Add an HSR helper class
[vrm.git] / vrm.py
diff --git a/vrm.py b/vrm.py
index 7cf79bc..b121765 100755 (executable)
--- a/vrm.py
+++ b/vrm.py
@@ -58,9 +58,8 @@ __bpydoc__ = """\
 #   - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
 #   - Implement Shading Styles? (partially done, to make more flexible).
 #   - Add Vector Writers other than SVG.
 #   - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
 #   - Implement Shading Styles? (partially done, to make more flexible).
 #   - Add Vector Writers other than SVG.
+#   - set the background color!
 #   - Check memory use!!
 #   - Check memory use!!
-#   - Support Indexed palettes!! (Useful for ILDA FILES, for example,
-#     see http://www.linux-laser.org/download/autotrace/ilda-output.patch)
 #
 # ---------------------------------------------------------------------
 #
 #
 # ---------------------------------------------------------------------
 #
@@ -76,6 +75,9 @@ __bpydoc__ = """\
 #     * The SVG output is now SVG 1.0 valid.
 #       Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
 #     * Progress indicator during HSR.
 #     * The SVG output is now SVG 1.0 valid.
 #       Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
 #     * Progress indicator during HSR.
+#     * Initial SWF output support
+#     * Fixed a bug in the animation code, now the projection matrix is
+#       recalculated at each frame!
 #
 # ---------------------------------------------------------------------
 
 #
 # ---------------------------------------------------------------------
 
@@ -85,6 +87,12 @@ from Blender.Mathutils import *
 from math import *
 import sys, time
 
 from math import *
 import sys, time
 
+# Constants
+EPS = 10e-5
+
+# We use a global progress Indicator Object
+progress = None
+
 
 # Some global settings
 
 
 # Some global settings
 
@@ -102,7 +110,7 @@ class config:
     edges = dict()
     edges['SHOW'] = False
     edges['SHOW_HIDDEN'] = False
     edges = dict()
     edges['SHOW'] = False
     edges['SHOW_HIDDEN'] = False
-    edges['STYLE'] = 'MESH'
+    edges['STYLE'] = 'MESH' # or SILHOUETTE
     edges['WIDTH'] = 2
     edges['COLOR'] = [0, 0, 0]
 
     edges['WIDTH'] = 2
     edges['COLOR'] = [0, 0, 0]
 
@@ -111,20 +119,50 @@ class config:
     output['ANIMATION'] = False
     output['JOIN_OBJECTS'] = True
 
     output['ANIMATION'] = False
     output['JOIN_OBJECTS'] = True
 
+    #output['FORMAT'] = 'SWF'
+    #output['ANIMATION'] = True
 
 
 # Utility functions
 print_debug = False
 
 
 # Utility functions
 print_debug = False
+
+def dumpfaces(flist, filename):
+    """Dump a single face to a file.
+    """
+    if not print_debug:
+        return
+
+    class tmpmesh:
+        pass
+
+    m = tmpmesh()
+    m.faces = flist
+
+    writerobj = SVGVectorWriter(filename)
+
+    writerobj.open()
+    writerobj._printPolygons(m)
+
+    writerobj.close()
+
 def debug(msg):
     if print_debug:
         sys.stderr.write(msg)
 
 def debug(msg):
     if print_debug:
         sys.stderr.write(msg)
 
-EPS = 10e-5
+def EQ(v1, v2):
+    return (abs(v1[0]-v2[0]) < EPS and 
+            abs(v1[1]-v2[1]) < EPS )
+by_furthest_z = (lambda f1, f2:
+    cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+    )
 
 def sign(x):
 
 def sign(x):
+
     if x < -EPS:
     if x < -EPS:
+    #if x < 0:
         return -1
     elif x > EPS:
         return -1
     elif x > EPS:
+    #elif x > 0:
         return 1
     else:
         return 0
         return 1
     else:
         return 0
@@ -132,9 +170,538 @@ def sign(x):
 
 # ---------------------------------------------------------------------
 #
 
 # ---------------------------------------------------------------------
 #
+## HSR Utility class
+#
+# ---------------------------------------------------------------------
+
+EPS = 10e-5
+INF = 10e5
+
+class HSR:
+    """A utility class for HSR processing.
+    """
+
+    def is_nonplanar_quad(face):
+        """Determine if a quad is non-planar.
+
+        From: http://mathworld.wolfram.com/Coplanar.html
+
+        Geometric objects lying in a common plane are said to be coplanar.
+        Three noncollinear points determine a plane and so are trivially coplanar.
+        Four points are coplanar iff the volume of the tetrahedron defined by them is
+        0, 
+        
+            | x_1 y_1 z_1 1 |
+            | x_2 y_2 z_2 1 |
+            | x_3 y_3 z_3 1 |
+            | x_4 y_4 z_4 1 | == 0
+
+        Coplanarity is equivalent to the statement that the pair of lines
+        determined by the four points are not skew, and can be equivalently stated
+        in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
+
+        An arbitrary number of n points x_1, ..., x_n can be tested for
+        coplanarity by finding the point-plane distances of the points
+        x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
+        and checking if they are all zero.
+        If so, the points are all coplanar.
+
+        We here check only for 4-point complanarity.
+        """
+        n = len(face)
+
+        # assert(n>4)
+        if n < 3 or n > 4:
+            print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
+            raise AssertionError
+
+        elif n == 3:
+            # three points must be complanar
+            return False
+        else: # n == 4
+            x1 = Vector(face[0].co)
+            x2 = Vector(face[1].co)
+            x3 = Vector(face[2].co)
+            x4 = Vector(face[3].co)
+
+            v = (x3-x1) * CrossVecs((x2-x1), (x4-x3))
+            if v != 0:
+                return True
+
+        return False
+
+    is_nonplanar_quad = staticmethod(is_nonplanar_quad)
+
+    def pointInPolygon(poly, v):
+        return False
+
+    pointInPolygon = staticmethod(pointInPolygon)
+
+    def edgeIntersection(s1, s2, do_perturbate=False):
+
+        (x1, y1) = s1[0].co[0], s1[0].co[1]
+        (x2, y2) = s1[1].co[0], s1[1].co[1]
+
+        (x3, y3) = s2[0].co[0], s2[0].co[1]
+        (x4, y4) = s2[1].co[0], s2[1].co[1]
+
+        #z1 = s1[0].co[2]
+        #z2 = s1[1].co[2]
+        #z3 = s2[0].co[2]
+        #z4 = s2[1].co[2]
+
+
+        # calculate delta values (vector components)
+        dx1 = x2 - x1;
+        dx2 = x4 - x3;
+        dy1 = y2 - y1;
+        dy2 = y4 - y3;
+
+        #dz1 = z2 - z1;
+        #dz2 = z4 - z3;
+
+        C = dy2 * dx1 - dx2 * dy1 #  /* cross product */
+        if C == 0:  #/* parallel */
+            return None
+
+        dx3 = x1 - x3 # /* combined origin offset vector */
+        dy3 = y1 - y3
+
+        a1 = (dy3 * dx2 - dx3 * dy2) / C;
+        a2 = (dy3 * dx1 - dx3 * dy1) / C;
+
+        # check for degeneracies
+        #print_debug("\n")
+        #print_debug(str(a1)+"\n")
+        #print_debug(str(a2)+"\n\n")
+
+        if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
+            # Intersection on boundaries, we consider the point external?
+            return None
+
+        elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): #  /* lines cross */
+            x = x1 + a1*dx1
+            y = y1 + a1*dy1
+
+            #z = z1 + a1*dz1
+            z = 0
+            return (NMesh.Vert(x, y, z), a1, a2)
+
+        else:
+            # lines have intersections but not those segments
+            return None
+
+    edgeIntersection = staticmethod(edgeIntersection)
+
+    def isVertInside(self, v):
+        winding_number = 0
+        coincidence = False
+
+        # Create point at infinity
+        point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
+
+        for i in range(len(self.v)):
+            s1 = (point_at_infinity, v)
+            s2 = (self.v[i-1], self.v[i])
+
+            if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
+                coincidence = True
+
+            if HSR.edgeIntersection(s1, s2, do_perturbate=False):
+                winding_number += 1
+
+        # Check even or odd
+        if winding_number % 2 == 0 :
+            return False
+        else:
+            if coincidence:
+                return False
+            return True
+
+    isVertInside = staticmethod(isVertInside)
+
+    def projectionsOverlap(f1, f2):
+        """ If you have nonconvex, but still simple polygons, an acceptable method
+        is to iterate over all vertices and perform the Point-in-polygon test[1].
+        The advantage of this method is that you can compute the exact
+        intersection point and collision normal that you will need to simulate
+        collision. When you have the point that lies inside the other polygon, you
+        just iterate over all edges of the second polygon again and look for edge
+        intersections. Note that this method detects collsion when it already
+        happens. This algorithm is fast enough to perform it hundreds of times per
+        sec.  """
+
+        for i in range(len(f1.v)):
+
+
+            # If a point of f1 in inside f2, there is an overlap!
+            v1 = f1.v[i]
+            if HSR.isVertInside(f2, v1):
+                return True
+
+            # If not the polygon can be ovelap as well, so we check for
+            # intersection between an edge of f1 and all the edges of f2
+
+            v0 = f1.v[i-1]
+
+            for j in range(len(f2.v)):
+                v2 = f2.v[j-1]
+                v3 = f2.v[j]
+
+                e1 = v0, v1
+                e2 = v2, v3
+
+                intrs = HSR.edgeIntersection(e1, e2)
+                if intrs:
+                    #print_debug(str(v0.co) + " " + str(v1.co) + " " +
+                    #        str(v2.co) + " " + str(v3.co) )
+                    #print_debug("\nIntersection\n")
+
+                    return True
+
+        return False
+
+    projectionsOverlap = staticmethod(projectionsOverlap)
+
+    def midpoint(p1, p2):
+        """Return the midpoint of two vertices.
+        """
+        m = MidpointVecs(Vector(p1), Vector(p2))
+        mv = NMesh.Vert(m[0], m[1], m[2])
+
+        return mv
+
+    midpoint = staticmethod(midpoint)
+
+    def facesplit(P, Q, facelist, nmesh):
+        """Split P or Q according to the strategy illustrated in the Newell's
+        paper.
+        """
+
+        by_furthest_z = (lambda f1, f2:
+                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+                )
+
+        # Choose if split P on Q plane or vice-versa
+
+        n = 0
+        for Pi in P:
+            d = HSR.Distance(Vector(Pi), Q)
+            if d <= EPS:
+                n += 1
+        pIntersectQ = (n != len(P))
+
+        n = 0
+        for Qi in Q:
+            d = HSR.Distance(Vector(Qi), P)
+            if d >= -EPS:
+                n += 1
+        qIntersectP = (n != len(Q))
+
+        newfaces = []
+
+        # 1. If parts of P lie in both half-spaces of Q
+        # then splice P in two with the plane of Q
+        if pIntersectQ:
+            #print "We split P"
+            f = P
+            plane = Q
+
+            newfaces = HSR.splitOn(plane, f)
+
+        # 2. Else if parts of Q lie in both half-space of P
+        # then splice Q in two with the plane of P
+        if qIntersectP and newfaces == None:
+            #print "We split Q"
+            f = Q
+            plane = P
+
+            newfaces = HSR.splitOn(plane, f)
+            #print "After"
+
+        # 3. Else slice P in half through the mid-point of
+        # the longest pair of opposite sides
+        if newfaces == None:
+
+            print "We ignore P..."
+            facelist.remove(P)
+            return facelist
+
+            #f = P
+
+            #if len(P)==3:
+            #    v1 = midpoint(f[0], f[1])
+            #    v2 = midpoint(f[1], f[2])
+            #if len(P)==4:
+            #    v1 = midpoint(f[0], f[1])
+            #    v2 = midpoint(f[2], f[3])
+            #vec3 = (Vector(v2)+10*Vector(f.normal))
+            #
+            #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
+
+            #plane = NMesh.Face([v1, v2, v3])
+            #
+            #newfaces = splitOn(plane, f)
+
+        
+        if newfaces == None:
+            print "Big FAT problem, we weren't able to split POLYGONS!"
+            raise AssertionError
+
+        #print newfaces
+        if newfaces:
+            #for v in f:
+            #    if v not in plane and v in nmesh.verts:
+            #        nmesh.verts.remove(v)
+            for nf in newfaces:
+
+                nf.mat = f.mat
+                nf.sel = f.sel
+                nf.col = [f.col[0]] * len(nf.v)
+
+                nf.smooth = 0
+
+                for v in nf:
+                    nmesh.verts.append(v)
+                # insert pieces in the list
+                facelist.append(nf)
+
+            facelist.remove(f)
+
+        # and resort the faces
+        facelist.sort(by_furthest_z)
+        facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
+        facelist.reverse()
+
+        #print [ f.smooth for f in facelist ]
+
+        return facelist
+
+    facesplit = staticmethod(facesplit)
+
+    def isOnSegment(v1, v2, p, extremes_internal=False):
+        """Check if point p is in segment v1v2.
+        """
+
+        l1 = (v1-p).length
+        l2 = (v2-p).length
+
+        # Should we consider extreme points as internal ?
+        # The test:
+        # if p == v1 or p == v2:
+        if l1 < EPS or l2 < EPS:
+            return extremes_internal
+
+        l = (v1-v2).length
+
+        # if the sum of l1 and l2 is circa l, then the point is on segment,
+        if abs(l - (l1+l2)) < EPS:
+            return True
+        else:
+            return False
+
+    isOnSegment = staticmethod(isOnSegment)
+
+    def Distance(point, face):
+        """ Calculate the distance between a point and a face.
+
+        An alternative but more expensive method can be:
+
+            ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
+                    Vector(face.no), Vector(point), 0)
+
+            d = Vector(ip - point).length
+
+        See: http://mathworld.wolfram.com/Point-PlaneDistance.html
+        """
+
+        p = Vector(point)
+        plNormal = Vector(face.no)
+        plVert0 = Vector(face.v[0])
+
+        d = (plVert0 * plNormal) - (p * plNormal)
+
+        #d = plNormal * (plVert0 - p)
+
+        #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
+
+        return d
+
+    Distance = staticmethod(Distance)
+
+    def makeFaces(vl):
+        #
+        # make one or two new faces based on a list of vertex-indices
+        #
+        newfaces = []
+
+        if len(vl) <= 4:
+            nf = NMesh.Face()
+
+            for v in vl:
+                nf.v.append(v)
+
+            newfaces.append(nf)
+
+        else:
+            nf = NMesh.Face()
+
+            nf.v.append(vl[0])
+            nf.v.append(vl[1])
+            nf.v.append(vl[2])
+            nf.v.append(vl[3])
+            newfaces.append(nf)
+
+            nf = NMesh.Face()
+            nf.v.append(vl[3])
+            nf.v.append(vl[4])
+            nf.v.append(vl[0])
+            newfaces.append(nf)
+
+        return newfaces
+
+    makeFaces = staticmethod(makeFaces)
+
+    def splitOn(Q, P):
+        """Split P using the plane of Q.
+        Logic taken from the knife.py python script
+        """
+
+        # Check if P and Q are parallel
+        u = CrossVecs(Vector(Q.no),Vector(P.no))
+        ax = abs(u[0])
+        ay = abs(u[1])
+        az = abs(u[2])
+
+        if (ax+ay+az) < EPS:
+            print "PARALLEL planes!!"
+            return
+
+
+        # The final aim is to find the intersection line between P
+        # and the plane of Q, and split P along this line
+
+        nP = len(P.v)
+
+        # Calculate point-plane Distance between vertices of P and plane Q
+        d = []
+        for i in range(0, nP):
+            d.append(HSR.Distance(P.v[i], Q))
+
+        newVertList = []
+
+        posVertList = []
+        negVertList = []
+        for i in range(nP):
+            d0 = d[i-1]
+            V0 = P.v[i-1]
+
+            d1 = d[i]
+            V1 = P.v[i]
+
+            #print "d0:", d0, "d1:", d1
+
+            # if the vertex lies in the cutplane                       
+            if abs(d1) < EPS:
+                #print "d1 On cutplane"
+                posVertList.append(V1)
+                negVertList.append(V1)
+            else:
+                # if the previous vertex lies in cutplane
+                if abs(d0) < EPS:
+                    #print "d0 on Cutplane"
+                    if d1 > 0:
+                        #print "d1 on positive Halfspace"
+                        posVertList.append(V1)
+                    else:
+                        #print "d1 on negative Halfspace"
+                        negVertList.append(V1)
+                else:
+                    # if they are on the same side of the plane
+                    if d1*d0 > 0:
+                        #print "On the same half-space"
+                        if d1 > 0:
+                            #print "d1 on positive Halfspace"
+                            posVertList.append(V1)
+                        else:
+                            #print "d1 on negative Halfspace"
+                            negVertList.append(V1)
+
+                    # the vertices are not on the same side of the plane, so we have an intersection
+                    else:
+                        #print "Intersection"
+
+                        e = Vector(V0), Vector(V1)
+                        tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
+
+                        inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0)
+                        if inters == None:
+                            print "Split Break"
+                            break
+
+                        #print "Intersection", inters
+
+                        nv = NMesh.Vert(inters[0], inters[1], inters[2])
+                        newVertList.append(nv)
+
+                        posVertList.append(nv)
+                        negVertList.append(nv)
+
+                        if d1 > 0:
+                            posVertList.append(V1)
+                        else:
+                            negVertList.append(V1)
+
+        
+        # uniq
+        posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
+        negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+
+        # If vertex are all on the same half-space, return
+        #if len(posVertList) < 3:
+        #    print "Problem, we created a face with less that 3 verteices??"
+        #    posVertList = []
+        #if len(negVertList) < 3:
+        #    print "Problem, we created a face with less that 3 verteices??"
+        #    negVertList = []
+
+        if len(posVertList) < 3 or len(negVertList) < 3:
+            print "RETURN NONE, SURE???"
+            return None
+
+
+        newfaces = HSR.addNewFaces(posVertList, negVertList)
+
+        return newfaces
+
+    splitOn = staticmethod(splitOn)
+
+    def addNewFaces(posVertList, negVertList):
+        # Create new faces resulting from the split
+        outfaces = []
+        if len(posVertList) or len(negVertList):
+
+            #newfaces = [posVertList] + [negVertList]
+            newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
+                    [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] )
+
+            for nf in newfaces:
+                if nf and len(nf)>2:
+                    outfaces += HSR.makeFaces(nf)
+
+        return outfaces
+
+
+    addNewFaces = staticmethod(addNewFaces)
+
+
+# ---------------------------------------------------------------------
+#
 ## Mesh Utility class
 #
 # ---------------------------------------------------------------------
 ## Mesh Utility class
 #
 # ---------------------------------------------------------------------
+
 class MeshUtils:
 
     def buildEdgeFaceUsersCache(me):
 class MeshUtils:
 
     def buildEdgeFaceUsersCache(me):
@@ -217,6 +784,7 @@ class MeshUtils:
 ## Shading Utility class
 #
 # ---------------------------------------------------------------------
 ## Shading Utility class
 #
 # ---------------------------------------------------------------------
+
 class ShadingUtils:
 
     shademap = None
 class ShadingUtils:
 
     shademap = None
@@ -611,7 +1179,8 @@ class VectorWriter:
         return
 
     def close(self):
         return
 
     def close(self):
-        self.file.close()
+        if self.file:
+            self.file.close()
         return
 
     def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
         return
 
     def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
@@ -785,10 +1354,11 @@ class SVGVectorWriter(VectorWriter):
 
             self.file.write("<path d=\"")
 
 
             self.file.write("<path d=\"")
 
-            p = self._calcCanvasCoord(face.verts[0])
+            #p = self._calcCanvasCoord(face.verts[0])
+            p = self._calcCanvasCoord(face.v[0])
             self.file.write("M %g,%g L " % (p[0], p[1]))
 
             self.file.write("M %g,%g L " % (p[0], p[1]))
 
-            for v in face.verts[1:]:
+            for v in face.v[1:]:
                 p = self._calcCanvasCoord(v)
                 self.file.write("%g,%g " % (p[0], p[1]))
             
                 p = self._calcCanvasCoord(v)
                 self.file.write("%g,%g " % (p[0], p[1]))
             
@@ -810,8 +1380,8 @@ class SVGVectorWriter(VectorWriter):
             opacity_string = ""
             if color[3] != 255:
                 opacity = float(color[3])/255.0
             opacity_string = ""
             if color[3] != 255:
                 opacity = float(color[3])/255.0
-                #opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
-                opacity_string = "opacity: %g;" % (opacity)
+                opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+                #opacity_string = "opacity: %g;" % (opacity)
 
             self.file.write("\tstyle=\"fill:" + str_col + ";")
             self.file.write(opacity_string)
 
             self.file.write("\tstyle=\"fill:" + str_col + ";")
             self.file.write(opacity_string)
@@ -865,6 +1435,200 @@ class SVGVectorWriter(VectorWriter):
         self.file.write("</g>\n")
 
 
         self.file.write("</g>\n")
 
 
+## SWF Writer
+
+try:
+    from ming import *
+    SWFSupported = True
+except:
+    SWFSupported = False
+
+class SWFVectorWriter(VectorWriter):
+    """A concrete class for writing SWF output.
+    """
+
+    def __init__(self, fileName):
+        """Simply call the parent Contructor.
+        """
+        VectorWriter.__init__(self, fileName)
+
+        self.movie = None
+        self.sprite = None
+
+
+    ##
+    # Public Methods
+    #
+
+    def open(self, startFrame=1, endFrame=1):
+        """Do some initialization operations.
+        """
+        VectorWriter.open(self, startFrame, endFrame)
+        self.movie = SWFMovie()
+        self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+        # set fps
+        self.movie.setRate(25)
+        numframes = endFrame - startFrame + 1
+        self.movie.setFrames(numframes)
+
+    def close(self):
+        """Do some finalization operation.
+        """
+        self.movie.save(self.outputFileName)
+
+        # remember to call the close method of the parent
+        VectorWriter.close(self)
+
+    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+            showHiddenEdges=False):
+        """Convert the scene representation to SVG.
+        """
+        context = scene.getRenderingContext()
+        framenumber = context.currentFrame()
+
+        Objects = scene.getChildren()
+
+        if self.sprite:
+            self.movie.remove(self.sprite)
+
+        sprite = SWFSprite()
+
+        for obj in Objects:
+
+            if(obj.getType() != 'Mesh'):
+                continue
+
+            mesh = obj.getData(mesh=1)
+
+            if doPrintPolygons:
+                self._printPolygons(mesh, sprite)
+
+            if doPrintEdges:
+                self._printEdges(mesh, sprite, showHiddenEdges)
+            
+        sprite.nextFrame()
+        i = self.movie.add(sprite)
+        # Remove the instance the next time
+        self.sprite = i
+        if self.animation:
+            self.movie.nextFrame()
+
+    
+    ##  
+    # Private Methods
+    #
+    
+    def _calcCanvasCoord(self, v):
+        """Convert vertex in scene coordinates to canvas coordinates.
+        """
+
+        pt = Vector([0, 0, 0])
+        
+        mW = float(self.canvasSize[0])/2.0
+        mH = float(self.canvasSize[1])/2.0
+
+        # rescale to canvas size
+        pt[0] = v.co[0]*mW + mW
+        pt[1] = v.co[1]*mH + mH
+        pt[2] = v.co[2]
+         
+        # For now we want (0,0) in the top-left corner of the canvas.
+        # Mirror and translate along y
+        pt[1] *= -1
+        pt[1] += self.canvasSize[1]
+        
+        return pt
+                
+    def _printPolygons(self, mesh, sprite): 
+        """Print the selected (visible) polygons.
+        """
+
+        if len(mesh.faces) == 0:
+            return
+
+        for face in mesh.faces:
+            if not face.sel:
+               continue
+
+            if face.col:
+                fcol = face.col[0]
+                color = [fcol.r, fcol.g, fcol.b, fcol.a]
+            else:
+                color = [255, 255, 255, 255]
+
+            s = SWFShape()
+            f = s.addFill(color[0], color[1], color[2], color[3])
+            s.setRightFill(f)
+
+            # The starting point of the shape
+            p0 = self._calcCanvasCoord(face.verts[0])
+            s.movePenTo(p0[0], p0[1])
+
+
+            for v in face.verts[1:]:
+                p = self._calcCanvasCoord(v)
+                s.drawLineTo(p[0], p[1])
+            
+            # Closing the shape
+            s.drawLineTo(p0[0], p0[1])
+            s.end()
+            sprite.add(s)
+
+
+            """
+            # use the stroke property to alleviate the "adjacent edges" problem,
+            # we simulate polygon expansion using borders,
+            # see http://www.antigrain.com/svg/index.html for more info
+            stroke_width = 1.0
+
+            # EXPANSION TRICK is not that useful where there is transparency
+            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+                # str_col = "#000000" # For debug
+                self.file.write(" stroke:%s;\n" % str_col)
+                self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+                self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+
+            """
+
+    def _printEdges(self, mesh, sprite, showHiddenEdges=False):
+        """Print the wireframe using mesh edges.
+        """
+
+        stroke_width = config.edges['WIDTH']
+        stroke_col = config.edges['COLOR']
+
+        s = SWFShape()
+
+        for e in mesh.edges:
+
+            #Next, we set the line width and color for our shape.
+            s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+            255)
+            
+            if e.sel == 0:
+                if showHiddenEdges == False:
+                    continue
+                else:
+                    # SWF does not support dashed lines natively, so -for now-
+                    # draw hidden lines thinner and half-trasparent
+                    s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
+                            stroke_col[2], 128)
+
+            p1 = self._calcCanvasCoord(e.v1)
+            p2 = self._calcCanvasCoord(e.v2)
+
+            # FIXME: this is just a qorkaround, remove that after the
+            # implementation of propoer Viewport clipping
+            if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000:
+                s.movePenTo(p1[0], p1[1])
+                s.drawLineTo(p2[0], p2[1])
+            
+
+        s.end()
+        sprite.add(s)
+            
+
+
 # ---------------------------------------------------------------------
 #
 ## Rendering Classes
 # ---------------------------------------------------------------------
 #
 ## Rendering Classes
@@ -884,6 +1648,8 @@ edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
 # A dictionary to collect the supported output formats
 outputWriters = dict()
 outputWriters['SVG'] = SVGVectorWriter
 # A dictionary to collect the supported output formats
 outputWriters = dict()
 outputWriters['SVG'] = SVGVectorWriter
+if SWFSupported:
+    outputWriters['SWF'] = SWFVectorWriter
 
 
 class Renderer:
 
 
 class Renderer:
@@ -916,12 +1682,6 @@ class Renderer:
         # Render from the currently active camera 
         self.cameraObj = self._SCENE.getCurrentCamera()
 
         # Render from the currently active camera 
         self.cameraObj = self._SCENE.getCurrentCamera()
 
-        # Get a projector for this camera.
-        # NOTE: the projector wants object in world coordinates,
-        # so we should remember to apply modelview transformations
-        # _before_ we do projection transformations.
-        self.proj = Projector(self.cameraObj, self.canvasRatio)
-
         # Get the list of lighting sources
         obj_lst = self._SCENE.getChildren()
         self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
         # Get the list of lighting sources
         obj_lst = self._SCENE.getChildren()
         self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
@@ -973,6 +1733,12 @@ class Renderer:
             # And Set our camera accordingly
             self.cameraObj = inputScene.getCurrentCamera()
 
             # And Set our camera accordingly
             self.cameraObj = inputScene.getCurrentCamera()
 
+            # Get a projector for this camera.
+            # NOTE: the projector wants object in world coordinates,
+            # so we should remember to apply modelview transformations
+            # _before_ we do projection transformations.
+            self.proj = Projector(self.cameraObj, self.canvasRatio)
+
             try:
                 renderedScene = self.doRenderScene(inputScene)
             except :
             try:
                 renderedScene = self.doRenderScene(inputScene)
             except :
@@ -1038,6 +1804,7 @@ class Renderer:
 
             self._doBackFaceCulling(mesh)
 
 
             self._doBackFaceCulling(mesh)
 
+
             # When doing HSR with NEWELL we may want to flip all normals
             # toward the viewer
             if config.polygons['HSR'] == "NEWELL":
             # When doing HSR with NEWELL we may want to flip all normals
             # toward the viewer
             if config.polygons['HSR'] == "NEWELL":
@@ -1049,7 +1816,6 @@ class Renderer:
 
             self._doLighting(mesh)
 
 
             self._doLighting(mesh)
 
-
             # Do "projection" now so we perform further processing
             # in Normalized View Coordinates
             self._doProjection(mesh, self.proj)
             # Do "projection" now so we perform further processing
             # in Normalized View Coordinates
             self._doProjection(mesh, self.proj)
@@ -1060,7 +1826,6 @@ class Renderer:
 
             self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
 
 
             self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
 
-            
             # Update the object data, important! :)
             mesh.update()
 
             # Update the object data, important! :)
             mesh.update()
 
@@ -1356,7 +2121,7 @@ class Renderer:
             for l in self.lights:
                 light_obj = l
                 light_pos = self._getObjPosition(l)
             for l in self.lights:
                 light_obj = l
                 light_pos = self._getObjPosition(l)
-                light = light_obj.data
+                light = light_obj.getData()
             
                 L = Vector(light_pos).normalize()
 
             
                 L = Vector(light_pos).normalize()
 
@@ -1453,11 +2218,11 @@ class Renderer:
         solves HSR correctly only for convex meshes.
         """
 
         solves HSR correctly only for convex meshes.
         """
 
-        global progress
+        #global progress
+
         # The sorting requires circa n*log(n) steps
         n = len(mesh.faces)
         progress.setActivity("HSR: Painter", n*log(n))
         # The sorting requires circa n*log(n) steps
         n = len(mesh.faces)
         progress.setActivity("HSR: Painter", n*log(n))
-        
 
         by_furthest_z = (lambda f1, f2: progress.update() and
                 cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
 
         by_furthest_z = (lambda f1, f2: progress.update() and
                 cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
@@ -1472,92 +2237,26 @@ class Renderer:
 
         nmesh.update()
 
 
         nmesh.update()
 
-    def __topologicalDepthSort(self, mesh):
-        """Occlusion based on topological occlusion.
-        
-        Build the occlusion graph of the mesh,
-        and then do topological sort on that graph
-        """
-        return
 
     def __newellDepthSort(self, mesh):
         """Newell's depth sorting.
 
         """
 
     def __newellDepthSort(self, mesh):
         """Newell's depth sorting.
 
         """
-        global EPS
-
-        by_furthest_z = (lambda f1, f2:
-                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
-                )
-
-        mesh.quadToTriangle()
-
-        from split import Distance, isOnSegment
-
-        def projectionsOverlap(P, Q):
-
-            for i in range(0, len(P.v)):
 
 
-                v1 = Vector(P.v[i-1])
-                v1[2] = 0
-                v2 = Vector(P.v[i])
-                v2[2] = 0
+        #global progress
 
 
-                EPS = 10e-5
-
-                for j in range(0, len(Q.v)):
-
-                    v3 = Vector(Q.v[j-1])
-                    v3[2] = 0
-                    v4 = Vector(Q.v[j])
-                    v4[2] = 0
-
-                    #print "\n\nTEST if we have coincidence!"
-                    #print v1, v2
-                    #print v3, v4
-                    #print "distances:"
-                    d1 = (v1-v3).length
-                    d2 = (v1-v4).length
-                    d3 = (v2-v3).length
-                    d4 = (v2-v4).length
-                    #print d1, d2, d3, d4
-                    #print "-----------------------\n"
-
-                    if d1 < EPS or d2 < EPS or d3 < EPS or d4 < EPS:
-                        continue
-                    
-                    # TODO: Replace with LineIntersect2D in newer API
-                    ret = LineIntersect(v1, v2, v3, v4)
+        # Find non planar quads and convert them to triangle
+        #for f in mesh.faces:
+        #    f.sel = 0
+        #    if is_nonplanar_quad(f.v):
+        #        print "NON QUAD??"
+        #        f.sel = 1
 
 
-                    # if line v1-v2 and v3-v4 intersect both return
-                    # values are the same.
-                    if ret and ret[0] == ret[1]  and isOnSegment(v1, v2, ret[0], True) and isOnSegment(v3, v4, ret[1], True):
 
 
-                        #l1 = (ret[0] - v1).length
-                        #l2 = (ret[0] - v2).length
-
-                        #l3 = (ret[1] - v3).length
-                        #l4 = (ret[1] - v4).length
-
-                        #print "New DISTACES againt the intersection point:"
-                        #print l1, l2, l3, l4
-                        #print "-----------------------\n"
-
-                        #if  l1 < EPS or l2 < EPS or l3 < EPS or l4 < EPS:
-                        #    continue
-
-                        debug("Projections OVERLAP!!\n")
-                        debug("line1:"+
-                                " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
-                                " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
-                                "\n")
-                        debug("return: "+ str(ret)+"\n")
-                        return True
-
-            return False
-
-
-        from facesplit import facesplit
+        # Now reselect all faces
+        for f in mesh.faces:
+            f.sel = 1
+        mesh.quadToTriangle()
 
         # FIXME: using NMesh to sort faces. We should avoid that!
         nmesh = NMesh.GetRaw(mesh.name)
 
         # FIXME: using NMesh to sort faces. We should avoid that!
         nmesh = NMesh.GetRaw(mesh.name)
@@ -1566,7 +2265,6 @@ class Renderer:
         nmesh.faces.sort(by_furthest_z)
         nmesh.faces.reverse()
 
         nmesh.faces.sort(by_furthest_z)
         nmesh.faces.reverse()
 
-        
         # Begin depth sort tests
 
         # use the smooth flag to set marked faces
         # Begin depth sort tests
 
         # use the smooth flag to set marked faces
@@ -1576,9 +2274,6 @@ class Renderer:
         facelist = nmesh.faces[:]
         maplist = []
 
         facelist = nmesh.faces[:]
         maplist = []
 
-        EPS = 10e-5
-
-        global progress
 
         # The steps are _at_least_ equal to len(facelist), we do not count the
         # feces coming out from splitting!!
 
         # The steps are _at_least_ equal to len(facelist), we do not count the
         # feces coming out from splitting!!
@@ -1586,9 +2281,6 @@ class Renderer:
         #progress.setQuiet(True)
 
         
         #progress.setQuiet(True)
 
         
-        #split_done = 0
-        #marked_face = 0
-
         while len(facelist):
             debug("\n----------------------\n")
             debug("len(facelits): %d\n" % len(facelist))
         while len(facelist):
             debug("\n----------------------\n")
             debug("len(facelits): %d\n" % len(facelist))
@@ -1597,9 +2289,9 @@ class Renderer:
             pSign = sign(P.normal[2])
 
             # We can discard faces parallel to the view vector
             pSign = sign(P.normal[2])
 
             # We can discard faces parallel to the view vector
-            if pSign == 0:
-                facelist.remove(P)
-                continue
+            #if P.normal[2] == 0:
+            #    facelist.remove(P)
+            #    continue
 
             split_done = 0
             face_marked = 0
 
             split_done = 0
             face_marked = 0
@@ -1611,8 +2303,9 @@ class Renderer:
                 debug("\n")
 
                 qSign = sign(Q.normal[2])
                 debug("\n")
 
                 qSign = sign(Q.normal[2])
+                # TODO: check also if Q is parallel??
  
  
-                # We need to test only those Qs whose furthest vertex
+                # Test 0: We need to test only those Qs whose furthest vertex
                 # is closer to the observer than the closest vertex of P.
 
                 zP = [v.co[2] for v in P.v]
                 # is closer to the observer than the closest vertex of P.
 
                 zP = [v.co[2] for v in P.v]
@@ -1628,7 +2321,8 @@ class Renderer:
                     else:
                         debug("met a marked face\n")
                         continue
                     else:
                         debug("met a marked face\n")
                         continue
-                
+
                 # Test 1: X extent overlapping
                 xP = [v.co[0] for v in P.v]
                 xQ = [v.co[0] for v in Q.v]
                 # Test 1: X extent overlapping
                 xP = [v.co[0] for v in P.v]
                 xQ = [v.co[0] for v in Q.v]
@@ -1640,6 +2334,7 @@ class Renderer:
                     debug("NOT X OVERLAP!\n")
                     continue
 
                     debug("NOT X OVERLAP!\n")
                     continue
 
+
                 # Test 2: Y extent Overlapping
                 yP = [v.co[1] for v in P.v]
                 yQ = [v.co[1] for v in Q.v]
                 # Test 2: Y extent Overlapping
                 yP = [v.co[1] for v in P.v]
                 yQ = [v.co[1] for v in Q.v]
@@ -1655,7 +2350,7 @@ class Renderer:
                 # Test 3: P vertices are all behind the plane of Q
                 n = 0
                 for Pi in P:
                 # Test 3: P vertices are all behind the plane of Q
                 n = 0
                 for Pi in P:
-                    d = qSign * Distance(Vector(Pi), Q)
+                    d = qSign * HSR.Distance(Vector(Pi), Q)
                     if d <= EPS:
                         n += 1
                 pVerticesBehindPlaneQ = (n == len(P))
                     if d <= EPS:
                         n += 1
                 pVerticesBehindPlaneQ = (n == len(P))
@@ -1669,7 +2364,7 @@ class Renderer:
                 # Test 4: Q vertices in front of the plane of P
                 n = 0
                 for Qi in Q:
                 # Test 4: Q vertices in front of the plane of P
                 n = 0
                 for Qi in Q:
-                    d = pSign * Distance(Vector(Qi), P)
+                    d = pSign * HSR.Distance(Vector(Qi), P)
                     if d >= -EPS:
                         n += 1
                 qVerticesInFrontPlaneP = (n == len(Q))
                     if d >= -EPS:
                         n += 1
                 qVerticesInFrontPlaneP = (n == len(Q))
@@ -1679,37 +2374,36 @@ class Renderer:
                     debug("Q IN FRONT OF P!\n")
                     continue
 
                     debug("Q IN FRONT OF P!\n")
                     continue
 
-                # Test 5: Line Intersections... TODO
-                # Check if polygons effectively overlap each other, not only
-                # boundig boxes as done before.
-                # Since we We are working in normalized projection coordinates
-                # we kust check if polygons intersect.
 
 
-                if not projectionsOverlap(P, Q):
+                # Test 5: Check if projections of polygons effectively overlap,
+                # in previous tests we checked only bounding boxes.
+
+                #if not projectionsOverlap(P, Q):
+                if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
                     debug("\nTest 5\n")
                     debug("Projections do not overlap!\n")
                     continue
 
                     debug("\nTest 5\n")
                     debug("Projections do not overlap!\n")
                     continue
 
+                # We still can't say if P obscures Q.
 
 
-                # We still do not know if P obscures Q.
-
-                # But if Q is marked we do a split trying to resolve a
+                # But if Q is marked we do a face-split trying to resolve a
                 # difficulty (maybe a visibility cycle).
                 if Q.smooth == 1:
                     # Split P or Q
                     debug("Possibly a cycle detected!\n")
                     debug("Split here!!\n")
 
                 # difficulty (maybe a visibility cycle).
                 if Q.smooth == 1:
                     # Split P or Q
                     debug("Possibly a cycle detected!\n")
                     debug("Split here!!\n")
 
-                    facelist = facesplit(P, Q, facelist, nmesh)
+                    facelist = HSR.facesplit(P, Q, facelist, nmesh)
                     split_done = 1
                     break 
 
                 # The question now is: Does Q obscure P?
 
                     split_done = 1
                     break 
 
                 # The question now is: Does Q obscure P?
 
+
                 # Test 3bis: Q vertices are all behind the plane of P
                 n = 0
                 for Qi in Q:
                 # Test 3bis: Q vertices are all behind the plane of P
                 n = 0
                 for Qi in Q:
-                    d = pSign * Distance(Vector(Qi), P)
+                    d = pSign * HSR.Distance(Vector(Qi), P)
                     if d <= EPS:
                         n += 1
                 qVerticesBehindPlaneP = (n == len(Q))
                     if d <= EPS:
                         n += 1
                 qVerticesBehindPlaneP = (n == len(Q))
@@ -1722,7 +2416,7 @@ class Renderer:
                 # Test 4bis: P vertices in front of the plane of Q
                 n = 0
                 for Pi in P:
                 # Test 4bis: P vertices in front of the plane of Q
                 n = 0
                 for Pi in P:
-                    d = qSign * Distance(Vector(Pi), Q)
+                    d = qSign * HSR.Distance(Vector(Pi), Q)
                     if d >= -EPS:
                         n += 1
                 pVerticesInFrontPlaneQ = (n == len(P))
                     if d >= -EPS:
                         n += 1
                 pVerticesInFrontPlaneQ = (n == len(P))
@@ -1739,7 +2433,7 @@ class Renderer:
                     debug("Test 3bis or 4bis failed\n")
                     debug("Split here!!2\n")
 
                     debug("Test 3bis or 4bis failed\n")
                     debug("Split here!!2\n")
 
-                    facelist = facesplit(P, Q, facelist, nmesh)
+                    facelist = HSR.facesplit(P, Q, facelist, nmesh)
                     split_done = 1
                     break 
                     
                     split_done = 1
                     break 
                     
@@ -1749,23 +2443,34 @@ class Renderer:
                 face_marked = 1
                 debug("Q marked!\n")
                 break
                 face_marked = 1
                 debug("Q marked!\n")
                 break
-           
             # Write P!                     
             if split_done == 0 and face_marked == 0:
                 facelist.remove(P)
                 maplist.append(P)
             # Write P!                     
             if split_done == 0 and face_marked == 0:
                 facelist.remove(P)
                 maplist.append(P)
+                dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg")
 
                 progress.update()
 
 
                 progress.update()
 
+            if len(facelist) == 870:
+                dumpfaces([P, Q], "loopdebug.svg")
+
+
+            #if facelist == None:
+            #    maplist = [P, Q]
+            #    print [v.co for v in P]
+            #    print [v.co for v in Q]
+            #    break
+
             # end of while len(facelist)
          
 
         nmesh.faces = maplist
             # end of while len(facelist)
          
 
         nmesh.faces = maplist
+        #for f in nmesh.faces:
+        #    f.sel = 1
 
 
-        for f in nmesh.faces:
-            f.sel = 1
         nmesh.update()
         nmesh.update()
-        #print nmesh.faces
+
 
     def _doHiddenSurfaceRemoval(self, mesh):
         """Do HSR for the given mesh.
 
     def _doHiddenSurfaceRemoval(self, mesh):
         """Do HSR for the given mesh.
@@ -1812,7 +2517,6 @@ class Renderer:
             if edgestyleSelect(e, mesh):
                 e.sel = 1
         """
             if edgestyleSelect(e, mesh):
                 e.sel = 1
         """
-                
 
 
 # ---------------------------------------------------------------------
 
 
 # ---------------------------------------------------------------------
@@ -2071,8 +2775,7 @@ def vectorize(filename):
 
     if editmode: Window.EditMode(1) 
 
 
     if editmode: Window.EditMode(1) 
 
-# We use a global progress Indicator Object
-progress = None
+
 
 # Here the main
 if __name__ == "__main__":
 
 # Here the main
 if __name__ == "__main__":