#!BPY
"""
Name: 'VRM'
-Blender: 242
+Blender: 245
Group: 'Render'
Tooltip: 'Vector Rendering Method script'
"""
__author__ = "Antonio Ospite"
-__url__ = ["http://projects.blender.org/projects/vrm"]
-__version__ = "0.3.beta"
+__url__ = ["http://vrm.ao2.it"]
+__version__ = "0.3"
__bpydoc__ = """\
Render the scene and save the result in vector format.
"""
# ---------------------------------------------------------------------
-# Copyright (c) 2006 Antonio Ospite
+# Copyright (c) 2006, 2007, 2008, 2009, 2012 Antonio Ospite
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# from scratch but Nikola gave me the idea, so I thank him publicly.
#
# ---------------------------------------------------------------------
-#
+#
# Things TODO for a next release:
+# - Shadeless shader
# - FIX the issue with negative scales in object tranformations!
# - Use a better depth sorting algorithm
-# - Implement clipping of primitives and do handle object intersections.
-# (for now only clipping away whole objects is supported).
# - Review how selections are made (this script uses selection states of
# primitives to represent visibility infos)
-# - Use a data structure other than Mesh to represent the 2D image?
+# - Use a data structure other than Mesh to represent the 2D image?
# Think to a way to merge (adjacent) polygons that have the same color.
# Or a way to use paths for silhouettes and contours.
# - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
# - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
# - Implement Shading Styles? (partially done, to make more flexible).
# - Add Vector Writers other than SVG.
+# - set the background color!
# - Check memory use!!
-# - Support Indexed palettes!! (Useful for ILDA FILES, for example,
-# see http://www.linux-laser.org/download/autotrace/ilda-output.patch)
-#
-# ---------------------------------------------------------------------
-#
-# Changelog:
-#
-# vrm-0.3.py - ...
-# * First release after code restucturing.
-# Now the script offers a useful set of functionalities
-# and it can render animations, too.
-# * Optimization in Renderer.doEdgeStyle(), build a topology cache
-# so to speed up the lookup of adjacent faces of an edge.
-# Thanks ideasman42.
-# * The SVG output is now SVG 1.0 valid.
-# Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
-# * Progress indicator during HSR.
-# * Initial SWF output support
-# * Fixed a bug in the animation code, now the projection matrix is
-# recalculated at each frame!
#
# ---------------------------------------------------------------------
from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
from Blender.Mathutils import *
from math import *
-import sys, time
+import sys
+import time
+
+try:
+ set()
+except NameError:
+ from sets import Set as set
+
+
+def uniq(alist):
+ tmpdict = dict()
+ return [tmpdict.setdefault(e, e) for e in alist if e not in tmpdict]
+ # in python > 2.4 we ca use the following
+ #return [ u for u in alist if u not in locals()['_[1]'] ]
+
# Constants
EPS = 10e-5
progress = None
-# Some global settings
+# Config class for global settings
class config:
polygons = dict()
polygons['SHOW'] = True
- polygons['SHADING'] = 'FLAT'
- #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
- polygons['HSR'] = 'PAINTER'
+ polygons['SHADING'] = 'FLAT' # FLAT or TOON
+ polygons['HSR'] = 'PAINTER' # PAINTER or NEWELL
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
- edges['STYLE'] = 'MESH' # or SILHOUETTE
- edges['STYLE'] = 'SILHOUETTE'
+ edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
output = dict()
output['FORMAT'] = 'SVG'
- output['FORMAT'] = 'SWF'
- output['ANIMATION'] = True
+ output['ANIMATION'] = False
output['JOIN_OBJECTS'] = True
+ def saveToRegistry():
+ registry = {}
+
+ for k, v in config.__dict__.iteritems():
+
+ # config class store settings in dictionaries
+ if v.__class__ == dict().__class__:
+
+ regkey_prefix = k.upper() + "_"
+
+ for opt_k, opt_v in v.iteritems():
+ regkey = regkey_prefix + opt_k
+
+ registry[regkey] = opt_v
+
+ Blender.Registry.SetKey('VRM', registry, True)
+
+ saveToRegistry = staticmethod(saveToRegistry)
+
+ def loadFromRegistry():
+ registry = Blender.Registry.GetKey('VRM', True)
+ if not registry:
+ return
+
+ for k, v in registry.iteritems():
+ k_tmp = k.split('_')
+ conf_attr = k_tmp[0].lower()
+ conf_key = str.join("_", k_tmp[1:])
+ conf_val = v
+
+ if conf_attr in config.__dict__:
+ config.__dict__[conf_attr][conf_key] = conf_val
+
+ loadFromRegistry = staticmethod(loadFromRegistry)
# Utility functions
+print_debug = False
+
+
+def dumpfaces(flist, filename):
+ """Dump a single face to a file.
+ """
+ if not print_debug:
+ return
+
+ class tmpmesh:
+ pass
+
+ m = tmpmesh()
+ m.faces = flist
+
+ writerobj = SVGVectorWriter(filename)
+
+ writerobj.open()
+ writerobj._printPolygons(m)
+
+ writerobj.close()
+
+
+def debug(msg):
+ if print_debug:
+ sys.stderr.write(msg)
+
+
+def EQ(v1, v2):
+ return (abs(v1[0] - v2[0]) < EPS and
+ abs(v1[1] - v2[1]) < EPS)
+by_furthest_z = (lambda f1, f2:
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
+ )
+
+
def sign(x):
if x < -EPS:
+ #if x < 0:
return -1
elif x > EPS:
+ #elif x > 0:
return 1
else:
return 0
# ---------------------------------------------------------------------
#
+## HSR Utility class
+#
+# ---------------------------------------------------------------------
+
+EPS = 10e-5
+INF = 10e5
+
+
+class HSR:
+ """A utility class for HSR processing.
+ """
+
+ def is_nonplanar_quad(face):
+ """Determine if a quad is non-planar.
+
+ From: http://mathworld.wolfram.com/Coplanar.html
+
+ Geometric objects lying in a common plane are said to be coplanar.
+ Three noncollinear points determine a plane and so are trivially
+ coplanar. Four points are coplanar iff the volume of the tetrahedron
+ defined by them is 0,
+
+ | x_1 y_1 z_1 1 |
+ | x_2 y_2 z_2 1 |
+ | x_3 y_3 z_3 1 |
+ | x_4 y_4 z_4 1 | == 0
+
+ Coplanarity is equivalent to the statement that the pair of lines
+ determined by the four points are not skew, and can be equivalently
+ stated in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
+
+ An arbitrary number of n points x_1, ..., x_n can be tested for
+ coplanarity by finding the point-plane distances of the points
+ x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
+ and checking if they are all zero.
+ If so, the points are all coplanar.
+
+ We here check only for 4-point complanarity.
+ """
+ n = len(face)
+
+ # assert(n>4)
+ if n < 3 or n > 4:
+ print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
+ raise AssertionError
+
+ elif n == 3:
+ # three points must be complanar
+ return False
+ else: # n == 4
+ x1 = Vector(face[0].co)
+ x2 = Vector(face[1].co)
+ x3 = Vector(face[2].co)
+ x4 = Vector(face[3].co)
+
+ v = (x3 - x1) * CrossVecs((x2 - x1), (x4 - x3))
+ if v != 0:
+ return True
+
+ return False
+
+ is_nonplanar_quad = staticmethod(is_nonplanar_quad)
+
+ def pointInPolygon(poly, v):
+ return False
+
+ pointInPolygon = staticmethod(pointInPolygon)
+
+ def edgeIntersection(s1, s2, do_perturbate=False):
+
+ (x1, y1) = s1[0].co[0], s1[0].co[1]
+ (x2, y2) = s1[1].co[0], s1[1].co[1]
+
+ (x3, y3) = s2[0].co[0], s2[0].co[1]
+ (x4, y4) = s2[1].co[0], s2[1].co[1]
+
+ #z1 = s1[0].co[2]
+ #z2 = s1[1].co[2]
+ #z3 = s2[0].co[2]
+ #z4 = s2[1].co[2]
+
+ # calculate delta values (vector components)
+ dx1 = x2 - x1
+ dx2 = x4 - x3
+ dy1 = y2 - y1
+ dy2 = y4 - y3
+
+ #dz1 = z2 - z1
+ #dz2 = z4 - z3
+
+ C = dy2 * dx1 - dx2 * dy1 # cross product
+ if C == 0: # parallel
+ return None
+
+ dx3 = x1 - x3 # combined origin offset vector
+ dy3 = y1 - y3
+
+ a1 = (dy3 * dx2 - dx3 * dy2) / C
+ a2 = (dy3 * dx1 - dx3 * dy1) / C
+
+ # check for degeneracies
+ #print_debug("\n")
+ #print_debug(str(a1)+"\n")
+ #print_debug(str(a2)+"\n\n")
+
+ if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
+ # Intersection on boundaries, we consider the point external?
+ return None
+
+ elif (a1 > 0.0 and a1 < 1.0 and a2 > 0.0 and a2 < 1.0): # lines cross
+ x = x1 + a1 * dx1
+ y = y1 + a1 * dy1
+
+ #z = z1 + a1 * dz1
+ z = 0
+ return (NMesh.Vert(x, y, z), a1, a2)
+
+ else:
+ # lines have intersections but not those segments
+ return None
+
+ edgeIntersection = staticmethod(edgeIntersection)
+
+ def isVertInside(self, v):
+ winding_number = 0
+ coincidence = False
+
+ # Create point at infinity
+ point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
+
+ for i in range(len(self.v)):
+ s1 = (point_at_infinity, v)
+ s2 = (self.v[i - 1], self.v[i])
+
+ if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
+ coincidence = True
+
+ if HSR.edgeIntersection(s1, s2, do_perturbate=False):
+ winding_number += 1
+
+ # Check even or odd
+ if (winding_number % 2) == 0:
+ return False
+ else:
+ if coincidence:
+ return False
+ return True
+
+ isVertInside = staticmethod(isVertInside)
+
+ def det(a, b, c):
+ return ((b[0] - a[0]) * (c[1] - a[1]) -
+ (b[1] - a[1]) * (c[0] - a[0]))
+
+ det = staticmethod(det)
+
+ def pointInPolygon(q, P):
+ is_in = False
+
+ point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
+
+ det = HSR.det
+
+ for i in range(len(P.v)):
+ p0 = P.v[i - 1]
+ p1 = P.v[i]
+ if (det(q.co, point_at_infinity.co, p0.co) < 0) != (det(q.co, point_at_infinity.co, p1.co) < 0):
+ if det(p0.co, p1.co, q.co) == 0:
+ #print "On Boundary"
+ return False
+ elif (det(p0.co, p1.co, q.co) < 0) != (det(p0.co, p1.co, point_at_infinity.co) < 0):
+ is_in = not is_in
+
+ return is_in
+
+ pointInPolygon = staticmethod(pointInPolygon)
+
+ def projectionsOverlap(f1, f2):
+ """ If you have nonconvex, but still simple polygons, an acceptable method
+ is to iterate over all vertices and perform the Point-in-polygon test[1].
+ The advantage of this method is that you can compute the exact
+ intersection point and collision normal that you will need to simulate
+ collision. When you have the point that lies inside the other polygon, you
+ just iterate over all edges of the second polygon again and look for edge
+ intersections. Note that this method detects collsion when it already
+ happens. This algorithm is fast enough to perform it hundreds of times per
+ sec. """
+
+ for i in range(len(f1.v)):
+
+ # If a point of f1 in inside f2, there is an overlap!
+ v1 = f1.v[i]
+ #if HSR.isVertInside(f2, v1):
+ if HSR.pointInPolygon(v1, f2):
+ return True
+
+ # If not the polygon can be ovelap as well, so we check for
+ # intersection between an edge of f1 and all the edges of f2
+
+ v0 = f1.v[i - 1]
+
+ for j in range(len(f2.v)):
+ v2 = f2.v[j - 1]
+ v3 = f2.v[j]
+
+ e1 = v0, v1
+ e2 = v2, v3
+
+ intrs = HSR.edgeIntersection(e1, e2)
+ if intrs:
+ #print_debug(str(v0.co) + " " + str(v1.co) + " " +
+ # str(v2.co) + " " + str(v3.co) )
+ #print_debug("\nIntersection\n")
+
+ return True
+
+ return False
+
+ projectionsOverlap = staticmethod(projectionsOverlap)
+
+ def midpoint(p1, p2):
+ """Return the midpoint of two vertices.
+ """
+ m = MidpointVecs(Vector(p1), Vector(p2))
+ mv = NMesh.Vert(m[0], m[1], m[2])
+
+ return mv
+
+ midpoint = staticmethod(midpoint)
+
+ def facesplit(P, Q, facelist, nmesh):
+ """Split P or Q according to the strategy illustrated in the Newell's
+ paper.
+ """
+
+ by_furthest_z = (lambda f1, f2:
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
+ )
+
+ # Choose if split P on Q plane or vice-versa
+
+ n = 0
+ for Pi in P:
+ d = HSR.Distance(Vector(Pi), Q)
+ if d <= EPS:
+ n += 1
+ pIntersectQ = (n != len(P))
+
+ n = 0
+ for Qi in Q:
+ d = HSR.Distance(Vector(Qi), P)
+ if d >= -EPS:
+ n += 1
+ qIntersectP = (n != len(Q))
+
+ newfaces = []
+
+ # 1. If parts of P lie in both half-spaces of Q
+ # then splice P in two with the plane of Q
+ if pIntersectQ:
+ #print "We split P"
+ f = P
+ plane = Q
+
+ newfaces = HSR.splitOn(plane, f)
+
+ # 2. Else if parts of Q lie in both half-space of P
+ # then splice Q in two with the plane of P
+ if qIntersectP and newfaces == None:
+ #print "We split Q"
+ f = Q
+ plane = P
+
+ newfaces = HSR.splitOn(plane, f)
+ #print "After"
+
+ # 3. Else slice P in half through the mid-point of
+ # the longest pair of opposite sides
+ if newfaces == None:
+
+ print "We ignore P..."
+ facelist.remove(P)
+ return facelist
+
+ #f = P
+
+ #if len(P)==3:
+ # v1 = midpoint(f[0], f[1])
+ # v2 = midpoint(f[1], f[2])
+ #if len(P)==4:
+ # v1 = midpoint(f[0], f[1])
+ # v2 = midpoint(f[2], f[3])
+ #vec3 = (Vector(v2)+10*Vector(f.normal))
+ #
+ #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
+
+ #plane = NMesh.Face([v1, v2, v3])
+ #
+ #newfaces = splitOn(plane, f)
+
+ if newfaces == None:
+ print "Big FAT problem, we weren't able to split POLYGONS!"
+ raise AssertionError
+
+ #print newfaces
+ if newfaces:
+ #for v in f:
+ # if v not in plane and v in nmesh.verts:
+ # nmesh.verts.remove(v)
+ for nf in newfaces:
+
+ nf.mat = f.mat
+ nf.sel = f.sel
+ nf.col = [f.col[0]] * len(nf.v)
+
+ nf.smooth = 0
+
+ for v in nf:
+ nmesh.verts.append(v)
+ # insert pieces in the list
+ facelist.append(nf)
+
+ facelist.remove(f)
+
+ # and resort the faces
+ facelist.sort(by_furthest_z)
+ facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
+ facelist.reverse()
+
+ #print [ f.smooth for f in facelist ]
+
+ return facelist
+
+ facesplit = staticmethod(facesplit)
+
+ def isOnSegment(v1, v2, p, extremes_internal=False):
+ """Check if point p is in segment v1v2.
+ """
+
+ l1 = (v1 - p).length
+ l2 = (v2 - p).length
+
+ # Should we consider extreme points as internal ?
+ # The test:
+ # if p == v1 or p == v2:
+ if l1 < EPS or l2 < EPS:
+ return extremes_internal
+
+ l = (v1 - v2).length
+
+ # if the sum of l1 and l2 is circa l, then the point is on segment,
+ if abs(l - (l1 + l2)) < EPS:
+ return True
+ else:
+ return False
+
+ isOnSegment = staticmethod(isOnSegment)
+
+ def Distance(point, face):
+ """ Calculate the distance between a point and a face.
+
+ An alternative but more expensive method can be:
+
+ ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
+ Vector(face.no), Vector(point), 0)
+
+ d = Vector(ip - point).length
+
+ See: http://mathworld.wolfram.com/Point-PlaneDistance.html
+ """
+
+ p = Vector(point)
+ plNormal = Vector(face.no)
+ plVert0 = Vector(face.v[0])
+
+ d = (plVert0 * plNormal) - (p * plNormal)
+
+ #d = plNormal * (plVert0 - p)
+
+ #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
+
+ return d
+
+ Distance = staticmethod(Distance)
+
+ def makeFaces(vl):
+ #
+ # make one or two new faces based on a list of vertex-indices
+ #
+ newfaces = []
+
+ if len(vl) <= 4:
+ nf = NMesh.Face()
+
+ for v in vl:
+ nf.v.append(v)
+
+ newfaces.append(nf)
+
+ else:
+ nf = NMesh.Face()
+
+ nf.v.append(vl[0])
+ nf.v.append(vl[1])
+ nf.v.append(vl[2])
+ nf.v.append(vl[3])
+ newfaces.append(nf)
+
+ nf = NMesh.Face()
+ nf.v.append(vl[3])
+ nf.v.append(vl[4])
+ nf.v.append(vl[0])
+ newfaces.append(nf)
+
+ return newfaces
+
+ makeFaces = staticmethod(makeFaces)
+
+ def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
+ """Split P using the plane of Q.
+ Logic taken from the knife.py python script
+ """
+
+ # Check if P and Q are parallel
+ u = CrossVecs(Vector(Q.no), Vector(P.no))
+ ax = abs(u[0])
+ ay = abs(u[1])
+ az = abs(u[2])
+
+ if (ax + ay + az) < EPS:
+ print "PARALLEL planes!!"
+ return
+
+ # The final aim is to find the intersection line between P
+ # and the plane of Q, and split P along this line
+
+ nP = len(P.v)
+
+ # Calculate point-plane Distance between vertices of P and plane Q
+ d = []
+ for i in range(0, nP):
+ d.append(HSR.Distance(P.v[i], Q))
+
+ newVertList = []
+
+ posVertList = []
+ negVertList = []
+ for i in range(nP):
+ d0 = d[i - 1]
+ V0 = P.v[i - 1]
+
+ d1 = d[i]
+ V1 = P.v[i]
+
+ #print "d0:", d0, "d1:", d1
+
+ # if the vertex lies in the cutplane
+ if abs(d1) < EPS:
+ #print "d1 On cutplane"
+ posVertList.append(V1)
+ negVertList.append(V1)
+ else:
+ # if the previous vertex lies in cutplane
+ if abs(d0) < EPS:
+ #print "d0 on Cutplane"
+ if d1 > 0:
+ #print "d1 on positive Halfspace"
+ posVertList.append(V1)
+ else:
+ #print "d1 on negative Halfspace"
+ negVertList.append(V1)
+ else:
+ # if they are on the same side of the plane
+ if (d1 * d0) > 0:
+ #print "On the same half-space"
+ if d1 > 0:
+ #print "d1 on positive Halfspace"
+ posVertList.append(V1)
+ else:
+ #print "d1 on negative Halfspace"
+ negVertList.append(V1)
+
+ # the vertices are not on the same side of the plane, so we have an intersection
+ else:
+ #print "Intersection"
+
+ e = Vector(V0), Vector(V1)
+ tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
+
+ inters = Intersect(tri[0], tri[1], tri[2], e[1] - e[0], e[0], 0)
+ if inters == None:
+ print "Split Break"
+ break
+
+ #print "Intersection", inters
+
+ nv = NMesh.Vert(inters[0], inters[1], inters[2])
+ newVertList.append(nv)
+
+ posVertList.append(nv)
+ negVertList.append(nv)
+
+ if d1 > 0:
+ posVertList.append(V1)
+ else:
+ negVertList.append(V1)
+
+ # uniq for python > 2.4
+ #posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
+ #negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+ # a more portable way
+ posVertList = uniq(posVertList)
+ negVertList = uniq(negVertList)
+
+ # If vertex are all on the same half-space, return
+ #if len(posVertList) < 3:
+ # print "Problem, we created a face with less that 3 vertices??"
+ # posVertList = []
+ #if len(negVertList) < 3:
+ # print "Problem, we created a face with less that 3 vertices??"
+ # negVertList = []
+
+ if len(posVertList) < 3 or len(negVertList) < 3:
+ #print "RETURN NONE, SURE???"
+ return None
+
+ if not return_positive_faces:
+ posVertList = []
+ if not return_negative_faces:
+ negVertList = []
+
+ newfaces = HSR.addNewFaces(posVertList, negVertList)
+
+ return newfaces
+
+ splitOn = staticmethod(splitOn)
+
+ def addNewFaces(posVertList, negVertList):
+ # Create new faces resulting from the split
+ outfaces = []
+ if len(posVertList) or len(negVertList):
+
+ #newfaces = [posVertList] + [negVertList]
+ newfaces = ([[NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
+ [[NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]])
+
+ for nf in newfaces:
+ if nf and len(nf) > 2:
+ outfaces += HSR.makeFaces(nf)
+
+ return outfaces
+
+ addNewFaces = staticmethod(addNewFaces)
+
+
+# ---------------------------------------------------------------------
+#
## Mesh Utility class
#
# ---------------------------------------------------------------------
+
class MeshUtils:
def buildEdgeFaceUsersCache(me):
- '''
+ '''
Takes a mesh and returns a list aligned with the meshes edges.
Each item is a list of the faces that use the edge
would be the equiv for having ed.face_users as a property
'''
def sorted_edge_indicies(ed):
- i1= ed.v1.index
- i2= ed.v2.index
- if i1>i2:
- i1,i2= i2,i1
+ i1 = ed.v1.index
+ i2 = ed.v2.index
+ if i1 > i2:
+ i1, i2 = i2, i1
return i1, i2
-
- face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
+ face_edges_dict = dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
for f in me.faces:
- fvi= [v.index for v in f.v]# face vert idx's
+ fvi = [v.index for v in f.v] # face vert idx's
for i in xrange(len(f)):
- i1= fvi[i]
- i2= fvi[i-1]
-
- if i1>i2:
- i1,i2= i2,i1
-
- face_edges_dict[i1,i2][1].append(f)
-
- face_edges= [None] * len(me.edges)
+ i1 = fvi[i]
+ i2 = fvi[i - 1]
+
+ if i1 > i2:
+ i1, i2 = i2, i1
+
+ face_edges_dict[i1, i2][1].append(f)
+
+ face_edges = [None] * len(me.edges)
for ed_index, ed_faces in face_edges_dict.itervalues():
- face_edges[ed_index]= ed_faces
-
+ face_edges[ed_index] = ed_faces
+
return face_edges
def isMeshEdge(adjacent_faces):
## Shading Utility class
#
# ---------------------------------------------------------------------
+
class ShadingUtils:
shademap = None
def toonShadingMapSetup():
levels = config.polygons['TOON_LEVELS']
- texels = 2*levels - 1
- tmp_shademap = [0.0] + [(i)/float(texels-1) for i in xrange(1, texels-1) ] + [1.0]
+ texels = 2 * levels - 1
+ tmp_shademap = [0.0] + [(i) / float(texels - 1) for i in xrange(1, texels - 1)] + [1.0]
return tmp_shademap
shademap = ShadingUtils.toonShadingMapSetup()
v = 1.0
- for i in xrange(0, len(shademap)-1):
- pivot = (shademap[i]+shademap[i+1])/2.0
- j = int(u>pivot)
+ for i in xrange(0, len(shademap) - 1):
+ pivot = (shademap[i] + shademap[i + 1]) / 2.0
+ j = int(u > pivot)
- v = shademap[i+j]
+ v = shademap[i + j]
- if v < shademap[i+1]:
+ if v < shademap[i + 1]:
return v
return v
class Projector:
"""Calculate the projection of an object given the camera.
-
+
A projector is useful to so some per-object transformation to obtain the
projection of an object given the camera.
-
+
The main method is #doProjection# see the method description for the
parameter list.
"""
camera = cameraObj.getData()
- aspect = float(canvasRatio[0])/float(canvasRatio[1])
+ aspect = float(canvasRatio[0]) / float(canvasRatio[1])
near = camera.clipStart
far = camera.clipEnd
scale = float(camera.scale)
- fovy = atan(0.5/aspect/(camera.lens/32))
- fovy = fovy * 360.0/pi
-
+ fovy = atan(0.5 / aspect / (camera.lens / 32))
+ fovy = fovy * 360.0 / pi
+
+ if Blender.Get('version') < 243:
+ camPersp = 0
+ camOrtho = 1
+ else:
+ camPersp = 'persp'
+ camOrtho = 'ortho'
+
# What projection do we want?
- if camera.type == 0:
- mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
- elif camera.type == 1:
- mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
-
+ if camera.type == camPersp:
+ mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+ elif camera.type == camOrtho:
+ mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
+
# View transformation
cam = Matrix(cameraObj.getInverseMatrix())
- cam.transpose()
-
+ cam.transpose()
+
mP = mP * cam
self.projectionMatrix = mP
Given a vertex calculate the projection using the current projection
matrix.
"""
-
+
# Note that we have to work on the vertex using homogeneous coordinates
# From blender 2.42+ we don't need to resize the vector to be 4d
# when applying a 4x4 matrix, but we do that anyway since we need the
# 4th coordinate later
p = self.projectionMatrix * Vector(v).resize4D()
-
+
# Perspective division
if p[3] != 0:
- p[0] = p[0]/p[3]
- p[1] = p[1]/p[3]
- p[2] = p[2]/p[3]
+ p[0] = p[0] / p[3]
+ p[1] = p[1] / p[3]
+ p[2] = p[2] / p[3]
# restore the size
p[3] = 1.0
return p
-
##
# Private methods
#
-
+
def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
"""Return a perspective projection matrix.
"""
-
+
top = near * tan(fovy * pi / 360.0)
bottom = -top
- left = bottom*aspect
- right= top*aspect
- x = (2.0 * near) / (right-left)
- y = (2.0 * near) / (top-bottom)
- a = (right+left) / (right-left)
- b = (top+bottom) / (top - bottom)
- c = - ((far+near) / (far-near))
- d = - ((2*far*near)/(far-near))
-
+ left = bottom * aspect
+ right = top * aspect
+ x = (2.0 * near) / (right - left)
+ y = (2.0 * near) / (top - bottom)
+ a = (right + left) / (right - left)
+ b = (top + bottom) / (top - bottom)
+ c = - ((far + near) / (far - near))
+ d = - ((2 * far * near) / (far - near))
+
m = Matrix(
[x, 0.0, a, 0.0],
[0.0, y, b, 0.0],
return m
- def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
+ def _calcOrthoMatrix(self, fovy, aspect, near, far, scale):
"""Return an orthogonal projection matrix.
"""
-
+
# The 11 in the formula was found emiprically
top = near * tan(fovy * pi / 360.0) * (scale * 11)
- bottom = -top
+ bottom = -top
left = bottom * aspect
- right= top * aspect
- rl = right-left
- tb = top-bottom
- fn = near-far
- tx = -((right+left)/rl)
- ty = -((top+bottom)/tb)
- tz = ((far+near)/fn)
+ right = top * aspect
+ rl = right - left
+ tb = top - bottom
+ fn = near - far
+ tx = -((right + left) / rl)
+ ty = -((top + bottom) / tb)
+ tz = ((far + near) / fn)
m = Matrix(
- [2.0/rl, 0.0, 0.0, tx],
- [0.0, 2.0/tb, 0.0, ty],
- [0.0, 0.0, 2.0/fn, tz],
- [0.0, 0.0, 0.0, 1.0])
-
+ [2.0 / rl, 0.0, 0.0, tx],
+ [0.0, 2.0 / tb, 0.0, ty],
+ [0.0, 0.0, 2.0 / fn, tz],
+ [0.0, 0.0, 0.0, 1.0])
+
return m
class Progress:
"""A model for a progress indicator.
-
+
Do the progress calculation calculation and
the view independent stuff of a progress indicator.
"""
return False
self.completed += 1
- self.progress = ( float(self.completed) / float(self.steps) ) * 100
+ self.progress = (float(self.completed) / float(self.steps)) * 100
self.progress = int(self.progress)
return True
def show(self, progress, name):
ProgressIndicator.show(self, progress, name)
-
+
bar_length = 70
- bar_progress = int( (progress/100.0) * bar_length )
+ bar_progress = int((progress / 100.0) * bar_length)
bar = ("=" * bar_progress).ljust(bar_length)
- self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+ self.swirl_count = (self.swirl_count + 1) % len(self.swirl_chars)
swirl_char = self.swirl_chars[self.swirl_count]
progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress)
- sys.stderr.write(progress_bar+"\r")
+ sys.stderr.write(progress_bar + "\r")
if progress == 100:
sys.stderr.write("\n")
def show(self, progress, name):
ProgressIndicator.show(self, progress)
- self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+ self.swirl_count = (self.swirl_count + 1) % len(self.swirl_chars)
swirl_char = self.swirl_chars[self.swirl_count]
progress_text = "%s - %c %3d%%" % (name, swirl_char, progress)
# Finally draw the Progress Bar
- Window.WaitCursor(1) # Maybe we can move that call in the constructor?
- Window.DrawProgressBar(progress/100.0, progress_text)
+ Window.WaitCursor(1) # Maybe we can move that call in the constructor?
+ Window.DrawProgressBar(progress / 100.0, progress_text)
if progress == 100:
Window.DrawProgressBar(1, progress_text)
Window.WaitCursor(0)
-
-
# ---------------------------------------------------------------------
#
## 2D Object representation class
- printCanvas(self, scene,
doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
"""
-
+
def __init__(self, fileName):
"""Set the output file name and other properties"""
+ try:
+ config.writer
+ except:
+ config.writer = dict()
+ config.writer['SETTING'] = True
+
self.outputFileName = fileName
- self.file = None
-
+
context = Scene.GetCurrent().getRenderingContext()
- self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
+ self.canvasSize = (context.imageSizeX(), context.imageSizeY())
+
+ self.fps = context.fps
self.startFrame = 1
self.endFrame = 1
self.animation = False
-
##
# Public Methods
#
-
+
def open(self, startFrame=1, endFrame=1):
if startFrame != endFrame:
self.startFrame = startFrame
self.endFrame = endFrame
self.animation = True
- self.file = open(self.outputFileName, "w")
print "Outputting to: ", self.outputFileName
return
def close(self):
- if self.file:
- self.file.close()
return
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
"""This is the interface for the needed printing routine.
"""
return
-
+
## SVG Writer
"""
VectorWriter.__init__(self, fileName)
+ self.file = None
##
# Public Methods
"""Do some initialization operations.
"""
VectorWriter.open(self, startFrame, endFrame)
+
+ self.file = open(self.outputFileName, "w")
+
self._printHeader()
def close(self):
"""
self._printFooter()
- # remember to call the close method of the parent
+ if self.file:
+ self.file.close()
+
+ # remember to call the close method of the parent as last
VectorWriter.close(self)
-
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
"""Convert the scene representation to SVG.
"""
- Objects = scene.getChildren()
+ Objects = scene.objects
context = scene.getRenderingContext()
framenumber = context.currentFrame()
framestyle = "display:none"
else:
framestyle = "display:block"
-
+
# Assign an id to this group so we can set properties on it using DOM
self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
- (framenumber, framestyle) )
-
+ (framenumber, framestyle))
for obj in Objects:
- if(obj.getType() != 'Mesh'):
+ if obj.getType() != 'Mesh':
continue
self.file.write("<g id=\"%s\">\n" % obj.getName())
if doPrintEdges:
self._printEdges(mesh, showHiddenEdges)
-
+
self.file.write("</g>\n")
self.file.write("</g>\n")
-
- ##
+ ##
# Private Methods
#
-
+
def _calcCanvasCoord(self, v):
"""Convert vertex in scene coordinates to canvas coordinates.
"""
pt = Vector([0, 0, 0])
-
- mW = float(self.canvasSize[0])/2.0
- mH = float(self.canvasSize[1])/2.0
+
+ mW = float(self.canvasSize[0]) / 2.0
+ mH = float(self.canvasSize[1]) / 2.0
# rescale to canvas size
- pt[0] = v.co[0]*mW + mW
- pt[1] = v.co[1]*mH + mH
+ pt[0] = v.co[0] * mW + mW
+ pt[1] = v.co[1] * mH + mH
pt[2] = v.co[2]
-
+
# For now we want (0,0) in the top-left corner of the canvas.
# Mirror and translate along y
pt[1] *= -1
pt[1] += self.canvasSize[1]
-
+
return pt
def _printHeader(self):
self.canvasSize)
if self.animation:
+ delay = 1000 / self.fps
self.file.write("""\n<script type="text/javascript"><![CDATA[
globalStartFrame=%d;
globalEndFrame=%d;
- /* FIXME: Use 1000 as interval as lower values gives problems */
- timerID = setInterval("NextFrame()", 1000);
+ timerID = setInterval("NextFrame()", %d);
globalFrameCounter=%d;
+ \n""" % (self.startFrame, self.endFrame, delay, self.startFrame))
+ self.file.write("""\n
function NextFrame()
{
currentElement = document.getElementById('frame'+globalFrameCounter)
}
}
\n]]></script>\n
- \n""" % (self.startFrame, self.endFrame, self.startFrame) )
-
+ \n""")
+
def _printFooter(self):
"""Print the SVG footer."""
self.file.write("\n</svg>\n")
- def _printPolygons(self, mesh):
+ def _printPolygons(self, mesh):
"""Print the selected (visible) polygons.
"""
for face in mesh.faces:
if not face.sel:
- continue
+ continue
self.file.write("<path d=\"")
- p = self._calcCanvasCoord(face.verts[0])
+ #p = self._calcCanvasCoord(face.verts[0])
+ p = self._calcCanvasCoord(face.v[0])
self.file.write("M %g,%g L " % (p[0], p[1]))
- for v in face.verts[1:]:
+ for v in face.v[1:]:
p = self._calcCanvasCoord(v)
self.file.write("%g,%g " % (p[0], p[1]))
-
+
# get rid of the last blank space, just cosmetics here.
- self.file.seek(-1, 1)
+ self.file.seek(-1, 1)
self.file.write(" z\"\n")
-
+
# take as face color the first vertex color
if face.col:
fcol = face.col[0]
# Handle transparent polygons
opacity_string = ""
if color[3] != 255:
- opacity = float(color[3])/255.0
+ opacity = float(color[3]) / 255.0
opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
#opacity_string = "opacity: %g;" % (opacity)
- self.file.write("\tstyle=\"fill:" + str_col + ";")
- self.file.write(opacity_string)
+ self.file.write("\tstyle=\"fill:" + str_col + ";")
+ self.file.write(opacity_string)
+
+ # use the stroke property to alleviate the "adjacent edges" problem,
+ # we simulate polygon expansion using borders,
+ # see http://www.antigrain.com/svg/index.html for more info
+ stroke_width = 1.0
+
+ # EXPANSION TRICK is not that useful where there is transparency
+ if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+ # str_col = "#000000" # For debug
+ self.file.write(" stroke:%s;\n" % str_col)
+ self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+ self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+
+ self.file.write("\"/>\n")
+
+ self.file.write("</g>\n")
+
+ def _printEdges(self, mesh, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ self.file.write("<g>\n")
+
+ for e in mesh.edges:
+
+ hidden_stroke_style = ""
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
+ % (p1[0], p1[1], p2[0], p2[1]))
+ self.file.write(" style=\"stroke:rgb(" + str(stroke_col[0]) + "," + str(stroke_col[1]) + "," + str(stroke_col[2]) + ");")
+ self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+ self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+ self.file.write(hidden_stroke_style)
+ self.file.write("\"/>\n")
+
+ self.file.write("</g>\n")
+
+
+## SWF Writer
+
+try:
+ from ming import *
+ SWFSupported = True
+except:
+ SWFSupported = False
+
+
+class SWFVectorWriter(VectorWriter):
+ """A concrete class for writing SWF output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.movie = None
+ self.sprite = None
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+ self.movie = SWFMovie()
+ self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+ if self.animation:
+ self.movie.setRate(self.fps)
+ numframes = endFrame - startFrame + 1
+ self.movie.setFrames(numframes)
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self.movie.save(self.outputFileName)
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ Objects = scene.objects
+
+ if self.sprite:
+ self.movie.remove(self.sprite)
+
+ sprite = SWFSprite()
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh, sprite)
+
+ if doPrintEdges:
+ self._printEdges(mesh, sprite, showHiddenEdges)
+
+ sprite.nextFrame()
+ i = self.movie.add(sprite)
+ # Remove the instance the next time
+ self.sprite = i
+ if self.animation:
+ self.movie.nextFrame()
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0]) / 2.0
+ mH = float(self.canvasSize[1]) / 2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0] * mW + mW
+ pt[1] = v.co[1] * mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printPolygons(self, mesh, sprite):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r, fcol.g, fcol.b, fcol.a]
+ else:
+ color = [255, 255, 255, 255]
+
+ s = SWFShape()
+ f = s.addFill(color[0], color[1], color[2], color[3])
+ s.setRightFill(f)
- # use the stroke property to alleviate the "adjacent edges" problem,
- # we simulate polygon expansion using borders,
- # see http://www.antigrain.com/svg/index.html for more info
- stroke_width = 1.0
+ # The starting point of the shape
+ p0 = self._calcCanvasCoord(face.verts[0])
+ s.movePenTo(p0[0], p0[1])
- # EXPANSION TRICK is not that useful where there is transparency
- if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
- # str_col = "#000000" # For debug
- self.file.write(" stroke:%s;\n" % str_col)
- self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
- self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ s.drawLineTo(p[0], p[1])
- self.file.write("\"/>\n")
+ # Closing the shape
+ s.drawLineTo(p0[0], p0[1])
- self.file.write("</g>\n")
+ s.end()
+ sprite.add(s)
- def _printEdges(self, mesh, showHiddenEdges=False):
+ def _printEdges(self, mesh, sprite, showHiddenEdges=False):
"""Print the wireframe using mesh edges.
"""
stroke_width = config.edges['WIDTH']
stroke_col = config.edges['COLOR']
-
- self.file.write("<g>\n")
+
+ s = SWFShape()
for e in mesh.edges:
-
- hidden_stroke_style = ""
-
+
+ # Next, we set the line width and color for our shape.
+ s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+ 255)
+
if e.sel == 0:
if showHiddenEdges == False:
continue
else:
- hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+ # SWF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner and half-trasparent
+ s.setLine(stroke_width / 2, stroke_col[0], stroke_col[1],
+ stroke_col[2], 128)
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
-
- self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
- % ( p1[0], p1[1], p2[0], p2[1] ) )
- self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
- self.file.write(" stroke-width:"+str(stroke_width)+";\n")
- self.file.write(" stroke-linecap:round;stroke-linejoin:round")
- self.file.write(hidden_stroke_style)
- self.file.write("\"/>\n")
- self.file.write("</g>\n")
+ s.movePenTo(p1[0], p1[1])
+ s.drawLineTo(p2[0], p2[1])
+ s.end()
+ sprite.add(s)
-## SWF Writer
-from ming import *
+## PDF Writer
-class SWFVectorWriter(VectorWriter):
- """A concrete class for writing SWF output.
+try:
+ from reportlab.pdfgen import canvas
+ PDFSupported = True
+except:
+ PDFSupported = False
+
+
+class PDFVectorWriter(VectorWriter):
+ """A concrete class for writing PDF output.
"""
def __init__(self, fileName):
"""
VectorWriter.__init__(self, fileName)
- self.movie = None
- self.sprite = None
-
+ self.canvas = None
##
# Public Methods
"""Do some initialization operations.
"""
VectorWriter.open(self, startFrame, endFrame)
- self.movie = SWFMovie()
- self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
- # set fps
- self.movie.setRate(25)
- numframes = endFrame - startFrame + 1
- self.movie.setFrames(numframes)
+ size = (self.canvasSize[0], self.canvasSize[1])
+ self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
def close(self):
"""Do some finalization operation.
"""
- self.movie.save(self.outputFileName)
+ self.canvas.save()
# remember to call the close method of the parent
VectorWriter.close(self)
context = scene.getRenderingContext()
framenumber = context.currentFrame()
- Objects = scene.getChildren()
-
- if self.sprite:
- self.movie.remove(self.sprite)
-
- sprite = SWFSprite()
+ Objects = scene.objects
for obj in Objects:
mesh = obj.getData(mesh=1)
if doPrintPolygons:
- self._printPolygons(mesh, sprite)
+ self._printPolygons(mesh)
if doPrintEdges:
- self._printEdges(mesh, sprite, showHiddenEdges)
-
- sprite.nextFrame()
- i = self.movie.add(sprite)
- # Remove the instance the next time
- self.sprite = i
- if self.animation:
- self.movie.nextFrame()
+ self._printEdges(mesh, showHiddenEdges)
-
- ##
+ self.canvas.showPage()
+
+ ##
# Private Methods
#
-
+
def _calcCanvasCoord(self, v):
"""Convert vertex in scene coordinates to canvas coordinates.
"""
pt = Vector([0, 0, 0])
-
- mW = float(self.canvasSize[0])/2.0
- mH = float(self.canvasSize[1])/2.0
+
+ mW = float(self.canvasSize[0]) / 2.0
+ mH = float(self.canvasSize[1]) / 2.0
# rescale to canvas size
- pt[0] = v.co[0]*mW + mW
- pt[1] = v.co[1]*mH + mH
+ pt[0] = v.co[0] * mW + mW
+ pt[1] = v.co[1] * mH + mH
pt[2] = v.co[2]
-
+
# For now we want (0,0) in the top-left corner of the canvas.
# Mirror and translate along y
pt[1] *= -1
pt[1] += self.canvasSize[1]
-
+
return pt
-
- def _printPolygons(self, mesh, sprite):
+
+ def _printPolygons(self, mesh):
"""Print the selected (visible) polygons.
"""
for face in mesh.faces:
if not face.sel:
- continue
+ continue
if face.col:
fcol = face.col[0]
- color = [fcol.r, fcol.g, fcol.b, fcol.a]
+ color = [fcol.r / 255.0, fcol.g / 255.0, fcol.b / 255.0,
+ fcol.a / 255.0]
else:
- color = [255, 255, 255, 255]
+ color = [1, 1, 1, 1]
- s = SWFShape()
- f = s.addFill(color[0], color[1], color[2], color[3])
- s.setRightFill(f)
+ self.canvas.setFillColorRGB(color[0], color[1], color[2])
+ # For debug
+ self.canvas.setStrokeColorRGB(0, 0, 0)
- # The starting point of the shape
- p0 = self._calcCanvasCoord(face.verts[0])
- s.movePenTo(p0[0], p0[1])
+ path = self.canvas.beginPath()
+ # The starting point of the path
+ p0 = self._calcCanvasCoord(face.verts[0])
+ path.moveTo(p0[0], p0[1])
for v in face.verts[1:]:
p = self._calcCanvasCoord(v)
- s.drawLineTo(p[0], p[1])
-
- # Closing the shape
- s.drawLineTo(p0[0], p0[1])
- s.end()
- sprite.add(s)
-
-
- """
- # use the stroke property to alleviate the "adjacent edges" problem,
- # we simulate polygon expansion using borders,
- # see http://www.antigrain.com/svg/index.html for more info
- stroke_width = 1.0
+ path.lineTo(p[0], p[1])
- # EXPANSION TRICK is not that useful where there is transparency
- if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
- # str_col = "#000000" # For debug
- self.file.write(" stroke:%s;\n" % str_col)
- self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
- self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+ # Closing the shape
+ path.close()
- """
+ self.canvas.drawPath(path, stroke=0, fill=1)
- def _printEdges(self, mesh, sprite, showHiddenEdges=False):
+ def _printEdges(self, mesh, showHiddenEdges=False):
"""Print the wireframe using mesh edges.
"""
stroke_width = config.edges['WIDTH']
stroke_col = config.edges['COLOR']
- s = SWFShape()
+ self.canvas.setLineCap(1)
+ self.canvas.setLineJoin(1)
+ self.canvas.setLineWidth(stroke_width)
+ self.canvas.setStrokeColorRGB(stroke_col[0] / 255.0, stroke_col[1] / 255.0,
+ stroke_col[2] / 255)
for e in mesh.edges:
- #Next, we set the line width and color for our shape.
- s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
- 255)
-
+ self.canvas.setLineWidth(stroke_width)
+
if e.sel == 0:
if showHiddenEdges == False:
continue
else:
- # SWF does not support dashed lines natively, so -for now-
- # draw hidden lines thinner and half-trasparent
- s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
- stroke_col[2], 128)
+ # PDF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner
+ self.canvas.setLineWidth(stroke_width / 2.0)
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
- # FIXME: this is just a qorkaround, remove that after the
- # implementation of propoer Viewport clipping
- if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000:
- s.movePenTo(p1[0], p1[1])
- s.drawLineTo(p2[0], p2[1])
-
-
- s.end()
- sprite.add(s)
-
-
+ self.canvas.line(p1[0], p1[1], p2[0], p2[1])
# ---------------------------------------------------------------------
#
# A dictionary to collect the supported output formats
outputWriters = dict()
outputWriters['SVG'] = SVGVectorWriter
-outputWriters['SWF'] = SWFVectorWriter
+if SWFSupported:
+ outputWriters['SWF'] = SWFVectorWriter
+if PDFSupported:
+ outputWriters['PDF'] = PDFVectorWriter
class Renderer:
"""Render a scene viewed from the active camera.
-
+
This class is responsible of the rendering process, transformation and
projection of the objects in the scene are invoked by the renderer.
# Render the current Scene, this should be a READ-ONLY property
self._SCENE = Scene.GetCurrent()
-
+
# Use the aspect ratio of the scene rendering context
context = self._SCENE.getRenderingContext()
- aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY())
- self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio,
+ aspect_ratio = float(context.imageSizeX()) / float(context.imageSizeY())
+ self.canvasRatio = (float(context.aspectRatioX()) * aspect_ratio,
float(context.aspectRatioY())
)
- # Render from the currently active camera
- self.cameraObj = self._SCENE.getCurrentCamera()
-
- # Get the list of lighting sources
- obj_lst = self._SCENE.getChildren()
- self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
-
- # When there are no lights we use a default lighting source
- # that have the same position of the camera
- if len(self.lights) == 0:
- l = Lamp.New('Lamp')
- lobj = Object.New('Lamp')
- lobj.loc = self.cameraObj.loc
- lobj.link(l)
- self.lights.append(lobj)
+ # Render from the currently active camera
+ #self.cameraObj = self._SCENE.objects.camera
+ self.lights = []
##
# Public Methods
def doRendering(self, outputWriter, animation=False):
"""Render picture or animation and write it out.
-
+
The parameters are:
- a Vector writer object that will be used to output the result.
- a flag to tell if we want to render an animation or only the
current frame.
"""
-
+
context = self._SCENE.getRenderingContext()
origCurrentFrame = context.currentFrame()
startFrame = context.startFrame()
endFrame = context.endFrame()
outputWriter.open(startFrame, endFrame)
-
+
# Do the rendering process frame by frame
- print "Start Rendering of %d frames" % (endFrame-startFrame)
- for f in xrange(startFrame, endFrame+1):
+ print "Start Rendering of %d frames" % (endFrame - startFrame + 1)
+ for f in xrange(startFrame, endFrame + 1):
print "\n\nFrame: %d" % f
- context.currentFrame(f)
+
+ # FIXME To get the correct camera position we have to use +1 here.
+ # Is there a bug somewhere in the Scene module?
+ context.currentFrame(f + 1)
+ self.cameraObj = self._SCENE.objects.camera
# Use some temporary workspace, a full copy of the scene
inputScene = self._SCENE.copy(2)
- # And Set our camera accordingly
- self.cameraObj = inputScene.getCurrentCamera()
+
+ # To get the objects at this frame remove the +1 ...
+ ctx = inputScene.getRenderingContext()
+ ctx.currentFrame(f)
# Get a projector for this camera.
# NOTE: the projector wants object in world coordinates,
try:
renderedScene = self.doRenderScene(inputScene)
- except :
+ except:
print "There was an error! Aborting."
import traceback
print traceback.print_exc()
self._SCENE.makeCurrent()
- Scene.unlink(inputScene)
+ Scene.Unlink(inputScene)
del inputScene
return
outputWriter.printCanvas(renderedScene,
- doPrintPolygons = config.polygons['SHOW'],
- doPrintEdges = config.edges['SHOW'],
- showHiddenEdges = config.edges['SHOW_HIDDEN'])
-
+ doPrintPolygons=config.polygons['SHOW'],
+ doPrintEdges=config.edges['SHOW'],
+ showHiddenEdges=config.edges['SHOW_HIDDEN'])
+
# delete the rendered scene
self._SCENE.makeCurrent()
- Scene.unlink(renderedScene)
+ Scene.Unlink(renderedScene)
del renderedScene
outputWriter.close()
print "Done!"
context.currentFrame(origCurrentFrame)
-
def doRenderScene(self, workScene):
"""Control the rendering process.
-
+
Here we control the entire rendering process invoking the operation
needed to transform and project the 3D scene in two dimensions.
"""
-
+
# global processing of the scene
+ self._filterHiddenObjects(workScene)
+
+ self._buildLightSetup(workScene)
+
self._doSceneClipping(workScene)
self._doConvertGeometricObjsToMesh(workScene)
self._joinMeshObjectsInScene(workScene)
self._doSceneDepthSorting(workScene)
-
+
# Per object activities
- Objects = workScene.getChildren()
+ Objects = workScene.objects
+
print "Total Objects: %d" % len(Objects)
- for i,obj in enumerate(Objects):
+ for i, obj in enumerate(Objects):
print "\n\n-------"
print "Rendering Object: %d" % i
self._doBackFaceCulling(mesh)
-
# When doing HSR with NEWELL we may want to flip all normals
# toward the viewer
if config.polygons['HSR'] == "NEWELL":
for f in mesh.faces:
- f.sel = 1-f.sel
+ f.sel = 1 - f.sel
mesh.flipNormals()
for f in mesh.faces:
f.sel = 1
return workScene
-
##
# Private Methods
#
"""
return Vector(self.cameraObj.matrix[2]).resize3D()
-
# Faces methods
def _isFaceVisible(self, face):
"""Determine if a face of an object is visible from the current camera.
-
+
The view vector is calculated from the camera location and one of the
vertices of the face (expressed in World coordinates, after applying
modelview transformations).
# the difference between the camera position and one point of
# the face, we choose the farthest point from the camera.
if self.cameraObj.data.getType() == 0:
- vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
+ vv = max([((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face])
view_vect = vv[1]
-
# if d > 0 the face is visible from the camera
d = view_vect * normal
-
+
if d > 0:
return True
else:
return False
-
# Scene methods
+ def _filterHiddenObjects(self, scene):
+ """Discard object that are on hidden layers in the scene.
+ """
+
+ Objects = scene.objects
+
+ visible_obj_list = [obj for obj in Objects if
+ set(obj.layers).intersection(set(scene.getLayers()))]
+
+ for o in Objects:
+ if o not in visible_obj_list:
+ scene.objects.unlink(o)
+
+ scene.update()
+
+ def _buildLightSetup(self, scene):
+ # Get the list of lighting sources
+ obj_lst = scene.objects
+ self.lights = [o for o in obj_lst if o.getType() == 'Lamp']
+
+ # When there are no lights we use a default lighting source
+ # that have the same position of the camera
+ if len(self.lights) == 0:
+ l = Lamp.New('Lamp')
+ lobj = Object.New('Lamp')
+ lobj.loc = self.cameraObj.loc
+ lobj.link(l)
+ self.lights.append(lobj)
+
def _doSceneClipping(self, scene):
"""Clip whole objects against the View Frustum.
For now clip away only objects according to their center position.
"""
- cpos = self._getObjPosition(self.cameraObj)
+ cam_pos = self._getObjPosition(self.cameraObj)
view_vect = self._cameraViewVector()
near = self.cameraObj.data.clipStart
- far = self.cameraObj.data.clipEnd
+ far = self.cameraObj.data.clipEnd
- aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1])
- fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
- fovy = fovy * 360.0/pi
+ aspect = float(self.canvasRatio[0]) / float(self.canvasRatio[1])
+ fovy = atan(0.5 / aspect / (self.cameraObj.data.lens / 32))
+ fovy = fovy * 360.0 / pi
+
+ Objects = scene.objects
- Objects = scene.getChildren()
for o in Objects:
- if o.getType() != 'Mesh': continue;
+ if o.getType() != 'Mesh':
+ continue
- obj_vect = Vector(cpos) - self._getObjPosition(o)
+ """
+ obj_vect = Vector(cam_pos) - self._getObjPosition(o)
d = obj_vect*view_vect
theta = AngleBetweenVecs(obj_vect, view_vect)
-
+
# if the object is outside the view frustum, clip it away
if (d < near) or (d > far) or (theta > fovy):
- scene.unlink(o)
+ scene.objects.unlink(o)
+ """
+
+ # Use the object bounding box
+ # (whose points are already in WorldSpace Coordinate)
+
+ bb = o.getBoundBox()
+
+ points_outside = 0
+ for p in bb:
+ p_vect = Vector(cam_pos) - Vector(p)
+
+ d = p_vect * view_vect
+ theta = AngleBetweenVecs(p_vect, view_vect)
+
+ # Is this point outside the view frustum?
+ if (d < near) or (d > far) or (theta > fovy):
+ points_outside += 1
+
+ # If the bb is all outside the view frustum we clip the whole
+ # object away
+ if points_outside == len(bb):
+ scene.objects.unlink(o)
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
#geometricObjTypes = ['Mesh', 'Surf', 'Curve']
- Objects = scene.getChildren()
- objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
+ Objects = scene.objects
+
+ objList = [o for o in Objects if o.getType() in geometricObjTypes]
for obj in objList:
old_obj = obj
obj = self._convertToRawMeshObj(obj)
- scene.link(obj)
- scene.unlink(old_obj)
-
+ scene.objects.link(obj)
+ scene.objects.unlink(old_obj)
# XXX Workaround for Text and Curve which have some normals
# inverted when they are converted to Mesh, REMOVE that when
# blender will fix that!!
if old_obj.getType() in ['Curve', 'Text']:
me = obj.getData(mesh=1)
- for f in me.faces: f.sel = 1;
- for v in me.verts: v.sel = 1;
+
+ for f in me.faces:
+ f.sel = 1
+ for v in me.verts:
+ v.sel = 1
+
me.remDoubles(0)
me.triangleToQuad()
me.recalcNormals()
me.update()
-
def _doSceneDepthSorting(self, scene):
"""Sort objects in the scene.
c = self._getObjPosition(self.cameraObj)
- by_center_pos = (lambda o1, o2:
+ by_obj_center_pos = (lambda o1, o2:
(o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
cmp((self._getObjPosition(o1) - Vector(c)).length,
(self._getObjPosition(o2) - Vector(c)).length)
)
- # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
- # then ob1 goes farther than obj2, useful when obj2 has holes
- by_bbox = None
-
- Objects = scene.getChildren()
- Objects.sort(by_center_pos)
-
+ # Implement sorting by bounding box, the object with the bb
+ # nearest to the camera should be drawn as last.
+ by_nearest_bbox_point = (lambda o1, o2:
+ (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+ cmp(min([(Vector(p) - Vector(c)).length for p in o1.getBoundBox()]),
+ min([(Vector(p) - Vector(c)).length for p in o2.getBoundBox()])
+ )
+ )
+
+ Objects = list(scene.objects)
+
+ #Objects.sort(by_obj_center_pos)
+ Objects.sort(by_nearest_bbox_point)
+
# update the scene
for o in Objects:
- scene.unlink(o)
- scene.link(o)
+ scene.objects.unlink(o)
+ scene.objects.link(o)
def _joinMeshObjectsInScene(self, scene):
"""Merge all the Mesh Objects in a scene into a single Mesh Object.
"""
- oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
+ oList = [o for o in scene.objects if o.getType() == 'Mesh']
# FIXME: Object.join() do not work if the list contains 1 object
if len(oList) == 1:
bigObj = Object.New('Mesh', 'BigOne')
bigObj.link(mesh)
- scene.link(bigObj)
+ scene.objects.link(bigObj)
try:
bigObj.join(oList)
except RuntimeError:
print "\nWarning! - Can't Join Objects\n"
- scene.unlink(bigObj)
+ scene.objects.unlink(bigObj)
return
except TypeError:
print "Objects Type error?"
-
+
for o in oList:
- scene.unlink(o)
+ scene.objects.unlink(o)
scene.update()
-
# Per object/mesh methods
def _convertToRawMeshObj(self, object):
"""Convert geometry based object to a mesh object.
"""
- me = Mesh.New('RawMesh_'+object.name)
+ me = Mesh.New('RawMesh_' + object.name)
me.getFromObject(object.name)
- newObject = Object.New('Mesh', 'RawMesh_'+object.name)
+ newObject = Object.New('Mesh', 'RawMesh_' + object.name)
newObject.link(me)
# If the object has no materials set a default material
def _doBackFaceCulling(self, mesh):
"""Simple Backface Culling routine.
-
+
At this level we simply do a visibility test face by face and then
select the vertices belonging to visible faces.
"""
-
+
# Select all vertices, so edges can be displayed even if there are no
# faces
for v in mesh.verts:
v.sel = 1
-
+
Mesh.Mode(Mesh.SelectModes['FACE'])
# Loop on faces
for f in mesh.faces:
elif mat.getMode() & Material.Modes['SHADELESS']:
I = mat.getRGBCol()
# Convert to a value between 0 and 255
- tmp_col = [ int(c * 255.0) for c in I]
+ tmp_col = [int(c * 255.0) for c in I]
for c in f.col:
c.r = tmp_col[0]
continue
-
# do vertex color calculation
TotDiffSpec = Vector([0.0, 0.0, 0.0])
light_obj = l
light_pos = self._getObjPosition(l)
light = light_obj.getData()
-
+
L = Vector(light_pos).normalize()
V = (Vector(camPos) - Vector(f.cent)).normalize()
N = Vector(f.no).normalize()
if config.polygons['SHADING'] == 'TOON':
- NL = ShadingUtils.toonShading(N*L)
+ NL = ShadingUtils.toonShading(N * L)
else:
- NL = (N*L)
+ NL = (N * L)
# Should we use NL instead of (N*L) here?
- R = 2 * (N*L) * N - L
+ R = 2 * (N * L) * N - L
Ip = light.getEnergy()
Idiff = Ip * kd * max(0, NL)
-
# Specular component
ks = mat.getSpec() * Vector(mat.getSpecCol())
ns = mat.getHardness()
- Ispec = Ip * ks * pow(max(0, (V*R)), ns)
-
- TotDiffSpec += (Idiff+Ispec)
+ Ispec = Ip * ks * pow(max(0, (V * R)), ns)
+ TotDiffSpec += (Idiff + Ispec)
# Ambient component
Iamb = Vector(Blender.World.Get()[0].getAmb())
ka = mat.getAmb()
# Emissive component (convert to a triplet)
- ki = Vector([mat.getEmit()]*3)
+ ki = Vector([mat.getEmit()] * 3)
#I = ki + Iamb + (Idiff + Ispec)
I = ki + (ka * Iamb) + TotDiffSpec
-
# Set Alpha component
I = list(I)
I.append(mat.getAlpha())
# Clamp I values between 0 and 1
- I = [ min(c, 1) for c in I]
- I = [ max(0, c) for c in I]
+ I = [min(c, 1) for c in I]
+ I = [max(0, c) for c in I]
# Convert to a value between 0 and 255
- tmp_col = [ int(c * 255.0) for c in I]
+ tmp_col = [int(c * 255.0) for c in I]
for c in f.col:
c.r = tmp_col[0]
"""Clip faces against the View Frustum.
"""
+ # The Canonical View Volume, 8 vertices, and 6 faces,
+ # We consider its face normals pointing outside
+
+ v1 = NMesh.Vert(1, 1, -1)
+ v2 = NMesh.Vert(1, -1, -1)
+ v3 = NMesh.Vert(-1, -1, -1)
+ v4 = NMesh.Vert(-1, 1, -1)
+ v5 = NMesh.Vert(1, 1, 1)
+ v6 = NMesh.Vert(1, -1, 1)
+ v7 = NMesh.Vert(-1, -1, 1)
+ v8 = NMesh.Vert(-1, 1, 1)
+
+ cvv = []
+ f1 = NMesh.Face([v1, v4, v3, v2])
+ cvv.append(f1)
+ f2 = NMesh.Face([v5, v6, v7, v8])
+ cvv.append(f2)
+ f3 = NMesh.Face([v1, v2, v6, v5])
+ cvv.append(f3)
+ f4 = NMesh.Face([v2, v3, v7, v6])
+ cvv.append(f4)
+ f5 = NMesh.Face([v3, v4, v8, v7])
+ cvv.append(f5)
+ f6 = NMesh.Face([v4, v1, v5, v8])
+ cvv.append(f6)
+
+ nmesh = NMesh.GetRaw(mesh.name)
+ clippedfaces = nmesh.faces[:]
+ facelist = clippedfaces[:]
+
+ for clipface in cvv:
+
+ clippedfaces = []
+
+ for f in facelist:
+
+ #newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
+ newfaces = None
+
+ if not newfaces:
+ # Check if the face is all outside the view frustum
+ # TODO: Do this test before, it is more efficient
+ points_outside = 0
+ for v in f:
+ if abs(v[0]) > (1 - EPS) or abs(v[1]) > (1 - EPS) or abs(v[2]) > (1 - EPS):
+ points_outside += 1
+
+ if points_outside != len(f):
+ clippedfaces.append(f)
+ else:
+ for nf in newfaces:
+ for v in nf:
+ nmesh.verts.append(v)
+
+ nf.mat = f.mat
+ nf.sel = f.sel
+ nf.col = [f.col[0]] * len(nf.v)
+
+ clippedfaces.append(nf)
+ facelist = clippedfaces[:]
+
+ nmesh.faces = facelist
+ nmesh.update()
+
# HSR routines
def __simpleDepthSort(self, mesh):
"""Sort faces by the furthest vertex.
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
- progress.setActivity("HSR: Painter", n*log(n))
+ progress.setActivity("HSR: Painter", n * log(n))
by_furthest_z = (lambda f1, f2: progress.update() and
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
)
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh.update()
-
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
"""
- from hsrtk import *
#global progress
# print "NON QUAD??"
# f.sel = 1
-
# Now reselect all faces
for f in mesh.faces:
f.sel = 1
facelist = nmesh.faces[:]
maplist = []
-
# The steps are _at_least_ equal to len(facelist), we do not count the
# feces coming out from splitting!!
progress.setActivity("HSR: Newell", len(facelist))
#progress.setQuiet(True)
-
while len(facelist):
debug("\n----------------------\n")
debug("len(facelits): %d\n" % len(facelist))
qSign = sign(Q.normal[2])
# TODO: check also if Q is parallel??
-
+
# Test 0: We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
debug("met a marked face\n")
continue
-
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
#notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
- notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
+ notXOverlap = min(xQ) >= (max(xP) - EPS) or min(xP) >= (max(xQ) - EPS)
if notXOverlap:
debug("\nTest 1\n")
debug("NOT X OVERLAP!\n")
continue
-
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
- #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
- notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
+ #notYOverlap = max(yP) <= min(yQ) or max(yQ) <= min(yP)
+ notYOverlap = min(yQ) >= (max(yP) - EPS) or min(yP) >= (max(yQ) - EPS)
if notYOverlap:
debug("\nTest 2\n")
debug("NOT Y OVERLAP!\n")
continue
-
# Test 3: P vertices are all behind the plane of Q
n = 0
for Pi in P:
- d = qSign * Distance(Vector(Pi), Q)
+ d = qSign * HSR.Distance(Vector(Pi), Q)
if d <= EPS:
n += 1
pVerticesBehindPlaneQ = (n == len(P))
debug("P BEHIND Q!\n")
continue
-
# Test 4: Q vertices in front of the plane of P
n = 0
for Qi in Q:
- d = pSign * Distance(Vector(Qi), P)
+ d = pSign * HSR.Distance(Vector(Qi), P)
if d >= -EPS:
n += 1
qVerticesInFrontPlaneP = (n == len(Q))
debug("Q IN FRONT OF P!\n")
continue
-
# Test 5: Check if projections of polygons effectively overlap,
# in previous tests we checked only bounding boxes.
- if not projectionsOverlap(P, Q):
+ #if not projectionsOverlap(P, Q):
+ if not (HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
debug("\nTest 5\n")
debug("Projections do not overlap!\n")
continue
debug("Possibly a cycle detected!\n")
debug("Split here!!\n")
- facelist = facesplit(P, Q, facelist, nmesh)
+ facelist = HSR.facesplit(P, Q, facelist, nmesh)
split_done = 1
- break
+ break
# The question now is: Does Q obscure P?
-
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
- d = pSign * Distance(Vector(Qi), P)
+ d = pSign * HSR.Distance(Vector(Qi), P)
if d <= EPS:
n += 1
qVerticesBehindPlaneP = (n == len(Q))
debug("\nTest 3bis\n")
debug("Q BEHIND P!\n")
-
# Test 4bis: P vertices in front of the plane of Q
n = 0
for Pi in P:
- d = qSign * Distance(Vector(Pi), Q)
+ d = qSign * HSR.Distance(Vector(Pi), Q)
if d >= -EPS:
n += 1
pVerticesInFrontPlaneQ = (n == len(P))
debug("\nTest 4bis\n")
debug("P IN FRONT OF Q!\n")
-
# We don't even know if Q does obscure P, so they should
# intersect each other, split one of them in two parts.
if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
debug("Test 3bis or 4bis failed\n")
debug("Split here!!2\n")
- facelist = facesplit(P, Q, facelist, nmesh)
+ facelist = HSR.facesplit(P, Q, facelist, nmesh)
split_done = 1
- break
-
+ break
+
facelist.remove(Q)
facelist.insert(0, Q)
Q.smooth = 1
face_marked = 1
debug("Q marked!\n")
break
-
- # Write P!
+
+ # Write P!
if split_done == 0 and face_marked == 0:
facelist.remove(P)
maplist.append(P)
+ dumpfaces(maplist, "dump" + str(len(maplist)).zfill(4) + ".svg")
progress.update()
+ if len(facelist) == 870:
+ dumpfaces([P, Q], "loopdebug.svg")
+
#if facelist == None:
# maplist = [P, Q]
# print [v.co for v in P]
# break
# end of while len(facelist)
-
nmesh.faces = maplist
- for f in nmesh.faces:
- f.sel = 1
+ #for f in nmesh.faces:
+ # f.sel = 1
nmesh.update()
-
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.
"""
print "\nUsing the Newell's algorithm for HSR."
self.__newellDepthSort(mesh)
-
def _doEdgesStyle(self, mesh, edgestyleSelect):
"""Process Mesh Edges accroding to a given selection style.
edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
- for i,edge_faces in enumerate(edge_cache):
+ for i, edge_faces in enumerate(edge_cache):
mesh.edges[i].sel = 0
if edgestyleSelect(edge_faces):
mesh.edges[i].sel = 1
if edgestyleSelect(e, mesh):
e.sel = 1
"""
-
+ #
# ---------------------------------------------------------------------
#
# ---------------------------------------------------------------------
-
from Blender import BGL, Draw
from Blender.BGL import *
+
class GUI:
-
+
def _init():
- # Output Format menu
+ # Output Format menu
output_format = config.output['FORMAT']
- default_value = outputWriters.keys().index(output_format)+1
+ default_value = outputWriters.keys().index(output_format) + 1
GUI.outFormatMenu = Draw.Create(default_value)
GUI.evtOutFormatMenu = 0
# Render filled polygons
GUI.polygonsToggle = Draw.Create(config.polygons['SHOW'])
- # Shading Style menu
+ # Shading Style menu
shading_style = config.polygons['SHADING']
- default_value = shadingStyles.keys().index(shading_style)+1
+ default_value = shadingStyles.keys().index(shading_style) + 1
GUI.shadingStyleMenu = Draw.Create(default_value)
GUI.evtShadingStyleMenu = 21
GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN'])
GUI.evtShowHiddenEdgesToggle = 5
- # Edge Style menu
+ # Edge Style menu
edge_style = config.edges['STYLE']
- default_value = edgeStyles.keys().index(edge_style)+1
+ default_value = edgeStyles.keys().index(edge_style) + 1
GUI.edgeStyleMenu = Draw.Create(default_value)
GUI.evtEdgeStyleMenu = 6
# Edge Color Picker
c = config.edges['COLOR']
- GUI.edgeColorPicker = Draw.Create(c[0]/255.0, c[1]/255.0, c[2]/255.0)
+ GUI.edgeColorPicker = Draw.Create(c[0] / 255.0, c[1] / 255.0, c[2] / 255.0)
GUI.evtEdgeColorPicker = 71
# Render Button
# Exit Button
GUI.evtExitButton = 9
+ # Save default button
+ GUI.evtSaveDefaultButton = 99
+
def draw():
# initialize static members
glClear(GL_COLOR_BUFFER_BIT)
glColor3f(0.0, 0.0, 0.0)
- glRasterPos2i(10, 350)
+ glRasterPos2i(10, 380)
Draw.Text("VRM: Vector Rendering Method script. Version %s." %
__version__)
+ glRasterPos2i(10, 365)
+ Draw.Text("%s (c) 2012" % __author__)
+
glRasterPos2i(10, 335)
Draw.Text("Press Q or ESC to quit.")
Draw.Text("Select the output Format:")
outMenuStruct = "Output Format %t"
for t in outputWriters.keys():
- outMenuStruct = outMenuStruct + "|%s" % t
+ outMenuStruct = outMenuStruct + "|%s" % t
GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu,
- 10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
+ 10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
# Animation toggle
GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle,
- 10, 260, 160, 18, GUI.animToggle.val,
- "Toggle rendering of animations")
+ 10, 260, 160, 18, GUI.animToggle.val,
+ "Toggle rendering of animations")
# Join Objects toggle
GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle,
- 10, 235, 160, 18, GUI.joinObjsToggle.val,
- "Join objects in the rendered file")
+ 10, 235, 160, 18, GUI.joinObjsToggle.val,
+ "Join objects in the rendered file")
# Render Button
- Draw.Button("Render", GUI.evtRenderButton, 10, 210-25, 75, 25+18,
- "Start Rendering")
- Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!")
+ Draw.Button("Render", GUI.evtRenderButton, 10, 210 - 25, 75, 25 + 18,
+ "Start Rendering")
+ Draw.Button("Exit", GUI.evtExitButton, 95, 210 - 25, 75, 25 + 18, "Exit!")
+
+ Draw.Button("Save settings as default", GUI.evtSaveDefaultButton, 10, 210 - 50, 160, 18,
+ "Save settings as default")
# Rendering Styles
glRasterPos2i(200, 310)
# Render Polygons
GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle,
- 200, 285, 160, 18, GUI.polygonsToggle.val,
- "Render filled polygons")
+ 200, 285, 160, 18, GUI.polygonsToggle.val,
+ "Render filled polygons")
if GUI.polygonsToggle.val == 1:
for t in shadingStyles.keys():
shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower()
GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu,
- 200, 260, 160, 18, GUI.shadingStyleMenu.val,
- "Choose the shading style")
-
+ 200, 260, 160, 18, GUI.shadingStyleMenu.val,
+ "Choose the shading style")
# Render Edges
GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle,
- 200, 235, 160, 18, GUI.showEdgesToggle.val,
- "Render polygon edges")
+ 200, 235, 160, 18, GUI.showEdgesToggle.val,
+ "Render polygon edges")
if GUI.showEdgesToggle.val == 1:
-
+
# Edge Style
edgeStyleMenuStruct = "Edge Style %t"
for t in edgeStyles.keys():
edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower()
GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu,
- 200, 210, 160, 18, GUI.edgeStyleMenu.val,
- "Choose the edge style")
+ 200, 210, 160, 18, GUI.edgeStyleMenu.val,
+ "Choose the edge style")
# Edge size
GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider,
- 200, 185, 140, 18, GUI.edgeWidthSlider.val,
- 0.0, 10.0, 0, "Change Edge Width")
+ 200, 185, 140, 18, GUI.edgeWidthSlider.val,
+ 0.0, 10.0, 0, "Change Edge Width")
# Edge Color
GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker,
- 342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
+ 342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
# Show Hidden Edges
GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges",
- GUI.evtShowHiddenEdgesToggle,
- 200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
- "Render hidden edges as dashed lines")
-
- glRasterPos2i(10, 160)
- Draw.Text("%s (c) 2006" % __author__)
+ GUI.evtShowHiddenEdgesToggle,
+ 200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
+ "Render hidden edges as dashed lines")
def event(evt, val):
elif evt == GUI.evtOutFormatMenu:
i = GUI.outFormatMenu.val - 1
- config.output['FORMAT']= outputWriters.keys()[i]
+ config.output['FORMAT'] = outputWriters.keys()[i]
+ # Set the new output file
+ global outputfile
+ outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
elif evt == GUI.evtAnimToggle:
config.output['ANIMATION'] = bool(GUI.animToggle.val)
config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val)
elif evt == GUI.evtEdgeColorPicker:
- config.edges['COLOR'] = [int(c*255.0) for c in GUI.edgeColorPicker.val]
+ config.edges['COLOR'] = [int(c * 255.0) for c in GUI.edgeColorPicker.val]
elif evt == GUI.evtRenderButton:
label = "Save %s" % config.output['FORMAT']
global outputfile
Blender.Window.FileSelector(vectorize, label, outputfile)
+ elif evt == GUI.evtSaveDefaultButton:
+ config.saveToRegistry()
+
else:
print "Event: %d not handled!" % evt
button_event = staticmethod(button_event)
conf_debug = staticmethod(conf_debug)
+
# A wrapper function for the vectorizing process
def vectorize(filename):
"""The vectorizing process is as follows:
-
+
- Instanciate the writer and the renderer
- Render!
"""
from Blender import Window
editmode = Window.EditMode()
- if editmode: Window.EditMode(0)
+ if editmode:
+ Window.EditMode(0)
actualWriter = outputWriters[config.output['FORMAT']]
writer = actualWriter(filename)
-
+
renderer = Renderer()
renderer.doRendering(writer, config.output['ANIMATION'])
- if editmode: Window.EditMode(1)
+ if editmode:
+ Window.EditMode(1)
+
# Here the main
if __name__ == "__main__":
global progress
+ config.loadFromRegistry()
+
+ # initialize writer setting also here to configure writer specific
+ # settings on startup
+ actualWriter = outputWriters[config.output['FORMAT']]
+ writer = actualWriter("")
+
outputfile = ""
basename = Blender.sys.basename(Blender.Get('filename'))
if basename != "":