use another representation for the 2D projection?
+# - Implement Shading Styles? (for now we use Flat Shading).
+# - Use a data structure other than Mesh to represent the 2D image?
# Think to a way to merge adjacent polygons that have the same color.
-# - Add other Vector Writers.
+# Or a way to use paths for silhouettes and contours.
+# - Add Vector Writers other that SVG.
+# - Consider SMIL for animation handling instead of ECMA Script?
#
# ---------------------------------------------------------------------
#
# Some global settings
PRINT_POLYGONS = True
-PRINT_EDGES = False
-SHOW_HIDDEN_EDGES = False
+POLYGON_EXPANSION_TRICK = True
+PRINT_EDGES = True
+SHOW_HIDDEN_EDGES = False
+#EDGE_STYLE = 'normal'
+EDGE_STYLE = 'silhouette'
EDGES_WIDTH = 0.5
-POLYGON_EXPANSION_TRICK = True
-
RENDER_ANIMATION = False
-# Do not work for now!
-OPTIMIZE_FOR_SPACE = False
+OPTIMIZE_FOR_SPACE = True
+
+OUTPUT_FORMAT = 'SVG'
+
+
+# ---------------------------------------------------------------------
+#
+## Utility Mesh class
+#
+# ---------------------------------------------------------------------
+class MeshUtils:
+ def __init__(self):
+ return
+
+ def getEdgeAdjacentFaces(self, edge, mesh):
+ """Get the faces adjacent to a given edge.
+
+ There can be 0, 1 or more (usually 2) faces adjacent to an edge.
+ """
+ adjface_list = []
+
+ for f in mesh.faces:
+ if (edge.v1 in f.v) and (edge.v2 in f.v):
+ adjface_list.append(f)
+
+ return adjface_list
+
+ def isVisibleEdge(self, e, mesh):
+ """Normal edge selection rule.
+
+ An edge is visible if _any_ of its adjacent faces is selected.
+ Note: if the edge has no adjacent faces we want to show it as well,
+ useful for "edge only" portion of objects.
+ """
+
+ adjacent_faces = self.getEdgeAdjacentFaces(e, mesh)
+
+ if len(adjacent_faces) == 0:
+ return True
+
+ selected_faces = [f for f in adjacent_faces if f.sel]
+
+ if len(selected_faces) != 0:
+ return True
+ else:
+ return False
+
+ def isSilhouetteEdge(self, e, mesh):
+ """Silhuette selection rule.
+
+ An edge is a silhuette edge if it is shared by two faces with
+ different selection status or if it is a boundary edge of a selected
+ face.
+ """
+
+ adjacent_faces = self.getEdgeAdjacentFaces(e, mesh)
+
+ if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or
+ (len(adjacent_faces) == 2 and
+ adjacent_faces[0].sel != adjacent_faces[1].sel)
+ ):
+ return True
+ else:
+ return False
+
# ---------------------------------------------------------------------
else:
mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
-
# View transformation
cam = Matrix(cameraObj.getInverseMatrix())
cam.transpose()
return m
+
# ---------------------------------------------------------------------
#
-## 2DObject representation class
+## 2D Object representation class
#
# ---------------------------------------------------------------------
"""A concrete class for writing SVG output.
"""
- def __init__(self, file):
+ def __init__(self, fileName):
"""Simply call the parent Contructor.
"""
- VectorWriter.__init__(self, file)
+ VectorWriter.__init__(self, fileName)
##
"""
self._printFooter()
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
for face in mesh.faces:
if not face.sel:
- continue
+ continue
self.file.write("<polygon points=\"")
# TODO: the average of vetrex colors?
if face.col:
fcol = face.col[0]
- color = [fcol.r, fcol.g, fcol.b]
+ color = [fcol.r, fcol.g, fcol.b, fcol.a]
else:
- color = [255, 255, 255]
+ color = [255, 255, 255, 255]
# use the stroke property to alleviate the "adjacent edges" problem,
# we simulate polygon expansion using borders,
stroke_col = color
stroke_width = 0.5
- self.file.write("\tstyle=\"fill:rgb("+str(color[0])+","+str(color[1])+","+str(color[2])+");")
+ # Convert the color to the #RRGGBB form
+ str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
+
+ # Handle transparent polygons
+ opacity_string = ""
+ if color[3] != 255:
+ opacity = float(color[3])/255.0
+ opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+
+ self.file.write("\tstyle=\"fill:" + str_col + ";")
+ self.file.write(opacity_string)
if POLYGON_EXPANSION_TRICK:
- self.file.write(" stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
- self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+ self.file.write(" stroke:" + str_col + ";")
+ self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
self.file.write("\"/>\n")
hidden_stroke_style = ""
- # Consider an edge selected if both vertices are selected
- if e.v1.sel == 0 or e.v2.sel == 0:
+ # We consider an edge visible if _both_ its vertices are selected,
+ # hence an edge is hidden if _any_ of its vertices is deselected.
+ if e.sel == 0:
if showHiddenEdges == False:
continue
else:
"""Render picture or animation and write it out.
The parameters are:
- - a Vector writer object than will be used to output the result.
+ - a Vector writer object that will be used to output the result.
- a flag to tell if we want to render an animation or only the
current frame.
"""
# projection transformations
proj = Projector(self.cameraObj, self.canvasRatio)
+ # global processing of the scene
+
+ self._doConvertGeometricObjToMesh(workScene)
+
+ self._doSceneClipping(workScene)
- # Convert geometric object types to mesh Objects
- geometricObjTypes = ['Mesh', 'Surf', 'Curve'] # TODO: add the Text type
- Objects = workScene.getChildren()
- objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
- for obj in objList:
- old_obj = obj
- obj = self._convertToRawMeshObj(obj)
- workScene.link(obj)
- workScene.unlink(old_obj)
+ # XXX: Joining objects does not work in batch mode!!
+ # Do not touch the following if, please :)
+
+ global OPTIMIZE_FOR_SPACE
+ if Blender.mode == 'background':
+ print "\nWARNING! Joining objects not supported in background mode!\n"
+ OPTIMIZE_FOR_SPACE = False
- # FIXME: does not work!!, Blender segfaults on joins
if OPTIMIZE_FOR_SPACE:
self._joinMeshObjectsInScene(workScene)
-
- # global processing of the scene
- self._doClipping()
self._doSceneDepthSorting(workScene)
# Per object activities
- Objects = workScene.getChildren()
+ Objects = workScene.getChildren()
for obj in Objects:
- if obj.getType() not in geometricObjTypes:
- print "Only geometric Objects supported! - Skipping type:", obj.getType()
+ if obj.getType() != 'Mesh':
+ print "Only Mesh supported! - Skipping type:", obj.getType()
continue
print "Rendering: ", obj.getName()
- mesh = obj.data
+ mesh = obj.getData()
self._doModelToWorldCoordinates(mesh, obj.matrix)
self._doObjectDepthSorting(mesh)
+ # We use both Mesh and NMesh because for depth sorting we change
+ # face order and Mesh class don't let us to do that.
+ mesh.update()
+ mesh = obj.getData(mesh=1)
+
self._doBackFaceCulling(mesh)
self._doColorAndLighting(mesh)
- # TODO: 'style' can be a function that determine
- # if an edge should be showed?
- self._doEdgesStyle(mesh, style=None)
+ self._doEdgesStyle(mesh, edgeSelectionStyles[EDGE_STYLE])
self._doProjection(mesh, proj)
# Utility methods
- def _worldPosition(self, obj):
+ def _getObjPosition(self, obj):
"""Return the obj position in World coordinates.
"""
return obj.matrix.translationPart()
- def _cameraWorldPosition(self):
- """Return the camera position in World coordinates.
-
- This trick is needed when the camera follows a path and then
- camera.loc does not correspond to the current real position of the
- camera in the world.
+ def _cameraViewDirection(self):
+ """Get the View Direction form the camera matrix.
"""
- return self._worldPosition(self.cameraObj)
+ return Vector(self.cameraObj.matrix[2]).resize3D()
# Faces methods
"""
normal = Vector(face.no)
- c = self._cameraWorldPosition()
-
- # View vector in orthographics projections can be considered simply as the
- # camera position
- view_vect = Vector(c)
- #if self.cameraObj.data.getType() == 1:
- # view_vect = Vector(c)
-
- # View vector as in perspective projections
- # it is the difference between the camera position and one point of
- # the face, we choose the farthest point.
- # TODO: make the code more pythonic :)
+ camPos = self._getObjPosition(self.cameraObj)
+ view_vect = None
+
+ # View Vector in orthographics projections is the view Direction of
+ # the camera
+ if self.cameraObj.data.getType() == 1:
+ view_vect = self._cameraViewDirection()
+
+ # View vector in perspective projections can be considered as
+ # the difference between the camera position and one point of
+ # the face, we choose the farthest point from the camera.
if self.cameraObj.data.getType() == 0:
- max_len = 0
- for vect in face:
- vv = Vector(c) - Vector(vect.co)
- if vv.length > max_len:
- max_len = vv.length
- view_vect = vv
+ vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
+ view_vect = vv[1]
# if d > 0 the face is visible from the camera
d = view_vect * normal
# Scene methods
- def _doClipping(self):
- """Clip object against the View Frustum.
+ def _doConvertGeometricObjToMesh(self, scene):
+ """Convert all "geometric" objects to mesh ones.
"""
- print "TODO: _doClipping()"
- return
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+
+ Objects = scene.getChildren()
+ objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
+ for obj in objList:
+ old_obj = obj
+ obj = self._convertToRawMeshObj(obj)
+ scene.link(obj)
+ scene.unlink(old_obj)
+
+
+ # XXX Workaround for Text and Curve which have some normals
+ # inverted when they are converted to Mesh, REMOVE that when
+ # blender will fix that!!
+ if old_obj.getType() in ['Curve', 'Text']:
+ me = obj.getData(mesh=1)
+ for f in me.faces: f.sel = 1;
+ for v in me.verts: v.sel = 1;
+ me.remDoubles(0)
+ me.triangleToQuad()
+ me.recalcNormals()
+ me.update()
+
+
+ def _doSceneClipping(self, scene):
+ """Clip objects against the View Frustum.
+
+ For now clip away only objects according to their center position.
+ """
+
+ cpos = self._getObjPosition(self.cameraObj)
+ view_vect = self._cameraViewDirection()
+
+ near = self.cameraObj.data.clipStart
+ far = self.cameraObj.data.clipEnd
+
+ aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1])
+ fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
+ fovy = fovy * 360.0/pi
+
+ Objects = scene.getChildren()
+ for o in Objects:
+ if o.getType() != 'Mesh': continue;
+
+ obj_vect = Vector(cpos) - self._getObjPosition(o)
+
+ d = obj_vect*view_vect
+ theta = AngleBetweenVecs(obj_vect, view_vect)
+
+ # if the object is outside the view frustum, clip it away
+ if (d < near) or (d > far) or (theta > fovy):
+ scene.unlink(o)
def _doSceneDepthSorting(self, scene):
"""Sort objects in the scene.
The object sorting is done accordingly to the object centers.
"""
- c = self._cameraWorldPosition()
+ c = self._getObjPosition(self.cameraObj)
- Objects = scene.getChildren()
+ by_center_pos = (lambda o1, o2:
+ (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+ cmp((self._getObjPosition(o1) - Vector(c)).length,
+ (self._getObjPosition(o2) - Vector(c)).length)
+ )
- #Objects.sort(lambda obj1, obj2:
- # cmp((Vector(obj1.loc) - Vector(c)).length,
- # (Vector(obj2.loc) - Vector(c)).length
- # )
- # )
+ # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
+ # then ob1 goes farther than obj2, useful when obj2 has holes
+ by_bbox = None
- Objects.sort(lambda obj1, obj2:
- cmp((self._worldPosition(obj1) - Vector(c)).length,
- (self._worldPosition(obj2) - Vector(c)).length
- )
- )
+ Objects = scene.getChildren()
+ Objects.sort(by_center_pos)
# update the scene
for o in Objects:
scene.unlink(o)
scene.link(o)
-
def _joinMeshObjectsInScene(self, scene):
"""Merge all the Mesh Objects in a scene into a single Mesh Object.
"""
+ mesh = Mesh.New()
bigObj = Object.New('Mesh', 'BigOne')
+ bigObj.link(mesh)
+
oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
- print "Before join", oList
bigObj.join(oList)
- print "After join"
scene.link(bigObj)
for o in oList:
scene.unlink(o)
+ scene.update()
+
# Per object methods
newObject = Object.New('Mesh', 'RawMesh_'+object.name)
newObject.link(me)
+ # If the object has no materials set a default material
+ if not me.materials:
+ me.materials = [Material.New()]
+ #for f in me.faces: f.mat = 0
+
newObject.setMatrix(object.getMatrix())
return newObject
The faces in the object are sorted following the distance of the
vertices from the camera position.
"""
- c = self._cameraWorldPosition()
+ c = self._getObjPosition(self.cameraObj)
# hackish sorting of faces
- mesh.faces.sort(
- lambda f1, f2:
- # Sort faces according to the min distance from the camera
- #cmp(min([(Vector(v.co)-Vector(c)).length for v in f1]),
- # min([(Vector(v.co)-Vector(c)).length for v in f2])))
- # Sort faces according to the max distance from the camera
+ # Sort faces according to the max distance from the camera
+ by_max_vert_dist = (lambda f1, f2:
cmp(max([(Vector(v.co)-Vector(c)).length for v in f1]),
max([(Vector(v.co)-Vector(c)).length for v in f2])))
-
- # Sort faces according to the avg distance from the camera
- #cmp(sum([(Vector(v.co)-Vector(c)).length for v in f1])/len(f1),
- # sum([(Vector(v.co)-Vector(c)).length for v in f2])/len(f2)))
+
+ # Sort faces according to the min distance from the camera
+ by_min_vert_dist = (lambda f1, f2:
+ cmp(min([(Vector(v.co)-Vector(c)).length for v in f1]),
+ min([(Vector(v.co)-Vector(c)).length for v in f2])))
+
+ # Sort faces according to the avg distance from the camera
+ by_avg_vert_dist = (lambda f1, f2:
+ cmp(sum([(Vector(v.co)-Vector(c)).length for v in f1])/len(f1),
+ sum([(Vector(v.co)-Vector(c)).length for v in f2])/len(f2)))
+ mesh.faces.sort(by_max_vert_dist)
mesh.faces.reverse()
def _doBackFaceCulling(self, mesh):
select the vertices belonging to visible faces.
"""
- # Select all vertices, so edges without faces can be displayed
+ # Select all vertices, so edges can be displayed even if there are no
+ # faces
for v in mesh.verts:
v.sel = 1
# Is this the correct way to propagate the face selection info to the
# vertices belonging to a face ??
- # TODO: Using the Mesh class this should come for free. Right?
- Mesh.Mode(Mesh.SelectModes['VERTEX'])
- for f in mesh.faces:
- if not f.sel:
- for v in f:
- v.sel = 0
+ # TODO: Using the Mesh module this should come for free. Right?
+ #Mesh.Mode(Mesh.SelectModes['VERTEX'])
+ #for f in mesh.faces:
+ # if not f.sel:
+ # for v in f: v.sel = 0;
- for f in mesh.faces:
- if f.sel:
- for v in f:
- v.sel = 1
+ #for f in mesh.faces:
+ # if f.sel:
+ # for v in f: v.sel = 1;
def _doColorAndLighting(self, mesh):
"""Apply an Illumination model to the object.
# If the mesh has vertex colors already, use them,
# otherwise turn them on and do some calculations
- if mesh.hasVertexColours():
+ if mesh.vertexColors:
return
- mesh.hasVertexColours(True)
+ mesh.vertexColors = 1
materials = mesh.materials
# TODO: use multiple lighting sources
light_obj = self.lights[0]
- light_pos = self._worldPosition(light_obj)
+ light_pos = self._getObjPosition(light_obj)
light = light_obj.data
- camPos = self._cameraWorldPosition()
+ camPos = self._getObjPosition(self.cameraObj)
# We do per-face color calculation (FLAT Shading), we can easily turn
# to a per-vertex calculation if we want to implement some shading
mat = materials[f.mat]
# A new default material
- if not mat:
+ if mat == None:
mat = Material.New('defMat')
L = Vector(light_pos).normalize()
I = ki + Iamb + Idiff + Ispec
+ # Set Alpha component
+ I = list(I)
+ I.append(mat.getAlpha())
+
# Clamp I values between 0 and 1
I = [ min(c, 1) for c in I]
I = [ max(0, c) for c in I]
tmp_col = [ int(c * 255.0) for c in I]
- vcol = NMesh.Col(tmp_col[0], tmp_col[1], tmp_col[2], 255)
- f.col = []
- for v in f.v:
- f.col.append(vcol)
+ for c in f.col:
+ c.r = tmp_col[0]
+ c.g = tmp_col[1]
+ c.b = tmp_col[2]
+ c.a = tmp_col[3]
- def _doEdgesStyle(self, mesh, style):
- """Process Mesh Edges. (For now copy the edge data, in next version it
- can be a place where recognize silouhettes and/or contours).
+ def _doEdgesStyle(self, mesh, edgestyleSelect):
+ """Process Mesh Edges accroding to a given selection style.
- input: an edge list
- return: a processed edge list
+ Examples of algorithms:
+
+ Contours:
+ given an edge if its adjacent faces have the same normal (that is
+ they are complanar), than deselect it.
+
+ Silhouettes:
+ given an edge if one its adjacent faces is frontfacing and the
+ other is backfacing, than select it, else deselect.
"""
- #print "\tTODO: _doEdgeStyle()"
- return
+ Mesh.Mode(Mesh.SelectModes['EDGE'])
+
+ for e in mesh.edges:
+
+ if edgestyleSelect(e, mesh):
+ e.sel = 1
+ else:
+ e.sel = 0
+
def _doProjection(self, mesh, projector):
"""Calculate the Projection for the object.
"""
#
# ---------------------------------------------------------------------
+# A dictionary to collect all the different edge styles and their edge
+# selection criteria
+edgeSelectionStyles = {
+ 'normal': MeshUtils().isVisibleEdge,
+ 'silhouette': MeshUtils().isSilhouetteEdge
+ }
+
+# A dictionary to collect the supported output formats
+outputWriters = {
+ 'SVG': SVGVectorWriter,
+ }
+
+
+# A wrapper function for the vectorizing process
def vectorize(filename):
"""The vectorizing process is as follows:
editmode = Window.EditMode()
if editmode: Window.EditMode(0)
- writer = SVGVectorWriter(filename)
+ writer = outputWriters[OUTPUT_FORMAT](filename)
renderer = Renderer()
renderer.doRendering(writer, RENDER_ANIMATION)
if editmode: Window.EditMode(1)
-def vectorize_gui(filename):
- """Draw the gui.
-
- I would like to keep that simple, really.
- """
- Blender.Window.FileSelector (vectorize, 'Save SVG', filename)
- Blender.Redraw()
-
# Here the main
if __name__ == "__main__":
- import os
- outputfile = os.path.splitext(Blender.Get('filename'))[0]+".svg"
+ basename = Blender.sys.basename(Blender.Get('filename'))
+ outputfile = Blender.sys.splitext(basename)[0]+".svg"
- # with this trick we can run the script in batch mode
- try:
- vectorize_gui(outputfile)
- except:
+ if Blender.mode == 'background':
vectorize(outputfile)
+ else:
+ label = "Save %s" % OUTPUT_FORMAT
+ Blender.Window.FileSelector(vectorize, label, outputfile)
+ Blender.Redraw()