X-Git-Url: https://git.ao2.it/vrm.git/blobdiff_plain/06dd5e5bf8b7934ff02934d379d6ebb958dd6bd4..6522c892513097a6f9da53d64b5c38cf8d417c31:/vrm.py diff --git a/vrm.py b/vrm.py index 9095307..5e2c128 100755 --- a/vrm.py +++ b/vrm.py @@ -85,14 +85,17 @@ from Blender.Mathutils import * from math import * import sys, time +# Constants +EPS = 10e-5 + # Some global settings class config: polygons = dict() polygons['SHOW'] = True - polygons['SHADING'] = 'FLAT' - polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL' + polygons['SHADING'] = 'TOON' + #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL' polygons['HSR'] = 'NEWELL' # Hidden to the user for now polygons['EXPANSION_TRICK'] = True @@ -102,7 +105,7 @@ class config: edges = dict() edges['SHOW'] = False edges['SHOW_HIDDEN'] = False - edges['STYLE'] = 'MESH' + edges['STYLE'] = 'MESH' # or SILHOUETTE edges['WIDTH'] = 2 edges['COLOR'] = [0, 0, 0] @@ -113,11 +116,15 @@ class config: -# Debug utility function -print_debug = True -def debug(msg): - if print_debug: - sys.stderr.write(msg) +# Utility functions +def sign(x): + + if x < 0: + return -1 + elif x > 0: + return 1 + #else: + # return 0 # --------------------------------------------------------------------- @@ -801,6 +808,7 @@ class SVGVectorWriter(VectorWriter): if color[3] != 255: opacity = float(color[3])/255.0 opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity) + #opacity_string = "opacity: %g;" % (opacity) self.file.write("\tstyle=\"fill:" + str_col + ";") self.file.write(opacity_string) @@ -810,8 +818,9 @@ class SVGVectorWriter(VectorWriter): # see http://www.antigrain.com/svg/index.html for more info stroke_width = 1.0 - if config.polygons['EXPANSION_TRICK']: - str_col = "#000000" # For debug + # EXPANSION TRICK is not that useful where there is transparency + if config.polygons['EXPANSION_TRICK'] and color[3] == 255: + # str_col = "#000000" # For debug self.file.write(" stroke:%s;\n" % str_col) self.file.write(" stroke-width:" + str(stroke_width) + ";\n") self.file.write(" stroke-linecap:round;stroke-linejoin:round") @@ -1022,12 +1031,26 @@ class Renderer: mesh = obj.getData(mesh=1) + # Triangolarize the mesh?? + for f in mesh.faces: f.sel = 1 + mesh.quadToTriangle() + self._doModelingTransformation(mesh, obj.matrix) self._doBackFaceCulling(mesh) + # When doing HSR with NEWELL we may want to flip all normals + # toward the viewer + if config.polygons['HSR'] == "NEWELL": + for f in mesh.faces: + f.sel = 1-f.sel + mesh.flipNormals() + for f in mesh.faces: + f.sel = 1 + self._doLighting(mesh) + # Do "projection" now so we perform further processing # in Normalized View Coordinates self._doProjection(mesh, self.proj) @@ -1144,8 +1167,8 @@ class Renderer: def _doConvertGeometricObjsToMesh(self, scene): """Convert all "geometric" objects to mesh ones. """ - #geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text'] - geometricObjTypes = ['Mesh', 'Surf', 'Curve'] + geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text'] + #geometricObjTypes = ['Mesh', 'Surf', 'Curve'] Objects = scene.getChildren() objList = [ o for o in Objects if o.getType() in geometricObjTypes ] @@ -1334,7 +1357,7 @@ class Renderer: for l in self.lights: light_obj = l light_pos = self._getObjPosition(l) - light = light_obj.data + light = light_obj.getData() L = Vector(light_pos).normalize() @@ -1435,10 +1458,9 @@ class Renderer: # The sorting requires circa n*log(n) steps n = len(mesh.faces) progress.setActivity("HSR: Painter", n*log(n)) - by_furthest_z = (lambda f1, f2: progress.update() and - cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])) + cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) ) # FIXME: using NMesh to sort faces. We should avoid that! @@ -1450,65 +1472,24 @@ class Renderer: nmesh.update() - def __topologicalDepthSort(self, mesh): - """Occlusion based on topological occlusion. - - Build the occlusion graph of the mesh, - and then do topological sort on that graph - """ - return - def __newellDepthSort(self, mesh): """Newell's depth sorting. """ - by_furthest_z = (lambda f1, f2: - cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])) - ) - - - def isOnSegment(v1, v2, p): - - # when p is at extreme points - if p == v1 or p == v2: - return False + from hsrtk import * - EPS = 10e-7 + # Find non planar quads and convert them to triangle + #for f in mesh.faces: + # f.sel = 0 + # if is_nonplanar_quad(f.v): + # print "NON QUAD??" + # f.sel = 1 - l1 = (v1-p).length - l2 = (v2-p).length - l = (v1-v2).length - - print "l: ", l, " l1: ", l1, " l2: ", l2, "diff: %.9f" % (l - (l1+l2) ) - - if abs(l - (l1+l2)) < EPS: - return True - else: - return False - - - - def Distance(point, face): - """ Calculate the distance between a point and a face. - - An alternative but more expensive method can be: - - ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]), - Vector(face.no), Vector(point), 0) - - d = Vector(ip - point).length - """ - - plNormal = Vector(face.no) - plVert0 = Vector(face[0]) - - #d = abs( (point * plNormal ) - (plVert0 * plNormal) ) - d = (point * plNormal ) - (plVert0 * plNormal) - debug("d: %.10f - sel: %d, %s\n" % (d, face.sel, str(point)) ) - - return d + # Now reselect all faces + for f in mesh.faces: + f.sel = 1 # FIXME: using NMesh to sort faces. We should avoid that! nmesh = NMesh.GetRaw(mesh.name) @@ -1527,62 +1508,73 @@ class Renderer: facelist = nmesh.faces[:] maplist = [] - #EPS = 10e-7 - EPS = 0 + # The steps are _at_least_ equal to len(facelist), we do not count the + # feces coming out from splitting!! global progress progress.setActivity("HSR: Newell", len(facelist)) - progress.setQuiet(True) + #progress.setQuiet(True) - #while len(facelist)-1: + while len(facelist): + debug("\n----------------------\n") + debug("len(facelits): %d\n" % len(facelist)) P = facelist[0] - pSign = 1 - if P.sel == 0: - pSign = -1 + pSign = sign(P.normal[2]) + + # We can discard faces parallel to the view vector + if P.normal[2] == 0: + facelist.remove(P) + continue + + split_done = 0 + face_marked = 0 - #while False: for Q in facelist[1:]: debug("P.smooth: " + str(P.smooth) + "\n") debug("Q.smooth: " + str(Q.smooth) + "\n") debug("\n") - qSign = 1 - if Q.sel == 0: - qSign = -1 + qSign = sign(Q.normal[2]) + # TODO: check also if Q is parallel?? - # We need to test only those Qs whose furthest vertex + # Test 0: We need to test only those Qs whose furthest vertex # is closer to the observer than the closest vertex of P. zP = [v.co[2] for v in P.v] zQ = [v.co[2] for v in Q.v] - ZOverlap = min(zP) < max(zQ) + notZOverlap = min(zP) > max(zQ)+EPS - if not ZOverlap: + if notZOverlap: debug("\nTest 0\n") debug("NOT Z OVERLAP!\n") - if not Q.smooth: - # We can safely print P + if Q.smooth == 0: + # If Q is not marked then we can safely print P break else: + debug("met a marked face\n") continue + # Test 1: X extent overlapping xP = [v.co[0] for v in P.v] xQ = [v.co[0] for v in Q.v] - notXOverlap = (max(xP) < min(xQ)) or (max(xQ) < min(xP)) + #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP)) + notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS) if notXOverlap: debug("\nTest 1\n") debug("NOT X OVERLAP!\n") continue + # Test 2: Y extent Overlapping yP = [v.co[1] for v in P.v] yQ = [v.co[1] for v in Q.v] - notYOverlap = (max(yP) < min(yQ)) or (max(yQ) < min(yP)) + #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP)) + notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS) if notYOverlap: debug("\nTest 2\n") @@ -1593,9 +1585,8 @@ class Renderer: # Test 3: P vertices are all behind the plane of Q n = 0 for Pi in P: - print P.col[0] d = qSign * Distance(Vector(Pi), Q) - if d > EPS: + if d <= EPS: n += 1 pVerticesBehindPlaneQ = (n == len(P)) @@ -1608,9 +1599,8 @@ class Renderer: # Test 4: Q vertices in front of the plane of P n = 0 for Qi in Q: - print Q.col[0] d = pSign * Distance(Vector(Qi), P) - if d <= EPS: + if d >= -EPS: n += 1 qVerticesInFrontPlaneP = (n == len(Q)) @@ -1619,64 +1609,36 @@ class Renderer: debug("Q IN FRONT OF P!\n") continue - # Test 5: Line Intersections... TODO - # Check if polygons effectively overlap each other, not only - # boundig boxes as dome before. - # Since we We are working in normalized projection coordinates - # we kust check if polygons intersect. - - def projectionsOverlap(P, Q): - - for i in range(0, len(P.v)): - - v1 = Vector(P.v[i-1]) - v1[2] = 0 - v2 = Vector(P.v[i]) - v2[2] = 0 - - for j in range(0, len(Q.v)): - v3 = Vector(Q.v[j-1]) - v3[2] = 0 - v4 = Vector(Q.v[j]) - v4[2] = 0 - - ret = LineIntersect(v1, v2, v3, v4) - # if line v1-v2 and v3-v4 intersect both return - # values are the same. - if ret and ret[0] == ret[1] and isOnSegment(v1, v2, - ret[0]) and isOnSegment(v3, v4, ret[1]): - debug("Projections OVERLAP!!\n") - debug("line1:"+ - " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' + - " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' + - "\n") - debug("return: "+ str(ret)+"\n") - return True - - return False + + # Test 5: Check if projections of polygons effectively overlap, + # in previous tests we checked only bounding boxes. if not projectionsOverlap(P, Q): debug("\nTest 5\n") debug("Projections do not overlap!\n") continue + # We still can't say if P obscures Q. - # We do not know if P obscures Q. + # But if Q is marked we do a face-split trying to resolve a + # difficulty (maybe a visibility cycle). if Q.smooth == 1: - # Split P or Q, TODO - debug("Cycle detected!\n") + # Split P or Q + debug("Possibly a cycle detected!\n") debug("Split here!!\n") - continue + facelist = facesplit(P, Q, facelist, nmesh) + split_done = 1 + break # The question now is: Does Q obscure P? + # Test 3bis: Q vertices are all behind the plane of P n = 0 for Qi in Q: - print Q.col[0] d = pSign * Distance(Vector(Qi), P) - if d > EPS: + if d <= EPS: n += 1 qVerticesBehindPlaneP = (n == len(Q)) @@ -1688,9 +1650,8 @@ class Renderer: # Test 4bis: P vertices in front of the plane of Q n = 0 for Pi in P: - print P.col[0] d = qSign * Distance(Vector(Pi), Q) - if d <= EPS: + if d >= -EPS: n += 1 pVerticesInFrontPlaneQ = (n == len(P)) @@ -1698,59 +1659,46 @@ class Renderer: debug("\nTest 4bis\n") debug("P IN FRONT OF Q!\n") - - import intersection - + + # We don't even know if Q does obscure P, so they should + # intersect each other, split one of them in two parts. if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ: debug("\nSimple Intersection?\n") - # Split P or Q, TODO - print "Test 3bis or 4bis failed" - print "Split here!!2\n" - - """newfaces = intersection.splitOn(P, Q, 0) - print newfaces - facelist.remove(Q) - for nf in newfaces: - if nf: - nf.col = Q.col - facelist.append(nf) - """ - - break - - # We do not know - if Q.smooth: - # split P or Q - print "Split here!!\n" - """ - newfaces = intersection.splitOn(P, Q, 0) - facelist.remove(Q) - for nf in newfaces: - if nf: - nf.col = Q.col - facelist.append(nf) - - """ - break + debug("Test 3bis or 4bis failed\n") + debug("Split here!!2\n") - Q.smooth = 1 + facelist = facesplit(P, Q, facelist, nmesh) + split_done = 1 + break + facelist.remove(Q) facelist.insert(0, Q) + Q.smooth = 1 + face_marked = 1 + debug("Q marked!\n") + break # Write P! - P = facelist[0] - facelist.remove(P) - maplist.append(P) + if split_done == 0 and face_marked == 0: + facelist.remove(P) + maplist.append(P) - progress .update() + progress.update() + + if facelist == None: + maplist = [P, Q] + print [v.co for v in P] + print [v.co for v in Q] + break + + # end of while len(facelist) + - nmesh.faces = maplist - for f in nmesh.faces: - f.sel = 1 nmesh.update() + def _doHiddenSurfaceRemoval(self, mesh): """Do HSR for the given mesh. """