Release version 0.3, the last supporting blender 2.4x
[vrm.git] / vrm.py
diff --git a/vrm.py b/vrm.py
index 26a14d7..86c8fba 100755 (executable)
--- a/vrm.py
+++ b/vrm.py
@@ -1,21 +1,21 @@
 #!BPY
 """
 Name: 'VRM'
-Blender: 242
+Blender: 245
 Group: 'Render'
 Tooltip: 'Vector Rendering Method script'
 """
 
 __author__ = "Antonio Ospite"
-__url__ = ["http://projects.blender.org/projects/vrm"]
-__version__ = "0.3.beta"
+__url__ = ["http://vrm.ao2.it"]
+__version__ = "0.3"
 
 __bpydoc__ = """\
     Render the scene and save the result in vector format.
 """
 
 # ---------------------------------------------------------------------
-#    Copyright (c) 2006 Antonio Ospite
+#    Copyright (c) 2006, 2007, 2008, 2009, 2012 Antonio Ospite
 #
 #    This program is free software; you can redistribute it and/or modify
 #    it under the terms of the GNU General Public License as published by
@@ -40,15 +40,14 @@ __bpydoc__ = """\
 #       from scratch but Nikola gave me the idea, so I thank him publicly.
 #
 # ---------------------------------------------------------------------
-# 
+#
 # Things TODO for a next release:
+#   - Shadeless shader
 #   - FIX the issue with negative scales in object tranformations!
 #   - Use a better depth sorting algorithm
-#   - Implement clipping of primitives and do handle object intersections.
-#     (for now only clipping away whole objects is supported).
 #   - Review how selections are made (this script uses selection states of
 #     primitives to represent visibility infos)
-#   - Use a data structure other than Mesh to represent the 2D image? 
+#   - Use a data structure other than Mesh to represent the 2D image?
 #     Think to a way to merge (adjacent) polygons that have the same color.
 #     Or a way to use paths for silhouettes and contours.
 #   - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
@@ -58,27 +57,8 @@ __bpydoc__ = """\
 #   - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
 #   - Implement Shading Styles? (partially done, to make more flexible).
 #   - Add Vector Writers other than SVG.
+#   - set the background color!
 #   - Check memory use!!
-#   - Support Indexed palettes!! (Useful for ILDA FILES, for example,
-#     see http://www.linux-laser.org/download/autotrace/ilda-output.patch)
-#
-# ---------------------------------------------------------------------
-#
-# Changelog:
-#
-#   vrm-0.3.py  - ...
-#     * First release after code restucturing.
-#       Now the script offers a useful set of functionalities
-#       and it can render animations, too.
-#     * Optimization in Renderer.doEdgeStyle(), build a topology cache
-#       so to speed up the lookup of adjacent faces of an edge.
-#       Thanks ideasman42.
-#     * The SVG output is now SVG 1.0 valid.
-#       Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
-#     * Progress indicator during HSR.
-#     * Initial SWF output support
-#     * Fixed a bug in the animation code, now the projection matrix is
-#       recalculated at each frame!
 #
 # ---------------------------------------------------------------------
 
@@ -86,7 +66,21 @@ import Blender
 from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
 from Blender.Mathutils import *
 from math import *
-import sys, time
+import sys
+import time
+
+try:
+    set()
+except NameError:
+    from sets import Set as set
+
+
+def uniq(alist):
+    tmpdict = dict()
+    return [tmpdict.setdefault(e, e) for e in alist if e not in tmpdict]
+    # in python > 2.4 we ca use the following
+    #return [ u for u in alist if u not in locals()['_[1]'] ]
+
 
 # Constants
 EPS = 10e-5
@@ -95,14 +89,13 @@ EPS = 10e-5
 progress = None
 
 
-# Some global settings
+# Config class for global settings
 
 class config:
     polygons = dict()
     polygons['SHOW'] = True
-    polygons['SHADING'] = 'FLAT'
-    #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
-    polygons['HSR'] = 'PAINTER'
+    polygons['SHADING'] = 'FLAT'  # FLAT or TOON
+    polygons['HSR'] = 'PAINTER'  # PAINTER or NEWELL
     # Hidden to the user for now
     polygons['EXPANSION_TRICK'] = True
 
@@ -111,25 +104,95 @@ class config:
     edges = dict()
     edges['SHOW'] = False
     edges['SHOW_HIDDEN'] = False
-    edges['STYLE'] = 'MESH' # or SILHOUETTE
-    edges['STYLE'] = 'SILHOUETTE'
+    edges['STYLE'] = 'MESH'  # MESH or SILHOUETTE
     edges['WIDTH'] = 2
     edges['COLOR'] = [0, 0, 0]
 
     output = dict()
     output['FORMAT'] = 'SVG'
-    output['FORMAT'] = 'SWF'
-    output['ANIMATION'] = True
+    output['ANIMATION'] = False
     output['JOIN_OBJECTS'] = True
 
+    def saveToRegistry():
+        registry = {}
+
+        for k, v in config.__dict__.iteritems():
+
+            # config class store settings in dictionaries
+            if v.__class__ == dict().__class__:
+
+                regkey_prefix = k.upper() + "_"
+
+                for opt_k, opt_v in v.iteritems():
+                    regkey = regkey_prefix + opt_k
+
+                    registry[regkey] = opt_v
+
+        Blender.Registry.SetKey('VRM', registry, True)
+
+    saveToRegistry = staticmethod(saveToRegistry)
+
+    def loadFromRegistry():
+        registry = Blender.Registry.GetKey('VRM', True)
+        if not registry:
+            return
+
+        for k, v in registry.iteritems():
+            k_tmp = k.split('_')
+            conf_attr = k_tmp[0].lower()
+            conf_key = str.join("_", k_tmp[1:])
+            conf_val = v
+
+            if conf_attr in config.__dict__:
+                config.__dict__[conf_attr][conf_key] = conf_val
+
+    loadFromRegistry = staticmethod(loadFromRegistry)
 
 
 # Utility functions
+print_debug = False
+
+
+def dumpfaces(flist, filename):
+    """Dump a single face to a file.
+    """
+    if not print_debug:
+        return
+
+    class tmpmesh:
+        pass
+
+    m = tmpmesh()
+    m.faces = flist
+
+    writerobj = SVGVectorWriter(filename)
+
+    writerobj.open()
+    writerobj._printPolygons(m)
+
+    writerobj.close()
+
+
+def debug(msg):
+    if print_debug:
+        sys.stderr.write(msg)
+
+
+def EQ(v1, v2):
+    return (abs(v1[0] - v2[0]) < EPS and
+            abs(v1[1] - v2[1]) < EPS)
+by_furthest_z = (lambda f1, f2:
+    cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
+    )
+
+
 def sign(x):
 
     if x < -EPS:
+    #if x < 0:
         return -1
     elif x > EPS:
+    #elif x > 0:
         return 1
     else:
         return 0
@@ -137,13 +200,572 @@ def sign(x):
 
 # ---------------------------------------------------------------------
 #
+## HSR Utility class
+#
+# ---------------------------------------------------------------------
+
+EPS = 10e-5
+INF = 10e5
+
+
+class HSR:
+    """A utility class for HSR processing.
+    """
+
+    def is_nonplanar_quad(face):
+        """Determine if a quad is non-planar.
+
+        From: http://mathworld.wolfram.com/Coplanar.html
+
+        Geometric objects lying in a common plane are said to be coplanar.
+        Three noncollinear points determine a plane and so are trivially
+        coplanar. Four points are coplanar iff the volume of the tetrahedron
+        defined by them is 0,
+
+            | x_1 y_1 z_1 1 |
+            | x_2 y_2 z_2 1 |
+            | x_3 y_3 z_3 1 |
+            | x_4 y_4 z_4 1 | == 0
+
+        Coplanarity is equivalent to the statement that the pair of lines
+        determined by the four points are not skew, and can be equivalently
+        stated in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
+
+        An arbitrary number of n points x_1, ..., x_n can be tested for
+        coplanarity by finding the point-plane distances of the points
+        x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
+        and checking if they are all zero.
+        If so, the points are all coplanar.
+
+        We here check only for 4-point complanarity.
+        """
+        n = len(face)
+
+        # assert(n>4)
+        if n < 3 or n > 4:
+            print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
+            raise AssertionError
+
+        elif n == 3:
+            # three points must be complanar
+            return False
+        else:  # n == 4
+            x1 = Vector(face[0].co)
+            x2 = Vector(face[1].co)
+            x3 = Vector(face[2].co)
+            x4 = Vector(face[3].co)
+
+            v = (x3 - x1) * CrossVecs((x2 - x1), (x4 - x3))
+            if v != 0:
+                return True
+
+        return False
+
+    is_nonplanar_quad = staticmethod(is_nonplanar_quad)
+
+    def pointInPolygon(poly, v):
+        return False
+
+    pointInPolygon = staticmethod(pointInPolygon)
+
+    def edgeIntersection(s1, s2, do_perturbate=False):
+
+        (x1, y1) = s1[0].co[0], s1[0].co[1]
+        (x2, y2) = s1[1].co[0], s1[1].co[1]
+
+        (x3, y3) = s2[0].co[0], s2[0].co[1]
+        (x4, y4) = s2[1].co[0], s2[1].co[1]
+
+        #z1 = s1[0].co[2]
+        #z2 = s1[1].co[2]
+        #z3 = s2[0].co[2]
+        #z4 = s2[1].co[2]
+
+        # calculate delta values (vector components)
+        dx1 = x2 - x1
+        dx2 = x4 - x3
+        dy1 = y2 - y1
+        dy2 = y4 - y3
+
+        #dz1 = z2 - z1
+        #dz2 = z4 - z3
+
+        C = dy2 * dx1 - dx2 * dy1  # cross product
+        if C == 0:  # parallel
+            return None
+
+        dx3 = x1 - x3  # combined origin offset vector
+        dy3 = y1 - y3
+
+        a1 = (dy3 * dx2 - dx3 * dy2) / C
+        a2 = (dy3 * dx1 - dx3 * dy1) / C
+
+        # check for degeneracies
+        #print_debug("\n")
+        #print_debug(str(a1)+"\n")
+        #print_debug(str(a2)+"\n\n")
+
+        if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
+            # Intersection on boundaries, we consider the point external?
+            return None
+
+        elif (a1 > 0.0 and a1 < 1.0 and a2 > 0.0 and a2 < 1.0):  # lines cross
+            x = x1 + a1 * dx1
+            y = y1 + a1 * dy1
+
+            #z = z1 + a1 * dz1
+            z = 0
+            return (NMesh.Vert(x, y, z), a1, a2)
+
+        else:
+            # lines have intersections but not those segments
+            return None
+
+    edgeIntersection = staticmethod(edgeIntersection)
+
+    def isVertInside(self, v):
+        winding_number = 0
+        coincidence = False
+
+        # Create point at infinity
+        point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
+
+        for i in range(len(self.v)):
+            s1 = (point_at_infinity, v)
+            s2 = (self.v[i - 1], self.v[i])
+
+            if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
+                coincidence = True
+
+            if HSR.edgeIntersection(s1, s2, do_perturbate=False):
+                winding_number += 1
+
+        # Check even or odd
+        if (winding_number % 2) == 0:
+            return False
+        else:
+            if coincidence:
+                return False
+            return True
+
+    isVertInside = staticmethod(isVertInside)
+
+    def det(a, b, c):
+        return ((b[0] - a[0]) * (c[1] - a[1]) -
+                (b[1] - a[1]) * (c[0] - a[0]))
+
+    det = staticmethod(det)
+
+    def pointInPolygon(q, P):
+        is_in = False
+
+        point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
+
+        det = HSR.det
+
+        for i in range(len(P.v)):
+            p0 = P.v[i - 1]
+            p1 = P.v[i]
+            if (det(q.co, point_at_infinity.co, p0.co) < 0) != (det(q.co, point_at_infinity.co, p1.co) < 0):
+                if det(p0.co, p1.co, q.co) == 0:
+                    #print "On Boundary"
+                    return False
+                elif (det(p0.co, p1.co, q.co) < 0) != (det(p0.co, p1.co, point_at_infinity.co) < 0):
+                    is_in = not is_in
+
+        return is_in
+
+    pointInPolygon = staticmethod(pointInPolygon)
+
+    def projectionsOverlap(f1, f2):
+        """ If you have nonconvex, but still simple polygons, an acceptable method
+        is to iterate over all vertices and perform the Point-in-polygon test[1].
+        The advantage of this method is that you can compute the exact
+        intersection point and collision normal that you will need to simulate
+        collision. When you have the point that lies inside the other polygon, you
+        just iterate over all edges of the second polygon again and look for edge
+        intersections. Note that this method detects collsion when it already
+        happens. This algorithm is fast enough to perform it hundreds of times per
+        sec.  """
+
+        for i in range(len(f1.v)):
+
+            # If a point of f1 in inside f2, there is an overlap!
+            v1 = f1.v[i]
+            #if HSR.isVertInside(f2, v1):
+            if HSR.pointInPolygon(v1, f2):
+                return True
+
+            # If not the polygon can be ovelap as well, so we check for
+            # intersection between an edge of f1 and all the edges of f2
+
+            v0 = f1.v[i - 1]
+
+            for j in range(len(f2.v)):
+                v2 = f2.v[j - 1]
+                v3 = f2.v[j]
+
+                e1 = v0, v1
+                e2 = v2, v3
+
+                intrs = HSR.edgeIntersection(e1, e2)
+                if intrs:
+                    #print_debug(str(v0.co) + " " + str(v1.co) + " " +
+                    #        str(v2.co) + " " + str(v3.co) )
+                    #print_debug("\nIntersection\n")
+
+                    return True
+
+        return False
+
+    projectionsOverlap = staticmethod(projectionsOverlap)
+
+    def midpoint(p1, p2):
+        """Return the midpoint of two vertices.
+        """
+        m = MidpointVecs(Vector(p1), Vector(p2))
+        mv = NMesh.Vert(m[0], m[1], m[2])
+
+        return mv
+
+    midpoint = staticmethod(midpoint)
+
+    def facesplit(P, Q, facelist, nmesh):
+        """Split P or Q according to the strategy illustrated in the Newell's
+        paper.
+        """
+
+        by_furthest_z = (lambda f1, f2:
+                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
+                )
+
+        # Choose if split P on Q plane or vice-versa
+
+        n = 0
+        for Pi in P:
+            d = HSR.Distance(Vector(Pi), Q)
+            if d <= EPS:
+                n += 1
+        pIntersectQ = (n != len(P))
+
+        n = 0
+        for Qi in Q:
+            d = HSR.Distance(Vector(Qi), P)
+            if d >= -EPS:
+                n += 1
+        qIntersectP = (n != len(Q))
+
+        newfaces = []
+
+        # 1. If parts of P lie in both half-spaces of Q
+        # then splice P in two with the plane of Q
+        if pIntersectQ:
+            #print "We split P"
+            f = P
+            plane = Q
+
+            newfaces = HSR.splitOn(plane, f)
+
+        # 2. Else if parts of Q lie in both half-space of P
+        # then splice Q in two with the plane of P
+        if qIntersectP and newfaces == None:
+            #print "We split Q"
+            f = Q
+            plane = P
+
+            newfaces = HSR.splitOn(plane, f)
+            #print "After"
+
+        # 3. Else slice P in half through the mid-point of
+        # the longest pair of opposite sides
+        if newfaces == None:
+
+            print "We ignore P..."
+            facelist.remove(P)
+            return facelist
+
+            #f = P
+
+            #if len(P)==3:
+            #    v1 = midpoint(f[0], f[1])
+            #    v2 = midpoint(f[1], f[2])
+            #if len(P)==4:
+            #    v1 = midpoint(f[0], f[1])
+            #    v2 = midpoint(f[2], f[3])
+            #vec3 = (Vector(v2)+10*Vector(f.normal))
+            #
+            #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
+
+            #plane = NMesh.Face([v1, v2, v3])
+            #
+            #newfaces = splitOn(plane, f)
+
+        if newfaces == None:
+            print "Big FAT problem, we weren't able to split POLYGONS!"
+            raise AssertionError
+
+        #print newfaces
+        if newfaces:
+            #for v in f:
+            #    if v not in plane and v in nmesh.verts:
+            #        nmesh.verts.remove(v)
+            for nf in newfaces:
+
+                nf.mat = f.mat
+                nf.sel = f.sel
+                nf.col = [f.col[0]] * len(nf.v)
+
+                nf.smooth = 0
+
+                for v in nf:
+                    nmesh.verts.append(v)
+                # insert pieces in the list
+                facelist.append(nf)
+
+            facelist.remove(f)
+
+        # and resort the faces
+        facelist.sort(by_furthest_z)
+        facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
+        facelist.reverse()
+
+        #print [ f.smooth for f in facelist ]
+
+        return facelist
+
+    facesplit = staticmethod(facesplit)
+
+    def isOnSegment(v1, v2, p, extremes_internal=False):
+        """Check if point p is in segment v1v2.
+        """
+
+        l1 = (v1 - p).length
+        l2 = (v2 - p).length
+
+        # Should we consider extreme points as internal ?
+        # The test:
+        # if p == v1 or p == v2:
+        if l1 < EPS or l2 < EPS:
+            return extremes_internal
+
+        l = (v1 - v2).length
+
+        # if the sum of l1 and l2 is circa l, then the point is on segment,
+        if abs(l - (l1 + l2)) < EPS:
+            return True
+        else:
+            return False
+
+    isOnSegment = staticmethod(isOnSegment)
+
+    def Distance(point, face):
+        """ Calculate the distance between a point and a face.
+
+        An alternative but more expensive method can be:
+
+            ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
+                    Vector(face.no), Vector(point), 0)
+
+            d = Vector(ip - point).length
+
+        See: http://mathworld.wolfram.com/Point-PlaneDistance.html
+        """
+
+        p = Vector(point)
+        plNormal = Vector(face.no)
+        plVert0 = Vector(face.v[0])
+
+        d = (plVert0 * plNormal) - (p * plNormal)
+
+        #d = plNormal * (plVert0 - p)
+
+        #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
+
+        return d
+
+    Distance = staticmethod(Distance)
+
+    def makeFaces(vl):
+        #
+        # make one or two new faces based on a list of vertex-indices
+        #
+        newfaces = []
+
+        if len(vl) <= 4:
+            nf = NMesh.Face()
+
+            for v in vl:
+                nf.v.append(v)
+
+            newfaces.append(nf)
+
+        else:
+            nf = NMesh.Face()
+
+            nf.v.append(vl[0])
+            nf.v.append(vl[1])
+            nf.v.append(vl[2])
+            nf.v.append(vl[3])
+            newfaces.append(nf)
+
+            nf = NMesh.Face()
+            nf.v.append(vl[3])
+            nf.v.append(vl[4])
+            nf.v.append(vl[0])
+            newfaces.append(nf)
+
+        return newfaces
+
+    makeFaces = staticmethod(makeFaces)
+
+    def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
+        """Split P using the plane of Q.
+        Logic taken from the knife.py python script
+        """
+
+        # Check if P and Q are parallel
+        u = CrossVecs(Vector(Q.no), Vector(P.no))
+        ax = abs(u[0])
+        ay = abs(u[1])
+        az = abs(u[2])
+
+        if (ax + ay + az) < EPS:
+            print "PARALLEL planes!!"
+            return
+
+        # The final aim is to find the intersection line between P
+        # and the plane of Q, and split P along this line
+
+        nP = len(P.v)
+
+        # Calculate point-plane Distance between vertices of P and plane Q
+        d = []
+        for i in range(0, nP):
+            d.append(HSR.Distance(P.v[i], Q))
+
+        newVertList = []
+
+        posVertList = []
+        negVertList = []
+        for i in range(nP):
+            d0 = d[i - 1]
+            V0 = P.v[i - 1]
+
+            d1 = d[i]
+            V1 = P.v[i]
+
+            #print "d0:", d0, "d1:", d1
+
+            # if the vertex lies in the cutplane
+            if abs(d1) < EPS:
+                #print "d1 On cutplane"
+                posVertList.append(V1)
+                negVertList.append(V1)
+            else:
+                # if the previous vertex lies in cutplane
+                if abs(d0) < EPS:
+                    #print "d0 on Cutplane"
+                    if d1 > 0:
+                        #print "d1 on positive Halfspace"
+                        posVertList.append(V1)
+                    else:
+                        #print "d1 on negative Halfspace"
+                        negVertList.append(V1)
+                else:
+                    # if they are on the same side of the plane
+                    if (d1 * d0) > 0:
+                        #print "On the same half-space"
+                        if d1 > 0:
+                            #print "d1 on positive Halfspace"
+                            posVertList.append(V1)
+                        else:
+                            #print "d1 on negative Halfspace"
+                            negVertList.append(V1)
+
+                    # the vertices are not on the same side of the plane, so we have an intersection
+                    else:
+                        #print "Intersection"
+
+                        e = Vector(V0), Vector(V1)
+                        tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
+
+                        inters = Intersect(tri[0], tri[1], tri[2], e[1] - e[0], e[0], 0)
+                        if inters == None:
+                            print "Split Break"
+                            break
+
+                        #print "Intersection", inters
+
+                        nv = NMesh.Vert(inters[0], inters[1], inters[2])
+                        newVertList.append(nv)
+
+                        posVertList.append(nv)
+                        negVertList.append(nv)
+
+                        if d1 > 0:
+                            posVertList.append(V1)
+                        else:
+                            negVertList.append(V1)
+
+        # uniq for python > 2.4
+        #posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
+        #negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+        # a more portable way
+        posVertList = uniq(posVertList)
+        negVertList = uniq(negVertList)
+
+        # If vertex are all on the same half-space, return
+        #if len(posVertList) < 3:
+        #    print "Problem, we created a face with less that 3 vertices??"
+        #    posVertList = []
+        #if len(negVertList) < 3:
+        #    print "Problem, we created a face with less that 3 vertices??"
+        #    negVertList = []
+
+        if len(posVertList) < 3 or len(negVertList) < 3:
+            #print "RETURN NONE, SURE???"
+            return None
+
+        if not return_positive_faces:
+            posVertList = []
+        if not return_negative_faces:
+            negVertList = []
+
+        newfaces = HSR.addNewFaces(posVertList, negVertList)
+
+        return newfaces
+
+    splitOn = staticmethod(splitOn)
+
+    def addNewFaces(posVertList, negVertList):
+        # Create new faces resulting from the split
+        outfaces = []
+        if len(posVertList) or len(negVertList):
+
+            #newfaces = [posVertList] + [negVertList]
+            newfaces = ([[NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
+                    [[NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]])
+
+            for nf in newfaces:
+                if nf and len(nf) > 2:
+                    outfaces += HSR.makeFaces(nf)
+
+        return outfaces
+
+    addNewFaces = staticmethod(addNewFaces)
+
+
+# ---------------------------------------------------------------------
+#
 ## Mesh Utility class
 #
 # ---------------------------------------------------------------------
+
 class MeshUtils:
 
     def buildEdgeFaceUsersCache(me):
-        ''' 
+        '''
         Takes a mesh and returns a list aligned with the meshes edges.
         Each item is a list of the faces that use the edge
         would be the equiv for having ed.face_users as a property
@@ -153,29 +775,28 @@ class MeshUtils:
         '''
 
         def sorted_edge_indicies(ed):
-            i1= ed.v1.index
-            i2= ed.v2.index
-            if i1>i2:
-                i1,i2= i2,i1
+            i1 = ed.v1.index
+            i2 = ed.v2.index
+            if i1 > i2:
+                i1, i2 = i2, i1
             return i1, i2
 
-       
-        face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
+        face_edges_dict = dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
         for f in me.faces:
-            fvi= [v.index for v in f.v]# face vert idx's
+            fvi = [v.index for v in f.v]  # face vert idx's
             for i in xrange(len(f)):
-                i1= fvi[i]
-                i2= fvi[i-1]
-                
-                if i1>i2:
-                    i1,i2= i2,i1
-                
-                face_edges_dict[i1,i2][1].append(f)
-        
-        face_edges= [None] * len(me.edges)
+                i1 = fvi[i]
+                i2 = fvi[i - 1]
+
+                if i1 > i2:
+                    i1, i2 = i2, i1
+
+                face_edges_dict[i1, i2][1].append(f)
+
+        face_edges = [None] * len(me.edges)
         for ed_index, ed_faces in face_edges_dict.itervalues():
-            face_edges[ed_index]= ed_faces
-        
+            face_edges[ed_index] = ed_faces
+
         return face_edges
 
     def isMeshEdge(adjacent_faces):
@@ -222,6 +843,7 @@ class MeshUtils:
 ## Shading Utility class
 #
 # ---------------------------------------------------------------------
+
 class ShadingUtils:
 
     shademap = None
@@ -229,8 +851,8 @@ class ShadingUtils:
     def toonShadingMapSetup():
         levels = config.polygons['TOON_LEVELS']
 
-        texels = 2*levels - 1
-        tmp_shademap = [0.0] + [(i)/float(texels-1) for i in xrange(1, texels-1) ] + [1.0]
+        texels = 2 * levels - 1
+        tmp_shademap = [0.0] + [(i) / float(texels - 1) for i in xrange(1, texels - 1)] + [1.0]
 
         return tmp_shademap
 
@@ -242,13 +864,13 @@ class ShadingUtils:
             shademap = ShadingUtils.toonShadingMapSetup()
 
         v = 1.0
-        for i in xrange(0, len(shademap)-1):
-            pivot = (shademap[i]+shademap[i+1])/2.0
-            j = int(u>pivot)
+        for i in xrange(0, len(shademap) - 1):
+            pivot = (shademap[i] + shademap[i + 1]) / 2.0
+            j = int(u > pivot)
 
-            v = shademap[i+j]
+            v = shademap[i + j]
 
-            if v < shademap[i+1]:
+            if v < shademap[i + 1]:
                 return v
 
         return v
@@ -265,10 +887,10 @@ class ShadingUtils:
 
 class Projector:
     """Calculate the projection of an object given the camera.
-    
+
     A projector is useful to so some per-object transformation to obtain the
     projection of an object given the camera.
-    
+
     The main method is #doProjection# see the method description for the
     parameter list.
     """
@@ -282,25 +904,32 @@ class Projector:
 
         camera = cameraObj.getData()
 
-        aspect = float(canvasRatio[0])/float(canvasRatio[1])
+        aspect = float(canvasRatio[0]) / float(canvasRatio[1])
         near = camera.clipStart
         far = camera.clipEnd
 
         scale = float(camera.scale)
 
-        fovy = atan(0.5/aspect/(camera.lens/32))
-        fovy = fovy * 360.0/pi
-        
+        fovy = atan(0.5 / aspect / (camera.lens / 32))
+        fovy = fovy * 360.0 / pi
+
+        if Blender.Get('version') < 243:
+            camPersp = 0
+            camOrtho = 1
+        else:
+            camPersp = 'persp'
+            camOrtho = 'ortho'
+
         # What projection do we want?
-        if camera.type == 0:
-            mP = self._calcPerspectiveMatrix(fovy, aspect, near, far) 
-        elif camera.type == 1:
-            mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale) 
-        
+        if camera.type == camPersp:
+            mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+        elif camera.type == camOrtho:
+            mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
+
         # View transformation
         cam = Matrix(cameraObj.getInverseMatrix())
-        cam.transpose() 
-        
+        cam.transpose()
+
         mP = mP * cam
 
         self.projectionMatrix = mP
@@ -315,18 +944,18 @@ class Projector:
         Given a vertex calculate the projection using the current projection
         matrix.
         """
-        
+
         # Note that we have to work on the vertex using homogeneous coordinates
         # From blender 2.42+ we don't need to resize the vector to be 4d
         # when applying a 4x4 matrix, but we do that anyway since we need the
         # 4th coordinate later
         p = self.projectionMatrix * Vector(v).resize4D()
-        
+
         # Perspective division
         if p[3] != 0:
-            p[0] = p[0]/p[3]
-            p[1] = p[1]/p[3]
-            p[2] = p[2]/p[3]
+            p[0] = p[0] / p[3]
+            p[1] = p[1] / p[3]
+            p[2] = p[2] / p[3]
 
         # restore the size
         p[3] = 1.0
@@ -334,26 +963,25 @@ class Projector:
 
         return p
 
-
     ##
     # Private methods
     #
-    
+
     def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
         """Return a perspective projection matrix.
         """
-        
+
         top = near * tan(fovy * pi / 360.0)
         bottom = -top
-        left = bottom*aspect
-        right= top*aspect
-        x = (2.0 * near) / (right-left)
-        y = (2.0 * near) / (top-bottom)
-        a = (right+left) / (right-left)
-        b = (top+bottom) / (top - bottom)
-        c = - ((far+near) / (far-near))
-        d = - ((2*far*near)/(far-near))
-        
+        left = bottom * aspect
+        right = top * aspect
+        x = (2.0 * near) / (right - left)
+        y = (2.0 * near) / (top - bottom)
+        a = (right + left) / (right - left)
+        b = (top + bottom) / (top - bottom)
+        c = - ((far + near) / (far - near))
+        d = - ((2 * far * near) / (far - near))
+
         m = Matrix(
                 [x,   0.0,    a,    0.0],
                 [0.0,   y,    b,    0.0],
@@ -362,28 +990,28 @@ class Projector:
 
         return m
 
-    def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
+    def _calcOrthoMatrix(self, fovy, aspect, near, far, scale):
         """Return an orthogonal projection matrix.
         """
-        
+
         # The 11 in the formula was found emiprically
         top = near * tan(fovy * pi / 360.0) * (scale * 11)
-        bottom = -top 
+        bottom = -top
         left = bottom * aspect
-        right= top * aspect
-        rl = right-left
-        tb = top-bottom
-        fn = near-far 
-        tx = -((right+left)/rl)
-        ty = -((top+bottom)/tb)
-        tz = ((far+near)/fn)
+        right = top * aspect
+        rl = right - left
+        tb = top - bottom
+        fn = near - far
+        tx = -((right + left) / rl)
+        ty = -((top + bottom) / tb)
+        tz = ((far + near) / fn)
 
         m = Matrix(
-                [2.0/rl, 0.0,    0.0,     tx],
-                [0.0,    2.0/tb, 0.0,     ty],
-                [0.0,    0.0,    2.0/fn,  tz],
-                [0.0,    0.0,    0.0,    1.0])
-        
+                [2.0 / rl, 0.0,      0.0,       tx],
+                [0.0,      2.0 / tb, 0.0,       ty],
+                [0.0,      0.0,      2.0 / fn,  tz],
+                [0.0,      0.0,      0.0,      1.0])
+
         return m
 
 
@@ -395,7 +1023,7 @@ class Projector:
 
 class Progress:
     """A model for a progress indicator.
-    
+
     Do the progress calculation calculation and
     the view independent stuff of a progress indicator.
     """
@@ -435,7 +1063,7 @@ class Progress:
             return False
 
         self.completed += 1
-        self.progress = ( float(self.completed) / float(self.steps) ) * 100
+        self.progress = (float(self.completed) / float(self.steps)) * 100
         self.progress = int(self.progress)
 
         return True
@@ -507,17 +1135,17 @@ class ConsoleProgressIndicator(ProgressIndicator):
 
     def show(self, progress, name):
         ProgressIndicator.show(self, progress, name)
-        
+
         bar_length = 70
-        bar_progress = int( (progress/100.0) * bar_length )
+        bar_progress = int((progress / 100.0) * bar_length)
         bar = ("=" * bar_progress).ljust(bar_length)
 
-        self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+        self.swirl_count = (self.swirl_count + 1) % len(self.swirl_chars)
         swirl_char = self.swirl_chars[self.swirl_count]
 
         progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress)
 
-        sys.stderr.write(progress_bar+"\r")
+        sys.stderr.write(progress_bar + "\r")
         if progress == 100:
             sys.stderr.write("\n")
 
@@ -538,21 +1166,19 @@ class GraphicalProgressIndicator(ProgressIndicator):
     def show(self, progress, name):
         ProgressIndicator.show(self, progress)
 
-        self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+        self.swirl_count = (self.swirl_count + 1) % len(self.swirl_chars)
         swirl_char = self.swirl_chars[self.swirl_count]
 
         progress_text = "%s - %c %3d%%" % (name, swirl_char, progress)
 
         # Finally draw  the Progress Bar
-        Window.WaitCursor(1) # Maybe we can move that call in the constructor?
-        Window.DrawProgressBar(progress/100.0, progress_text)
+        Window.WaitCursor(1)  # Maybe we can move that call in the constructor?
+        Window.DrawProgressBar(progress / 100.0, progress_text)
 
         if progress == 100:
             Window.DrawProgressBar(1, progress_text)
             Window.WaitCursor(0)
 
-
-
 # ---------------------------------------------------------------------
 #
 ## 2D Object representation class
@@ -585,39 +1211,42 @@ class VectorWriter:
         - printCanvas(self, scene,
             doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
     """
-    
+
     def __init__(self, fileName):
         """Set the output file name and other properties"""
 
+        try:
+            config.writer
+        except:
+            config.writer = dict()
+            config.writer['SETTING'] = True
+
         self.outputFileName = fileName
-        self.file = None
-        
+
         context = Scene.GetCurrent().getRenderingContext()
-        self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
+        self.canvasSize = (context.imageSizeX(), context.imageSizeY())
+
+        self.fps = context.fps
 
         self.startFrame = 1
         self.endFrame = 1
         self.animation = False
 
-
     ##
     # Public Methods
     #
-    
+
     def open(self, startFrame=1, endFrame=1):
         if startFrame != endFrame:
             self.startFrame = startFrame
             self.endFrame = endFrame
             self.animation = True
 
-        self.file = open(self.outputFileName, "w")
         print "Outputting to: ", self.outputFileName
 
         return
 
     def close(self):
-        if self.file:
-            self.file.close()
         return
 
     def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
@@ -625,7 +1254,7 @@ class VectorWriter:
         """This is the interface for the needed printing routine.
         """
         return
-        
+
 
 ## SVG Writer
 
@@ -638,6 +1267,7 @@ class SVGVectorWriter(VectorWriter):
         """
         VectorWriter.__init__(self, fileName)
 
+        self.file = None
 
     ##
     # Public Methods
@@ -647,6 +1277,9 @@ class SVGVectorWriter(VectorWriter):
         """Do some initialization operations.
         """
         VectorWriter.open(self, startFrame, endFrame)
+
+        self.file = open(self.outputFileName, "w")
+
         self._printHeader()
 
     def close(self):
@@ -654,16 +1287,18 @@ class SVGVectorWriter(VectorWriter):
         """
         self._printFooter()
 
-        # remember to call the close method of the parent
+        if self.file:
+            self.file.close()
+
+        # remember to call the close method of the parent as last
         VectorWriter.close(self)
 
-        
     def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
             showHiddenEdges=False):
         """Convert the scene representation to SVG.
         """
 
-        Objects = scene.getChildren()
+        Objects = scene.objects
 
         context = scene.getRenderingContext()
         framenumber = context.currentFrame()
@@ -672,15 +1307,14 @@ class SVGVectorWriter(VectorWriter):
             framestyle = "display:none"
         else:
             framestyle = "display:block"
-        
+
         # Assign an id to this group so we can set properties on it using DOM
         self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
-                (framenumber, framestyle) )
-
+                (framenumber, framestyle))
 
         for obj in Objects:
 
-            if(obj.getType() != 'Mesh'):
+            if obj.getType() != 'Mesh':
                 continue
 
             self.file.write("<g id=\"%s\">\n" % obj.getName())
@@ -692,35 +1326,34 @@ class SVGVectorWriter(VectorWriter):
 
             if doPrintEdges:
                 self._printEdges(mesh, showHiddenEdges)
-            
+
             self.file.write("</g>\n")
 
         self.file.write("</g>\n")
 
-    
-    ##  
+    ##
     # Private Methods
     #
-    
+
     def _calcCanvasCoord(self, v):
         """Convert vertex in scene coordinates to canvas coordinates.
         """
 
         pt = Vector([0, 0, 0])
-        
-        mW = float(self.canvasSize[0])/2.0
-        mH = float(self.canvasSize[1])/2.0
+
+        mW = float(self.canvasSize[0]) / 2.0
+        mH = float(self.canvasSize[1]) / 2.0
 
         # rescale to canvas size
-        pt[0] = v.co[0]*mW + mW
-        pt[1] = v.co[1]*mH + mH
+        pt[0] = v.co[0] * mW + mW
+        pt[1] = v.co[1] * mH + mH
         pt[2] = v.co[2]
-         
+
         # For now we want (0,0) in the top-left corner of the canvas.
         # Mirror and translate along y
         pt[1] *= -1
         pt[1] += self.canvasSize[1]
-        
+
         return pt
 
     def _printHeader(self):
@@ -735,15 +1368,17 @@ class SVGVectorWriter(VectorWriter):
                 self.canvasSize)
 
         if self.animation:
+            delay = 1000 / self.fps
 
             self.file.write("""\n<script type="text/javascript"><![CDATA[
             globalStartFrame=%d;
             globalEndFrame=%d;
 
-            /* FIXME: Use 1000 as interval as lower values gives problems */
-            timerID = setInterval("NextFrame()", 1000);
+            timerID = setInterval("NextFrame()", %d);
             globalFrameCounter=%d;
+            \n""" % (self.startFrame, self.endFrame, delay, self.startFrame))
 
+            self.file.write("""\n
             function NextFrame()
             {
               currentElement  = document.getElementById('frame'+globalFrameCounter)
@@ -769,14 +1404,14 @@ class SVGVectorWriter(VectorWriter):
               }
             }
             \n]]></script>\n
-            \n""" % (self.startFrame, self.endFrame, self.startFrame) )
-                
+            \n""")
+
     def _printFooter(self):
         """Print the SVG footer."""
 
         self.file.write("\n</svg>\n")
 
-    def _printPolygons(self, mesh): 
+    def _printPolygons(self, mesh):
         """Print the selected (visible) polygons.
         """
 
@@ -787,21 +1422,22 @@ class SVGVectorWriter(VectorWriter):
 
         for face in mesh.faces:
             if not face.sel:
-               continue
+                continue
 
             self.file.write("<path d=\"")
 
-            p = self._calcCanvasCoord(face.verts[0])
+            #p = self._calcCanvasCoord(face.verts[0])
+            p = self._calcCanvasCoord(face.v[0])
             self.file.write("M %g,%g L " % (p[0], p[1]))
 
-            for v in face.verts[1:]:
+            for v in face.v[1:]:
                 p = self._calcCanvasCoord(v)
                 self.file.write("%g,%g " % (p[0], p[1]))
-            
+
             # get rid of the last blank space, just cosmetics here.
-            self.file.seek(-1, 1) 
+            self.file.seek(-1, 1)
             self.file.write(" z\"\n")
-            
+
             # take as face color the first vertex color
             if face.col:
                 fcol = face.col[0]
@@ -815,68 +1451,245 @@ class SVGVectorWriter(VectorWriter):
             # Handle transparent polygons
             opacity_string = ""
             if color[3] != 255:
-                opacity = float(color[3])/255.0
+                opacity = float(color[3]) / 255.0
                 opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
                 #opacity_string = "opacity: %g;" % (opacity)
 
-            self.file.write("\tstyle=\"fill:" + str_col + ";")
-            self.file.write(opacity_string)
+            self.file.write("\tstyle=\"fill:" + str_col + ";")
+            self.file.write(opacity_string)
+
+            # use the stroke property to alleviate the "adjacent edges" problem,
+            # we simulate polygon expansion using borders,
+            # see http://www.antigrain.com/svg/index.html for more info
+            stroke_width = 1.0
+
+            # EXPANSION TRICK is not that useful where there is transparency
+            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+                # str_col = "#000000" # For debug
+                self.file.write(" stroke:%s;\n" % str_col)
+                self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+                self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+
+            self.file.write("\"/>\n")
+
+        self.file.write("</g>\n")
+
+    def _printEdges(self, mesh, showHiddenEdges=False):
+        """Print the wireframe using mesh edges.
+        """
+
+        stroke_width = config.edges['WIDTH']
+        stroke_col = config.edges['COLOR']
+
+        self.file.write("<g>\n")
+
+        for e in mesh.edges:
+
+            hidden_stroke_style = ""
+
+            if e.sel == 0:
+                if showHiddenEdges == False:
+                    continue
+                else:
+                    hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+            p1 = self._calcCanvasCoord(e.v1)
+            p2 = self._calcCanvasCoord(e.v2)
+
+            self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
+                    % (p1[0], p1[1], p2[0], p2[1]))
+            self.file.write(" style=\"stroke:rgb(" + str(stroke_col[0]) + "," + str(stroke_col[1]) + "," + str(stroke_col[2]) + ");")
+            self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+            self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+            self.file.write(hidden_stroke_style)
+            self.file.write("\"/>\n")
+
+        self.file.write("</g>\n")
+
+
+## SWF Writer
+
+try:
+    from ming import *
+    SWFSupported = True
+except:
+    SWFSupported = False
+
+
+class SWFVectorWriter(VectorWriter):
+    """A concrete class for writing SWF output.
+    """
+
+    def __init__(self, fileName):
+        """Simply call the parent Contructor.
+        """
+        VectorWriter.__init__(self, fileName)
+
+        self.movie = None
+        self.sprite = None
+
+    ##
+    # Public Methods
+    #
+
+    def open(self, startFrame=1, endFrame=1):
+        """Do some initialization operations.
+        """
+        VectorWriter.open(self, startFrame, endFrame)
+        self.movie = SWFMovie()
+        self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+        if self.animation:
+            self.movie.setRate(self.fps)
+            numframes = endFrame - startFrame + 1
+            self.movie.setFrames(numframes)
+
+    def close(self):
+        """Do some finalization operation.
+        """
+        self.movie.save(self.outputFileName)
+
+        # remember to call the close method of the parent
+        VectorWriter.close(self)
+
+    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+            showHiddenEdges=False):
+        """Convert the scene representation to SVG.
+        """
+        context = scene.getRenderingContext()
+        framenumber = context.currentFrame()
+
+        Objects = scene.objects
+
+        if self.sprite:
+            self.movie.remove(self.sprite)
+
+        sprite = SWFSprite()
+
+        for obj in Objects:
+
+            if(obj.getType() != 'Mesh'):
+                continue
+
+            mesh = obj.getData(mesh=1)
+
+            if doPrintPolygons:
+                self._printPolygons(mesh, sprite)
+
+            if doPrintEdges:
+                self._printEdges(mesh, sprite, showHiddenEdges)
+
+        sprite.nextFrame()
+        i = self.movie.add(sprite)
+        # Remove the instance the next time
+        self.sprite = i
+        if self.animation:
+            self.movie.nextFrame()
+
+    ##
+    # Private Methods
+    #
+
+    def _calcCanvasCoord(self, v):
+        """Convert vertex in scene coordinates to canvas coordinates.
+        """
+
+        pt = Vector([0, 0, 0])
+
+        mW = float(self.canvasSize[0]) / 2.0
+        mH = float(self.canvasSize[1]) / 2.0
+
+        # rescale to canvas size
+        pt[0] = v.co[0] * mW + mW
+        pt[1] = v.co[1] * mH + mH
+        pt[2] = v.co[2]
+
+        # For now we want (0,0) in the top-left corner of the canvas.
+        # Mirror and translate along y
+        pt[1] *= -1
+        pt[1] += self.canvasSize[1]
+
+        return pt
+
+    def _printPolygons(self, mesh, sprite):
+        """Print the selected (visible) polygons.
+        """
+
+        if len(mesh.faces) == 0:
+            return
+
+        for face in mesh.faces:
+            if not face.sel:
+                continue
+
+            if face.col:
+                fcol = face.col[0]
+                color = [fcol.r, fcol.g, fcol.b, fcol.a]
+            else:
+                color = [255, 255, 255, 255]
+
+            s = SWFShape()
+            f = s.addFill(color[0], color[1], color[2], color[3])
+            s.setRightFill(f)
 
-            # use the stroke property to alleviate the "adjacent edges" problem,
-            # we simulate polygon expansion using borders,
-            # see http://www.antigrain.com/svg/index.html for more info
-            stroke_width = 1.0
+            # The starting point of the shape
+            p0 = self._calcCanvasCoord(face.verts[0])
+            s.movePenTo(p0[0], p0[1])
 
-            # EXPANSION TRICK is not that useful where there is transparency
-            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
-                # str_col = "#000000" # For debug
-                self.file.write(" stroke:%s;\n" % str_col)
-                self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
-                self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+            for v in face.verts[1:]:
+                p = self._calcCanvasCoord(v)
+                s.drawLineTo(p[0], p[1])
 
-            self.file.write("\"/>\n")
+            # Closing the shape
+            s.drawLineTo(p0[0], p0[1])
 
-        self.file.write("</g>\n")
+            s.end()
+            sprite.add(s)
 
-    def _printEdges(self, mesh, showHiddenEdges=False):
+    def _printEdges(self, mesh, sprite, showHiddenEdges=False):
         """Print the wireframe using mesh edges.
         """
 
         stroke_width = config.edges['WIDTH']
         stroke_col = config.edges['COLOR']
-        
-        self.file.write("<g>\n")
+
+        s = SWFShape()
 
         for e in mesh.edges:
-            
-            hidden_stroke_style = ""
-            
+
+            # Next, we set the line width and color for our shape.
+            s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+            255)
+
             if e.sel == 0:
                 if showHiddenEdges == False:
                     continue
                 else:
-                    hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+                    # SWF does not support dashed lines natively, so -for now-
+                    # draw hidden lines thinner and half-trasparent
+                    s.setLine(stroke_width / 2, stroke_col[0], stroke_col[1],
+                            stroke_col[2], 128)
 
             p1 = self._calcCanvasCoord(e.v1)
             p2 = self._calcCanvasCoord(e.v2)
-            
-            self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
-                    % ( p1[0], p1[1], p2[0], p2[1] ) )
-            self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
-            self.file.write(" stroke-width:"+str(stroke_width)+";\n")
-            self.file.write(" stroke-linecap:round;stroke-linejoin:round")
-            self.file.write(hidden_stroke_style)
-            self.file.write("\"/>\n")
 
-        self.file.write("</g>\n")
+            s.movePenTo(p1[0], p1[1])
+            s.drawLineTo(p2[0], p2[1])
 
+        s.end()
+        sprite.add(s)
 
-## SWF Writer
 
-from ming import *
+## PDF Writer
 
-class SWFVectorWriter(VectorWriter):
-    """A concrete class for writing SWF output.
+try:
+    from reportlab.pdfgen import canvas
+    PDFSupported = True
+except:
+    PDFSupported = False
+
+
+class PDFVectorWriter(VectorWriter):
+    """A concrete class for writing PDF output.
     """
 
     def __init__(self, fileName):
@@ -884,9 +1697,7 @@ class SWFVectorWriter(VectorWriter):
         """
         VectorWriter.__init__(self, fileName)
 
-        self.movie = None
-        self.sprite = None
-
+        self.canvas = None
 
     ##
     # Public Methods
@@ -896,17 +1707,13 @@ class SWFVectorWriter(VectorWriter):
         """Do some initialization operations.
         """
         VectorWriter.open(self, startFrame, endFrame)
-        self.movie = SWFMovie()
-        self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
-        # set fps
-        self.movie.setRate(25)
-        numframes = endFrame - startFrame + 1
-        self.movie.setFrames(numframes)
+        size = (self.canvasSize[0], self.canvasSize[1])
+        self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
 
     def close(self):
         """Do some finalization operation.
         """
-        self.movie.save(self.outputFileName)
+        self.canvas.save()
 
         # remember to call the close method of the parent
         VectorWriter.close(self)
@@ -918,12 +1725,7 @@ class SWFVectorWriter(VectorWriter):
         context = scene.getRenderingContext()
         framenumber = context.currentFrame()
 
-        Objects = scene.getChildren()
-
-        if self.sprite:
-            self.movie.remove(self.sprite)
-
-        sprite = SWFSprite()
+        Objects = scene.objects
 
         for obj in Objects:
 
@@ -933,45 +1735,39 @@ class SWFVectorWriter(VectorWriter):
             mesh = obj.getData(mesh=1)
 
             if doPrintPolygons:
-                self._printPolygons(mesh, sprite)
+                self._printPolygons(mesh)
 
             if doPrintEdges:
-                self._printEdges(mesh, sprite, showHiddenEdges)
-            
-        sprite.nextFrame()
-        i = self.movie.add(sprite)
-        # Remove the instance the next time
-        self.sprite = i
-        if self.animation:
-            self.movie.nextFrame()
+                self._printEdges(mesh, showHiddenEdges)
 
-    
-    ##  
+        self.canvas.showPage()
+
+    ##
     # Private Methods
     #
-    
+
     def _calcCanvasCoord(self, v):
         """Convert vertex in scene coordinates to canvas coordinates.
         """
 
         pt = Vector([0, 0, 0])
-        
-        mW = float(self.canvasSize[0])/2.0
-        mH = float(self.canvasSize[1])/2.0
+
+        mW = float(self.canvasSize[0]) / 2.0
+        mH = float(self.canvasSize[1]) / 2.0
 
         # rescale to canvas size
-        pt[0] = v.co[0]*mW + mW
-        pt[1] = v.co[1]*mH + mH
+        pt[0] = v.co[0] * mW + mW
+        pt[1] = v.co[1] * mH + mH
         pt[2] = v.co[2]
-         
+
         # For now we want (0,0) in the top-left corner of the canvas.
         # Mirror and translate along y
         pt[1] *= -1
         pt[1] += self.canvasSize[1]
-        
+
         return pt
-                
-    def _printPolygons(self, mesh, sprite): 
+
+    def _printPolygons(self, mesh):
         """Print the selected (visible) polygons.
         """
 
@@ -980,86 +1776,63 @@ class SWFVectorWriter(VectorWriter):
 
         for face in mesh.faces:
             if not face.sel:
-               continue
+                continue
 
             if face.col:
                 fcol = face.col[0]
-                color = [fcol.r, fcol.g, fcol.b, fcol.a]
+                color = [fcol.r / 255.0, fcol.g / 255.0, fcol.b / 255.0,
+                        fcol.a / 255.0]
             else:
-                color = [255, 255, 255, 255]
+                color = [1, 1, 1, 1]
 
-            s = SWFShape()
-            f = s.addFill(color[0], color[1], color[2], color[3])
-            s.setRightFill(f)
+            self.canvas.setFillColorRGB(color[0], color[1], color[2])
+            # For debug
+            self.canvas.setStrokeColorRGB(0, 0, 0)
 
-            # The starting point of the shape
-            p0 = self._calcCanvasCoord(face.verts[0])
-            s.movePenTo(p0[0], p0[1])
+            path = self.canvas.beginPath()
 
+            # The starting point of the path
+            p0 = self._calcCanvasCoord(face.verts[0])
+            path.moveTo(p0[0], p0[1])
 
             for v in face.verts[1:]:
                 p = self._calcCanvasCoord(v)
-                s.drawLineTo(p[0], p[1])
-            
-            # Closing the shape
-            s.drawLineTo(p0[0], p0[1])
-            s.end()
-            sprite.add(s)
-
-
-            """
-            # use the stroke property to alleviate the "adjacent edges" problem,
-            # we simulate polygon expansion using borders,
-            # see http://www.antigrain.com/svg/index.html for more info
-            stroke_width = 1.0
+                path.lineTo(p[0], p[1])
 
-            # EXPANSION TRICK is not that useful where there is transparency
-            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
-                # str_col = "#000000" # For debug
-                self.file.write(" stroke:%s;\n" % str_col)
-                self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
-                self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+            # Closing the shape
+            path.close()
 
-            """
+            self.canvas.drawPath(path, stroke=0, fill=1)
 
-    def _printEdges(self, mesh, sprite, showHiddenEdges=False):
+    def _printEdges(self, mesh, showHiddenEdges=False):
         """Print the wireframe using mesh edges.
         """
 
         stroke_width = config.edges['WIDTH']
         stroke_col = config.edges['COLOR']
 
-        s = SWFShape()
+        self.canvas.setLineCap(1)
+        self.canvas.setLineJoin(1)
+        self.canvas.setLineWidth(stroke_width)
+        self.canvas.setStrokeColorRGB(stroke_col[0] / 255.0, stroke_col[1] / 255.0,
+            stroke_col[2] / 255)
 
         for e in mesh.edges:
 
-            #Next, we set the line width and color for our shape.
-            s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
-            255)
-            
+            self.canvas.setLineWidth(stroke_width)
+
             if e.sel == 0:
                 if showHiddenEdges == False:
                     continue
                 else:
-                    # SWF does not support dashed lines natively, so -for now-
-                    # draw hidden lines thinner and half-trasparent
-                    s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
-                            stroke_col[2], 128)
+                    # PDF does not support dashed lines natively, so -for now-
+                    # draw hidden lines thinner
+                    self.canvas.setLineWidth(stroke_width / 2.0)
 
             p1 = self._calcCanvasCoord(e.v1)
             p2 = self._calcCanvasCoord(e.v2)
 
-            # FIXME: this is just a qorkaround, remove that after the
-            # implementation of propoer Viewport clipping
-            if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000:
-                s.movePenTo(p1[0], p1[1])
-                s.drawLineTo(p2[0], p2[1])
-            
-
-        s.end()
-        sprite.add(s)
-            
-
+            self.canvas.line(p1[0], p1[1], p2[0], p2[1])
 
 # ---------------------------------------------------------------------
 #
@@ -1080,12 +1853,15 @@ edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
 # A dictionary to collect the supported output formats
 outputWriters = dict()
 outputWriters['SVG'] = SVGVectorWriter
-outputWriters['SWF'] = SWFVectorWriter
+if SWFSupported:
+    outputWriters['SWF'] = SWFVectorWriter
+if PDFSupported:
+    outputWriters['PDF'] = PDFVectorWriter
 
 
 class Renderer:
     """Render a scene viewed from the active camera.
-    
+
     This class is responsible of the rendering process, transformation and
     projection of the objects in the scene are invoked by the renderer.
 
@@ -1101,31 +1877,19 @@ class Renderer:
 
         # Render the current Scene, this should be a READ-ONLY property
         self._SCENE = Scene.GetCurrent()
-        
+
         # Use the aspect ratio of the scene rendering context
         context = self._SCENE.getRenderingContext()
 
-        aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY())
-        self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio,
+        aspect_ratio = float(context.imageSizeX()) / float(context.imageSizeY())
+        self.canvasRatio = (float(context.aspectRatioX()) * aspect_ratio,
                             float(context.aspectRatioY())
                             )
 
-        # Render from the currently active camera 
-        self.cameraObj = self._SCENE.getCurrentCamera()
-
-        # Get the list of lighting sources
-        obj_lst = self._SCENE.getChildren()
-        self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
-
-        # When there are no lights we use a default lighting source
-        # that have the same position of the camera
-        if len(self.lights) == 0:
-            l = Lamp.New('Lamp')
-            lobj = Object.New('Lamp')
-            lobj.loc = self.cameraObj.loc
-            lobj.link(l) 
-            self.lights.append(lobj)
+        # Render from the currently active camera
+        #self.cameraObj = self._SCENE.objects.camera
 
+        self.lights = []
 
     ##
     # Public Methods
@@ -1133,13 +1897,13 @@ class Renderer:
 
     def doRendering(self, outputWriter, animation=False):
         """Render picture or animation and write it out.
-        
+
         The parameters are:
             - a Vector writer object that will be used to output the result.
             - a flag to tell if we want to render an animation or only the
               current frame.
         """
-        
+
         context = self._SCENE.getRenderingContext()
         origCurrentFrame = context.currentFrame()
 
@@ -1152,17 +1916,23 @@ class Renderer:
             startFrame = context.startFrame()
             endFrame = context.endFrame()
             outputWriter.open(startFrame, endFrame)
-        
+
         # Do the rendering process frame by frame
-        print "Start Rendering of %d frames" % (endFrame-startFrame)
-        for f in xrange(startFrame, endFrame+1):
+        print "Start Rendering of %d frames" % (endFrame - startFrame + 1)
+        for f in xrange(startFrame, endFrame + 1):
             print "\n\nFrame: %d" % f
-            context.currentFrame(f)
+
+            # FIXME To get the correct camera position we have to use +1 here.
+            # Is there a bug somewhere in the Scene module?
+            context.currentFrame(f + 1)
+            self.cameraObj = self._SCENE.objects.camera
 
             # Use some temporary workspace, a full copy of the scene
             inputScene = self._SCENE.copy(2)
-            # And Set our camera accordingly
-            self.cameraObj = inputScene.getCurrentCamera()
+
+            # To get the objects at this frame remove the +1 ...
+            ctx = inputScene.getRenderingContext()
+            ctx.currentFrame(f)
 
             # Get a projector for this camera.
             # NOTE: the projector wants object in world coordinates,
@@ -1172,40 +1942,43 @@ class Renderer:
 
             try:
                 renderedScene = self.doRenderScene(inputScene)
-            except :
+            except:
                 print "There was an error! Aborting."
                 import traceback
                 print traceback.print_exc()
 
                 self._SCENE.makeCurrent()
-                Scene.unlink(inputScene)
+                Scene.Unlink(inputScene)
                 del inputScene
                 return
 
             outputWriter.printCanvas(renderedScene,
-                    doPrintPolygons = config.polygons['SHOW'],
-                    doPrintEdges    = config.edges['SHOW'],
-                    showHiddenEdges = config.edges['SHOW_HIDDEN'])
-            
+                    doPrintPolygons=config.polygons['SHOW'],
+                    doPrintEdges=config.edges['SHOW'],
+                    showHiddenEdges=config.edges['SHOW_HIDDEN'])
+
             # delete the rendered scene
             self._SCENE.makeCurrent()
-            Scene.unlink(renderedScene)
+            Scene.Unlink(renderedScene)
             del renderedScene
 
         outputWriter.close()
         print "Done!"
         context.currentFrame(origCurrentFrame)
 
-
     def doRenderScene(self, workScene):
         """Control the rendering process.
-        
+
         Here we control the entire rendering process invoking the operation
         needed to transform and project the 3D scene in two dimensions.
         """
-        
+
         # global processing of the scene
 
+        self._filterHiddenObjects(workScene)
+
+        self._buildLightSetup(workScene)
+
         self._doSceneClipping(workScene)
 
         self._doConvertGeometricObjsToMesh(workScene)
@@ -1214,12 +1987,13 @@ class Renderer:
             self._joinMeshObjectsInScene(workScene)
 
         self._doSceneDepthSorting(workScene)
-        
+
         # Per object activities
 
-        Objects = workScene.getChildren()
+        Objects = workScene.objects
+
         print "Total Objects: %d" % len(Objects)
-        for i,obj in enumerate(Objects):
+        for i, obj in enumerate(Objects):
             print "\n\n-------"
             print "Rendering Object: %d" % i
 
@@ -1235,12 +2009,11 @@ class Renderer:
 
             self._doBackFaceCulling(mesh)
 
-
             # When doing HSR with NEWELL we may want to flip all normals
             # toward the viewer
             if config.polygons['HSR'] == "NEWELL":
                 for f in mesh.faces:
-                    f.sel = 1-f.sel
+                    f.sel = 1 - f.sel
                 mesh.flipNormals()
                 for f in mesh.faces:
                     f.sel = 1
@@ -1262,7 +2035,6 @@ class Renderer:
 
         return workScene
 
-
     ##
     # Private Methods
     #
@@ -1279,12 +2051,11 @@ class Renderer:
         """
         return Vector(self.cameraObj.matrix[2]).resize3D()
 
-
     # Faces methods
 
     def _isFaceVisible(self, face):
         """Determine if a face of an object is visible from the current camera.
-        
+
         The view vector is calculated from the camera location and one of the
         vertices of the face (expressed in World coordinates, after applying
         modelview transformations).
@@ -1315,49 +2086,101 @@ class Renderer:
         # the difference between the camera position and one point of
         # the face, we choose the farthest point from the camera.
         if self.cameraObj.data.getType() == 0:
-            vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
+            vv = max([((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face])
             view_vect = vv[1]
 
-
         # if d > 0 the face is visible from the camera
         d = view_vect * normal
-        
+
         if d > 0:
             return True
         else:
             return False
 
-
     # Scene methods
 
+    def _filterHiddenObjects(self, scene):
+        """Discard object that are on hidden layers in the scene.
+        """
+
+        Objects = scene.objects
+
+        visible_obj_list = [obj for obj in Objects if
+                set(obj.layers).intersection(set(scene.getLayers()))]
+
+        for o in Objects:
+            if o not in visible_obj_list:
+                scene.objects.unlink(o)
+
+        scene.update()
+
+    def _buildLightSetup(self, scene):
+        # Get the list of lighting sources
+        obj_lst = scene.objects
+        self.lights = [o for o in obj_lst if o.getType() == 'Lamp']
+
+        # When there are no lights we use a default lighting source
+        # that have the same position of the camera
+        if len(self.lights) == 0:
+            l = Lamp.New('Lamp')
+            lobj = Object.New('Lamp')
+            lobj.loc = self.cameraObj.loc
+            lobj.link(l)
+            self.lights.append(lobj)
+
     def _doSceneClipping(self, scene):
         """Clip whole objects against the View Frustum.
 
         For now clip away only objects according to their center position.
         """
 
-        cpos = self._getObjPosition(self.cameraObj)
+        cam_pos = self._getObjPosition(self.cameraObj)
         view_vect = self._cameraViewVector()
 
         near = self.cameraObj.data.clipStart
-        far  = self.cameraObj.data.clipEnd
+        far = self.cameraObj.data.clipEnd
 
-        aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1])
-        fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
-        fovy = fovy * 360.0/pi
+        aspect = float(self.canvasRatio[0]) / float(self.canvasRatio[1])
+        fovy = atan(0.5 / aspect / (self.cameraObj.data.lens / 32))
+        fovy = fovy * 360.0 / pi
+
+        Objects = scene.objects
 
-        Objects = scene.getChildren()
         for o in Objects:
-            if o.getType() != 'Mesh': continue;
+            if o.getType() != 'Mesh':
+                continue
 
-            obj_vect = Vector(cpos) - self._getObjPosition(o)
+            """
+            obj_vect = Vector(cam_pos) - self._getObjPosition(o)
 
             d = obj_vect*view_vect
             theta = AngleBetweenVecs(obj_vect, view_vect)
-            
+
             # if the object is outside the view frustum, clip it away
             if (d < near) or (d > far) or (theta > fovy):
-                scene.unlink(o)
+                scene.objects.unlink(o)
+            """
+
+            # Use the object bounding box
+            # (whose points are already in WorldSpace Coordinate)
+
+            bb = o.getBoundBox()
+
+            points_outside = 0
+            for p in bb:
+                p_vect = Vector(cam_pos) - Vector(p)
+
+                d = p_vect * view_vect
+                theta = AngleBetweenVecs(p_vect, view_vect)
+
+                # Is this point outside the view frustum?
+                if (d < near) or (d > far) or (theta > fovy):
+                    points_outside += 1
+
+            # If the bb is all outside the view frustum we clip the whole
+            # object away
+            if points_outside == len(bb):
+                scene.objects.unlink(o)
 
     def _doConvertGeometricObjsToMesh(self, scene):
         """Convert all "geometric" objects to mesh ones.
@@ -1365,28 +2188,31 @@ class Renderer:
         geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
         #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
 
-        Objects = scene.getChildren()
-        objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
+        Objects = scene.objects
+
+        objList = [o for o in Objects if o.getType() in geometricObjTypes]
         for obj in objList:
             old_obj = obj
             obj = self._convertToRawMeshObj(obj)
-            scene.link(obj)
-            scene.unlink(old_obj)
-
+            scene.objects.link(obj)
+            scene.objects.unlink(old_obj)
 
             # XXX Workaround for Text and Curve which have some normals
             # inverted when they are converted to Mesh, REMOVE that when
             # blender will fix that!!
             if old_obj.getType() in ['Curve', 'Text']:
                 me = obj.getData(mesh=1)
-                for f in me.faces: f.sel = 1;
-                for v in me.verts: v.sel = 1;
+
+                for f in me.faces:
+                    f.sel = 1
+                for v in me.verts:
+                    v.sel = 1
+
                 me.remDoubles(0)
                 me.triangleToQuad()
                 me.recalcNormals()
                 me.update()
 
-
     def _doSceneDepthSorting(self, scene):
         """Sort objects in the scene.
 
@@ -1395,29 +2221,36 @@ class Renderer:
 
         c = self._getObjPosition(self.cameraObj)
 
-        by_center_pos = (lambda o1, o2:
+        by_obj_center_pos = (lambda o1, o2:
                 (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
                 cmp((self._getObjPosition(o1) - Vector(c)).length,
                     (self._getObjPosition(o2) - Vector(c)).length)
             )
 
-        # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
-        # then ob1 goes farther than obj2, useful when obj2 has holes
-        by_bbox = None
-        
-        Objects = scene.getChildren()
-        Objects.sort(by_center_pos)
-        
+        # Implement sorting by bounding box, the object with the bb
+        # nearest to the camera should be drawn as last.
+        by_nearest_bbox_point = (lambda o1, o2:
+                (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+                cmp(min([(Vector(p) - Vector(c)).length for p in o1.getBoundBox()]),
+                    min([(Vector(p) - Vector(c)).length for p in o2.getBoundBox()])
+                )
+            )
+
+        Objects = list(scene.objects)
+
+        #Objects.sort(by_obj_center_pos)
+        Objects.sort(by_nearest_bbox_point)
+
         # update the scene
         for o in Objects:
-            scene.unlink(o)
-            scene.link(o)
+            scene.objects.unlink(o)
+            scene.objects.link(o)
 
     def _joinMeshObjectsInScene(self, scene):
         """Merge all the Mesh Objects in a scene into a single Mesh Object.
         """
 
-        oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
+        oList = [o for o in scene.objects if o.getType() == 'Mesh']
 
         # FIXME: Object.join() do not work if the list contains 1 object
         if len(oList) == 1:
@@ -1427,32 +2260,31 @@ class Renderer:
         bigObj = Object.New('Mesh', 'BigOne')
         bigObj.link(mesh)
 
-        scene.link(bigObj)
+        scene.objects.link(bigObj)
 
         try:
             bigObj.join(oList)
         except RuntimeError:
             print "\nWarning! - Can't Join Objects\n"
-            scene.unlink(bigObj)
+            scene.objects.unlink(bigObj)
             return
         except TypeError:
             print "Objects Type error?"
-        
+
         for o in oList:
-            scene.unlink(o)
+            scene.objects.unlink(o)
 
         scene.update()
 
     # Per object/mesh methods
 
     def _convertToRawMeshObj(self, object):
         """Convert geometry based object to a mesh object.
         """
-        me = Mesh.New('RawMesh_'+object.name)
+        me = Mesh.New('RawMesh_' + object.name)
         me.getFromObject(object.name)
 
-        newObject = Object.New('Mesh', 'RawMesh_'+object.name)
+        newObject = Object.New('Mesh', 'RawMesh_' + object.name)
         newObject.link(me)
 
         # If the object has no materials set a default material
@@ -1479,16 +2311,16 @@ class Renderer:
 
     def _doBackFaceCulling(self, mesh):
         """Simple Backface Culling routine.
-        
+
         At this level we simply do a visibility test face by face and then
         select the vertices belonging to visible faces.
         """
-        
+
         # Select all vertices, so edges can be displayed even if there are no
         # faces
         for v in mesh.verts:
             v.sel = 1
-        
+
         Mesh.Mode(Mesh.SelectModes['FACE'])
         # Loop on faces
         for f in mesh.faces:
@@ -1534,7 +2366,7 @@ class Renderer:
             elif mat.getMode() & Material.Modes['SHADELESS']:
                 I = mat.getRGBCol()
                 # Convert to a value between 0 and 255
-                tmp_col = [ int(c * 255.0) for c in I]
+                tmp_col = [int(c * 255.0) for c in I]
 
                 for c in f.col:
                     c.r = tmp_col[0]
@@ -1544,7 +2376,6 @@ class Renderer:
 
                 continue
 
-
             # do vertex color calculation
 
             TotDiffSpec = Vector([0.0, 0.0, 0.0])
@@ -1553,7 +2384,7 @@ class Renderer:
                 light_obj = l
                 light_pos = self._getObjPosition(l)
                 light = light_obj.getData()
-            
+
                 L = Vector(light_pos).normalize()
 
                 V = (Vector(camPos) - Vector(f.cent)).normalize()
@@ -1561,12 +2392,12 @@ class Renderer:
                 N = Vector(f.no).normalize()
 
                 if config.polygons['SHADING'] == 'TOON':
-                    NL = ShadingUtils.toonShading(N*L)
+                    NL = ShadingUtils.toonShading(N * L)
                 else:
-                    NL = (N*L)
+                    NL = (N * L)
 
                 # Should we use NL instead of (N*L) here?
-                R = 2 * (N*L) * N - L
+                R = 2 * (N * L) * N - L
 
                 Ip = light.getEnergy()
 
@@ -1577,36 +2408,33 @@ class Renderer:
 
                 Idiff = Ip * kd * max(0, NL)
 
-
                 # Specular component
                 ks = mat.getSpec() * Vector(mat.getSpecCol())
                 ns = mat.getHardness()
-                Ispec = Ip * ks * pow(max(0, (V*R)), ns)
-
-                TotDiffSpec += (Idiff+Ispec)
+                Ispec = Ip * ks * pow(max(0, (V * R)), ns)
 
+                TotDiffSpec += (Idiff + Ispec)
 
             # Ambient component
             Iamb = Vector(Blender.World.Get()[0].getAmb())
             ka = mat.getAmb()
 
             # Emissive component (convert to a triplet)
-            ki = Vector([mat.getEmit()]*3)
+            ki = Vector([mat.getEmit()] * 3)
 
             #I = ki + Iamb + (Idiff + Ispec)
             I = ki + (ka * Iamb) + TotDiffSpec
 
-
             # Set Alpha component
             I = list(I)
             I.append(mat.getAlpha())
 
             # Clamp I values between 0 and 1
-            I = [ min(c, 1) for c in I]
-            I = [ max(0, c) for c in I]
+            I = [min(c, 1) for c in I]
+            I = [max(0, c) for c in I]
 
             # Convert to a value between 0 and 255
-            tmp_col = [ int(c * 255.0) for c in I]
+            tmp_col = [int(c * 255.0) for c in I]
 
             for c in f.col:
                 c.r = tmp_col[0]
@@ -1641,6 +2469,70 @@ class Renderer:
         """Clip faces against the View Frustum.
         """
 
+        # The Canonical View Volume, 8 vertices, and 6 faces,
+        # We consider its face normals pointing outside
+
+        v1 = NMesh.Vert(1, 1, -1)
+        v2 = NMesh.Vert(1, -1, -1)
+        v3 = NMesh.Vert(-1, -1, -1)
+        v4 = NMesh.Vert(-1, 1, -1)
+        v5 = NMesh.Vert(1, 1, 1)
+        v6 = NMesh.Vert(1, -1, 1)
+        v7 = NMesh.Vert(-1, -1, 1)
+        v8 = NMesh.Vert(-1, 1, 1)
+
+        cvv = []
+        f1 = NMesh.Face([v1, v4, v3, v2])
+        cvv.append(f1)
+        f2 = NMesh.Face([v5, v6, v7, v8])
+        cvv.append(f2)
+        f3 = NMesh.Face([v1, v2, v6, v5])
+        cvv.append(f3)
+        f4 = NMesh.Face([v2, v3, v7, v6])
+        cvv.append(f4)
+        f5 = NMesh.Face([v3, v4, v8, v7])
+        cvv.append(f5)
+        f6 = NMesh.Face([v4, v1, v5, v8])
+        cvv.append(f6)
+
+        nmesh = NMesh.GetRaw(mesh.name)
+        clippedfaces = nmesh.faces[:]
+        facelist = clippedfaces[:]
+
+        for clipface in cvv:
+
+            clippedfaces = []
+
+            for f in facelist:
+
+                #newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
+                newfaces = None
+
+                if not newfaces:
+                    # Check if the face is all outside the view frustum
+                    # TODO: Do this test before, it is more efficient
+                    points_outside = 0
+                    for v in f:
+                        if abs(v[0]) > (1 - EPS) or abs(v[1]) > (1 - EPS) or abs(v[2]) > (1 - EPS):
+                            points_outside += 1
+
+                    if points_outside != len(f):
+                        clippedfaces.append(f)
+                else:
+                    for nf in newfaces:
+                        for v in nf:
+                            nmesh.verts.append(v)
+
+                        nf.mat = f.mat
+                        nf.sel = f.sel
+                        nf.col = [f.col[0]] * len(nf.v)
+
+                        clippedfaces.append(nf)
+            facelist = clippedfaces[:]
+
+        nmesh.faces = facelist
+        nmesh.update()
+
     # HSR routines
     def __simpleDepthSort(self, mesh):
         """Sort faces by the furthest vertex.
@@ -1653,10 +2545,10 @@ class Renderer:
 
         # The sorting requires circa n*log(n) steps
         n = len(mesh.faces)
-        progress.setActivity("HSR: Painter", n*log(n))
+        progress.setActivity("HSR: Painter", n * log(n))
 
         by_furthest_z = (lambda f1, f2: progress.update() and
-                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
                 )
 
         # FIXME: using NMesh to sort faces. We should avoid that!
@@ -1668,12 +2560,10 @@ class Renderer:
 
         nmesh.update()
 
-
     def __newellDepthSort(self, mesh):
         """Newell's depth sorting.
 
         """
-        from hsrtk import *
 
         #global progress
 
@@ -1684,7 +2574,6 @@ class Renderer:
         #        print "NON QUAD??"
         #        f.sel = 1
 
-
         # Now reselect all faces
         for f in mesh.faces:
             f.sel = 1
@@ -1706,13 +2595,11 @@ class Renderer:
         facelist = nmesh.faces[:]
         maplist = []
 
-
         # The steps are _at_least_ equal to len(facelist), we do not count the
         # feces coming out from splitting!!
         progress.setActivity("HSR: Newell", len(facelist))
         #progress.setQuiet(True)
 
-        
         while len(facelist):
             debug("\n----------------------\n")
             debug("len(facelits): %d\n" % len(facelist))
@@ -1736,7 +2623,7 @@ class Renderer:
 
                 qSign = sign(Q.normal[2])
                 # TODO: check also if Q is parallel??
+
                 # Test 0: We need to test only those Qs whose furthest vertex
                 # is closer to the observer than the closest vertex of P.
 
@@ -1754,35 +2641,32 @@ class Renderer:
                         debug("met a marked face\n")
                         continue
 
-                
                 # Test 1: X extent overlapping
                 xP = [v.co[0] for v in P.v]
                 xQ = [v.co[0] for v in Q.v]
                 #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
-                notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
+                notXOverlap = min(xQ) >= (max(xP) - EPS) or min(xP) >= (max(xQ) - EPS)
 
                 if notXOverlap:
                     debug("\nTest 1\n")
                     debug("NOT X OVERLAP!\n")
                     continue
 
-
                 # Test 2: Y extent Overlapping
                 yP = [v.co[1] for v in P.v]
                 yQ = [v.co[1] for v in Q.v]
-                #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
-                notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
+                #notYOverlap = max(yP) <= min(yQ) or max(yQ) <= min(yP)
+                notYOverlap = min(yQ) >= (max(yP) - EPS) or min(yP) >= (max(yQ) - EPS)
 
                 if notYOverlap:
                     debug("\nTest 2\n")
                     debug("NOT Y OVERLAP!\n")
                     continue
-                
 
                 # Test 3: P vertices are all behind the plane of Q
                 n = 0
                 for Pi in P:
-                    d = qSign * Distance(Vector(Pi), Q)
+                    d = qSign * HSR.Distance(Vector(Pi), Q)
                     if d <= EPS:
                         n += 1
                 pVerticesBehindPlaneQ = (n == len(P))
@@ -1792,11 +2676,10 @@ class Renderer:
                     debug("P BEHIND Q!\n")
                     continue
 
-
                 # Test 4: Q vertices in front of the plane of P
                 n = 0
                 for Qi in Q:
-                    d = pSign * Distance(Vector(Qi), P)
+                    d = pSign * HSR.Distance(Vector(Qi), P)
                     if d >= -EPS:
                         n += 1
                 qVerticesInFrontPlaneP = (n == len(Q))
@@ -1806,11 +2689,11 @@ class Renderer:
                     debug("Q IN FRONT OF P!\n")
                     continue
 
-
                 # Test 5: Check if projections of polygons effectively overlap,
                 # in previous tests we checked only bounding boxes.
 
-                if not projectionsOverlap(P, Q):
+                #if not projectionsOverlap(P, Q):
+                if not (HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
                     debug("\nTest 5\n")
                     debug("Projections do not overlap!\n")
                     continue
@@ -1824,17 +2707,16 @@ class Renderer:
                     debug("Possibly a cycle detected!\n")
                     debug("Split here!!\n")
 
-                    facelist = facesplit(P, Q, facelist, nmesh)
+                    facelist = HSR.facesplit(P, Q, facelist, nmesh)
                     split_done = 1
-                    break 
+                    break
 
                 # The question now is: Does Q obscure P?
 
-
                 # Test 3bis: Q vertices are all behind the plane of P
                 n = 0
                 for Qi in Q:
-                    d = pSign * Distance(Vector(Qi), P)
+                    d = pSign * HSR.Distance(Vector(Qi), P)
                     if d <= EPS:
                         n += 1
                 qVerticesBehindPlaneP = (n == len(Q))
@@ -1843,11 +2725,10 @@ class Renderer:
                     debug("\nTest 3bis\n")
                     debug("Q BEHIND P!\n")
 
-
                 # Test 4bis: P vertices in front of the plane of Q
                 n = 0
                 for Pi in P:
-                    d = qSign * Distance(Vector(Pi), Q)
+                    d = qSign * HSR.Distance(Vector(Pi), Q)
                     if d >= -EPS:
                         n += 1
                 pVerticesInFrontPlaneQ = (n == len(P))
@@ -1856,7 +2737,6 @@ class Renderer:
                     debug("\nTest 4bis\n")
                     debug("P IN FRONT OF Q!\n")
 
-                
                 # We don't even know if Q does obscure P, so they should
                 # intersect each other, split one of them in two parts.
                 if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
@@ -1864,24 +2744,28 @@ class Renderer:
                     debug("Test 3bis or 4bis failed\n")
                     debug("Split here!!2\n")
 
-                    facelist = facesplit(P, Q, facelist, nmesh)
+                    facelist = HSR.facesplit(P, Q, facelist, nmesh)
                     split_done = 1
-                    break 
-                    
+                    break
+
                 facelist.remove(Q)
                 facelist.insert(0, Q)
                 Q.smooth = 1
                 face_marked = 1
                 debug("Q marked!\n")
                 break
-           
-            # Write P!                     
+
+            # Write P!
             if split_done == 0 and face_marked == 0:
                 facelist.remove(P)
                 maplist.append(P)
+                dumpfaces(maplist, "dump" + str(len(maplist)).zfill(4) + ".svg")
 
                 progress.update()
 
+            if len(facelist) == 870:
+                dumpfaces([P, Q], "loopdebug.svg")
+
             #if facelist == None:
             #    maplist = [P, Q]
             #    print [v.co for v in P]
@@ -1889,15 +2773,13 @@ class Renderer:
             #    break
 
             # end of while len(facelist)
-         
 
         nmesh.faces = maplist
-        for f in nmesh.faces:
-            f.sel = 1
+        #for f in nmesh.faces:
+        #    f.sel = 1
 
         nmesh.update()
 
-
     def _doHiddenSurfaceRemoval(self, mesh):
         """Do HSR for the given mesh.
         """
@@ -1912,7 +2794,6 @@ class Renderer:
             print "\nUsing the Newell's algorithm for HSR."
             self.__newellDepthSort(mesh)
 
-
     def _doEdgesStyle(self, mesh, edgestyleSelect):
         """Process Mesh Edges accroding to a given selection style.
 
@@ -1931,7 +2812,7 @@ class Renderer:
 
         edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
 
-        for i,edge_faces in enumerate(edge_cache):
+        for i, edge_faces in enumerate(edge_cache):
             mesh.edges[i].sel = 0
             if edgestyleSelect(edge_faces):
                 mesh.edges[i].sel = 1
@@ -1943,7 +2824,7 @@ class Renderer:
             if edgestyleSelect(e, mesh):
                 e.sel = 1
         """
-                
+        #
 
 
 # ---------------------------------------------------------------------
@@ -1952,17 +2833,17 @@ class Renderer:
 #
 # ---------------------------------------------------------------------
 
-
 from Blender import BGL, Draw
 from Blender.BGL import *
 
+
 class GUI:
-    
+
     def _init():
 
-        # Output Format menu 
+        # Output Format menu
         output_format = config.output['FORMAT']
-        default_value = outputWriters.keys().index(output_format)+1
+        default_value = outputWriters.keys().index(output_format) + 1
         GUI.outFormatMenu = Draw.Create(default_value)
         GUI.evtOutFormatMenu = 0
 
@@ -1977,9 +2858,9 @@ class GUI:
         # Render filled polygons
         GUI.polygonsToggle = Draw.Create(config.polygons['SHOW'])
 
-        # Shading Style menu 
+        # Shading Style menu
         shading_style = config.polygons['SHADING']
-        default_value = shadingStyles.keys().index(shading_style)+1
+        default_value = shadingStyles.keys().index(shading_style) + 1
         GUI.shadingStyleMenu = Draw.Create(default_value)
         GUI.evtShadingStyleMenu = 21
 
@@ -1994,9 +2875,9 @@ class GUI:
         GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN'])
         GUI.evtShowHiddenEdgesToggle = 5
 
-        # Edge Style menu 
+        # Edge Style menu
         edge_style = config.edges['STYLE']
-        default_value = edgeStyles.keys().index(edge_style)+1
+        default_value = edgeStyles.keys().index(edge_style) + 1
         GUI.edgeStyleMenu = Draw.Create(default_value)
         GUI.evtEdgeStyleMenu = 6
 
@@ -2006,7 +2887,7 @@ class GUI:
 
         # Edge Color Picker
         c = config.edges['COLOR']
-        GUI.edgeColorPicker = Draw.Create(c[0]/255.0, c[1]/255.0, c[2]/255.0)
+        GUI.edgeColorPicker = Draw.Create(c[0] / 255.0, c[1] / 255.0, c[2] / 255.0)
         GUI.evtEdgeColorPicker = 71
 
         # Render Button
@@ -2015,6 +2896,9 @@ class GUI:
         # Exit Button
         GUI.evtExitButton = 9
 
+        # Save default button
+        GUI.evtSaveDefaultButton = 99
+
     def draw():
 
         # initialize static members
@@ -2022,9 +2906,12 @@ class GUI:
 
         glClear(GL_COLOR_BUFFER_BIT)
         glColor3f(0.0, 0.0, 0.0)
-        glRasterPos2i(10, 350)
+        glRasterPos2i(10, 380)
         Draw.Text("VRM: Vector Rendering Method script. Version %s." %
                 __version__)
+        glRasterPos2i(10, 365)
+        Draw.Text("%s (c) 2012" % __author__)
+
         glRasterPos2i(10, 335)
         Draw.Text("Press Q or ESC to quit.")
 
@@ -2033,24 +2920,27 @@ class GUI:
         Draw.Text("Select the output Format:")
         outMenuStruct = "Output Format %t"
         for t in outputWriters.keys():
-           outMenuStruct = outMenuStruct + "|%s" % t
+            outMenuStruct = outMenuStruct + "|%s" % t
         GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu,
-                10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
+            10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
 
         # Animation toggle
         GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle,
-                10, 260, 160, 18, GUI.animToggle.val,
-                "Toggle rendering of animations")
+            10, 260, 160, 18, GUI.animToggle.val,
+            "Toggle rendering of animations")
 
         # Join Objects toggle
         GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle,
-                10, 235, 160, 18, GUI.joinObjsToggle.val,
-                "Join objects in the rendered file")
+            10, 235, 160, 18, GUI.joinObjsToggle.val,
+            "Join objects in the rendered file")
 
         # Render Button
-        Draw.Button("Render", GUI.evtRenderButton, 10, 210-25, 75, 25+18,
-                "Start Rendering")
-        Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!")
+        Draw.Button("Render", GUI.evtRenderButton, 10, 210 - 25, 75, 25 + 18,
+            "Start Rendering")
+        Draw.Button("Exit", GUI.evtExitButton, 95, 210 - 25, 75, 25 + 18, "Exit!")
+
+        Draw.Button("Save settings as default", GUI.evtSaveDefaultButton, 10, 210 - 50, 160, 18,
+            "Save settings as default")
 
         # Rendering Styles
         glRasterPos2i(200, 310)
@@ -2058,8 +2948,8 @@ class GUI:
 
         # Render Polygons
         GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle,
-                200, 285, 160, 18, GUI.polygonsToggle.val,
-                "Render filled polygons")
+            200, 285, 160, 18, GUI.polygonsToggle.val,
+            "Render filled polygons")
 
         if GUI.polygonsToggle.val == 1:
 
@@ -2068,42 +2958,38 @@ class GUI:
             for t in shadingStyles.keys():
                 shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower()
             GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu,
-                    200, 260, 160, 18, GUI.shadingStyleMenu.val,
-                    "Choose the shading style")
-
+                200, 260, 160, 18, GUI.shadingStyleMenu.val,
+                "Choose the shading style")
 
         # Render Edges
         GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle,
-                200, 235, 160, 18, GUI.showEdgesToggle.val,
-                "Render polygon edges")
+            200, 235, 160, 18, GUI.showEdgesToggle.val,
+            "Render polygon edges")
 
         if GUI.showEdgesToggle.val == 1:
-            
+
             # Edge Style
             edgeStyleMenuStruct = "Edge Style %t"
             for t in edgeStyles.keys():
                 edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower()
             GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu,
-                    200, 210, 160, 18, GUI.edgeStyleMenu.val,
-                    "Choose the edge style")
+                200, 210, 160, 18, GUI.edgeStyleMenu.val,
+                "Choose the edge style")
 
             # Edge size
             GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider,
-                    200, 185, 140, 18, GUI.edgeWidthSlider.val,
-                    0.0, 10.0, 0, "Change Edge Width")
+                200, 185, 140, 18, GUI.edgeWidthSlider.val,
+                0.0, 10.0, 0, "Change Edge Width")
 
             # Edge Color
             GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker,
-                    342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
+                342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
 
             # Show Hidden Edges
             GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges",
-                    GUI.evtShowHiddenEdgesToggle,
-                    200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
-                    "Render hidden edges as dashed lines")
-
-        glRasterPos2i(10, 160)
-        Draw.Text("%s (c) 2006" % __author__)
+                GUI.evtShowHiddenEdgesToggle,
+                200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
+                "Render hidden edges as dashed lines")
 
     def event(evt, val):
 
@@ -2121,7 +3007,10 @@ class GUI:
 
         elif evt == GUI.evtOutFormatMenu:
             i = GUI.outFormatMenu.val - 1
-            config.output['FORMAT']= outputWriters.keys()[i]
+            config.output['FORMAT'] = outputWriters.keys()[i]
+            # Set the new output file
+            global outputfile
+            outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
 
         elif evt == GUI.evtAnimToggle:
             config.output['ANIMATION'] = bool(GUI.animToggle.val)
@@ -2150,7 +3039,7 @@ class GUI:
             config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val)
 
         elif evt == GUI.evtEdgeColorPicker:
-            config.edges['COLOR'] = [int(c*255.0) for c in GUI.edgeColorPicker.val]
+            config.edges['COLOR'] = [int(c * 255.0) for c in GUI.edgeColorPicker.val]
 
         elif evt == GUI.evtRenderButton:
             label = "Save %s" % config.output['FORMAT']
@@ -2158,6 +3047,9 @@ class GUI:
             global outputfile
             Blender.Window.FileSelector(vectorize, label, outputfile)
 
+        elif evt == GUI.evtSaveDefaultButton:
+            config.saveToRegistry()
+
         else:
             print "Event: %d not handled!" % evt
 
@@ -2178,10 +3070,11 @@ class GUI:
     button_event = staticmethod(button_event)
     conf_debug = staticmethod(conf_debug)
 
+
 # A wrapper function for the vectorizing process
 def vectorize(filename):
     """The vectorizing process is as follows:
-     
+
      - Instanciate the writer and the renderer
      - Render!
      """
@@ -2192,21 +3085,31 @@ def vectorize(filename):
 
     from Blender import Window
     editmode = Window.EditMode()
-    if editmode: Window.EditMode(0)
+    if editmode:
+        Window.EditMode(0)
 
     actualWriter = outputWriters[config.output['FORMAT']]
     writer = actualWriter(filename)
-    
+
     renderer = Renderer()
     renderer.doRendering(writer, config.output['ANIMATION'])
 
-    if editmode: Window.EditMode(1) 
+    if editmode:
+        Window.EditMode(1)
+
 
 # Here the main
 if __name__ == "__main__":
 
     global progress
 
+    config.loadFromRegistry()
+
+    # initialize writer setting also here to configure writer specific
+    # settings on startup
+    actualWriter = outputWriters[config.output['FORMAT']]
+    writer = actualWriter("")
+
     outputfile = ""
     basename = Blender.sys.basename(Blender.Get('filename'))
     if basename != "":