X-Git-Url: https://git.ao2.it/vrm.git/blobdiff_plain/06dd5e5bf8b7934ff02934d379d6ebb958dd6bd4..fbf9bf8ccfcd931b3e99429b2b0f392ada855a9c:/vrm.py diff --git a/vrm.py b/vrm.py index 9095307..26a14d7 100755 --- a/vrm.py +++ b/vrm.py @@ -76,6 +76,9 @@ __bpydoc__ = """\ # * The SVG output is now SVG 1.0 valid. # Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html # * Progress indicator during HSR. +# * Initial SWF output support +# * Fixed a bug in the animation code, now the projection matrix is +# recalculated at each frame! # # --------------------------------------------------------------------- @@ -85,6 +88,12 @@ from Blender.Mathutils import * from math import * import sys, time +# Constants +EPS = 10e-5 + +# We use a global progress Indicator Object +progress = None + # Some global settings @@ -92,8 +101,8 @@ class config: polygons = dict() polygons['SHOW'] = True polygons['SHADING'] = 'FLAT' - polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL' - polygons['HSR'] = 'NEWELL' + #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL' + polygons['HSR'] = 'PAINTER' # Hidden to the user for now polygons['EXPANSION_TRICK'] = True @@ -102,22 +111,28 @@ class config: edges = dict() edges['SHOW'] = False edges['SHOW_HIDDEN'] = False - edges['STYLE'] = 'MESH' + edges['STYLE'] = 'MESH' # or SILHOUETTE + edges['STYLE'] = 'SILHOUETTE' edges['WIDTH'] = 2 edges['COLOR'] = [0, 0, 0] output = dict() output['FORMAT'] = 'SVG' - output['ANIMATION'] = False + output['FORMAT'] = 'SWF' + output['ANIMATION'] = True output['JOIN_OBJECTS'] = True -# Debug utility function -print_debug = True -def debug(msg): - if print_debug: - sys.stderr.write(msg) +# Utility functions +def sign(x): + + if x < -EPS: + return -1 + elif x > EPS: + return 1 + else: + return 0 # --------------------------------------------------------------------- @@ -601,7 +616,8 @@ class VectorWriter: return def close(self): - self.file.close() + if self.file: + self.file.close() return def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, @@ -801,6 +817,7 @@ class SVGVectorWriter(VectorWriter): if color[3] != 255: opacity = float(color[3])/255.0 opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity) + #opacity_string = "opacity: %g;" % (opacity) self.file.write("\tstyle=\"fill:" + str_col + ";") self.file.write(opacity_string) @@ -810,8 +827,9 @@ class SVGVectorWriter(VectorWriter): # see http://www.antigrain.com/svg/index.html for more info stroke_width = 1.0 - if config.polygons['EXPANSION_TRICK']: - str_col = "#000000" # For debug + # EXPANSION TRICK is not that useful where there is transparency + if config.polygons['EXPANSION_TRICK'] and color[3] == 255: + # str_col = "#000000" # For debug self.file.write(" stroke:%s;\n" % str_col) self.file.write(" stroke-width:" + str(stroke_width) + ";\n") self.file.write(" stroke-linecap:round;stroke-linejoin:round") @@ -853,6 +871,196 @@ class SVGVectorWriter(VectorWriter): self.file.write("\n") +## SWF Writer + +from ming import * + +class SWFVectorWriter(VectorWriter): + """A concrete class for writing SWF output. + """ + + def __init__(self, fileName): + """Simply call the parent Contructor. + """ + VectorWriter.__init__(self, fileName) + + self.movie = None + self.sprite = None + + + ## + # Public Methods + # + + def open(self, startFrame=1, endFrame=1): + """Do some initialization operations. + """ + VectorWriter.open(self, startFrame, endFrame) + self.movie = SWFMovie() + self.movie.setDimension(self.canvasSize[0], self.canvasSize[1]) + # set fps + self.movie.setRate(25) + numframes = endFrame - startFrame + 1 + self.movie.setFrames(numframes) + + def close(self): + """Do some finalization operation. + """ + self.movie.save(self.outputFileName) + + # remember to call the close method of the parent + VectorWriter.close(self) + + def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, + showHiddenEdges=False): + """Convert the scene representation to SVG. + """ + context = scene.getRenderingContext() + framenumber = context.currentFrame() + + Objects = scene.getChildren() + + if self.sprite: + self.movie.remove(self.sprite) + + sprite = SWFSprite() + + for obj in Objects: + + if(obj.getType() != 'Mesh'): + continue + + mesh = obj.getData(mesh=1) + + if doPrintPolygons: + self._printPolygons(mesh, sprite) + + if doPrintEdges: + self._printEdges(mesh, sprite, showHiddenEdges) + + sprite.nextFrame() + i = self.movie.add(sprite) + # Remove the instance the next time + self.sprite = i + if self.animation: + self.movie.nextFrame() + + + ## + # Private Methods + # + + def _calcCanvasCoord(self, v): + """Convert vertex in scene coordinates to canvas coordinates. + """ + + pt = Vector([0, 0, 0]) + + mW = float(self.canvasSize[0])/2.0 + mH = float(self.canvasSize[1])/2.0 + + # rescale to canvas size + pt[0] = v.co[0]*mW + mW + pt[1] = v.co[1]*mH + mH + pt[2] = v.co[2] + + # For now we want (0,0) in the top-left corner of the canvas. + # Mirror and translate along y + pt[1] *= -1 + pt[1] += self.canvasSize[1] + + return pt + + def _printPolygons(self, mesh, sprite): + """Print the selected (visible) polygons. + """ + + if len(mesh.faces) == 0: + return + + for face in mesh.faces: + if not face.sel: + continue + + if face.col: + fcol = face.col[0] + color = [fcol.r, fcol.g, fcol.b, fcol.a] + else: + color = [255, 255, 255, 255] + + s = SWFShape() + f = s.addFill(color[0], color[1], color[2], color[3]) + s.setRightFill(f) + + # The starting point of the shape + p0 = self._calcCanvasCoord(face.verts[0]) + s.movePenTo(p0[0], p0[1]) + + + for v in face.verts[1:]: + p = self._calcCanvasCoord(v) + s.drawLineTo(p[0], p[1]) + + # Closing the shape + s.drawLineTo(p0[0], p0[1]) + s.end() + sprite.add(s) + + + """ + # use the stroke property to alleviate the "adjacent edges" problem, + # we simulate polygon expansion using borders, + # see http://www.antigrain.com/svg/index.html for more info + stroke_width = 1.0 + + # EXPANSION TRICK is not that useful where there is transparency + if config.polygons['EXPANSION_TRICK'] and color[3] == 255: + # str_col = "#000000" # For debug + self.file.write(" stroke:%s;\n" % str_col) + self.file.write(" stroke-width:" + str(stroke_width) + ";\n") + self.file.write(" stroke-linecap:round;stroke-linejoin:round") + + """ + + def _printEdges(self, mesh, sprite, showHiddenEdges=False): + """Print the wireframe using mesh edges. + """ + + stroke_width = config.edges['WIDTH'] + stroke_col = config.edges['COLOR'] + + s = SWFShape() + + for e in mesh.edges: + + #Next, we set the line width and color for our shape. + s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2], + 255) + + if e.sel == 0: + if showHiddenEdges == False: + continue + else: + # SWF does not support dashed lines natively, so -for now- + # draw hidden lines thinner and half-trasparent + s.setLine(stroke_width/2, stroke_col[0], stroke_col[1], + stroke_col[2], 128) + + p1 = self._calcCanvasCoord(e.v1) + p2 = self._calcCanvasCoord(e.v2) + + # FIXME: this is just a qorkaround, remove that after the + # implementation of propoer Viewport clipping + if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000: + s.movePenTo(p1[0], p1[1]) + s.drawLineTo(p2[0], p2[1]) + + + s.end() + sprite.add(s) + + + # --------------------------------------------------------------------- # ## Rendering Classes @@ -872,6 +1080,7 @@ edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge # A dictionary to collect the supported output formats outputWriters = dict() outputWriters['SVG'] = SVGVectorWriter +outputWriters['SWF'] = SWFVectorWriter class Renderer: @@ -904,12 +1113,6 @@ class Renderer: # Render from the currently active camera self.cameraObj = self._SCENE.getCurrentCamera() - # Get a projector for this camera. - # NOTE: the projector wants object in world coordinates, - # so we should remember to apply modelview transformations - # _before_ we do projection transformations. - self.proj = Projector(self.cameraObj, self.canvasRatio) - # Get the list of lighting sources obj_lst = self._SCENE.getChildren() self.lights = [ o for o in obj_lst if o.getType() == 'Lamp'] @@ -961,6 +1164,12 @@ class Renderer: # And Set our camera accordingly self.cameraObj = inputScene.getCurrentCamera() + # Get a projector for this camera. + # NOTE: the projector wants object in world coordinates, + # so we should remember to apply modelview transformations + # _before_ we do projection transformations. + self.proj = Projector(self.cameraObj, self.canvasRatio) + try: renderedScene = self.doRenderScene(inputScene) except : @@ -1026,6 +1235,16 @@ class Renderer: self._doBackFaceCulling(mesh) + + # When doing HSR with NEWELL we may want to flip all normals + # toward the viewer + if config.polygons['HSR'] == "NEWELL": + for f in mesh.faces: + f.sel = 1-f.sel + mesh.flipNormals() + for f in mesh.faces: + f.sel = 1 + self._doLighting(mesh) # Do "projection" now so we perform further processing @@ -1038,7 +1257,6 @@ class Renderer: self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']]) - # Update the object data, important! :) mesh.update() @@ -1144,8 +1362,8 @@ class Renderer: def _doConvertGeometricObjsToMesh(self, scene): """Convert all "geometric" objects to mesh ones. """ - #geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text'] - geometricObjTypes = ['Mesh', 'Surf', 'Curve'] + geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text'] + #geometricObjTypes = ['Mesh', 'Surf', 'Curve'] Objects = scene.getChildren() objList = [ o for o in Objects if o.getType() in geometricObjTypes ] @@ -1334,7 +1552,7 @@ class Renderer: for l in self.lights: light_obj = l light_pos = self._getObjPosition(l) - light = light_obj.data + light = light_obj.getData() L = Vector(light_pos).normalize() @@ -1431,14 +1649,14 @@ class Renderer: solves HSR correctly only for convex meshes. """ - global progress + #global progress + # The sorting requires circa n*log(n) steps n = len(mesh.faces) progress.setActivity("HSR: Painter", n*log(n)) - by_furthest_z = (lambda f1, f2: progress.update() and - cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])) + cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) ) # FIXME: using NMesh to sort faces. We should avoid that! @@ -1450,65 +1668,27 @@ class Renderer: nmesh.update() - def __topologicalDepthSort(self, mesh): - """Occlusion based on topological occlusion. - - Build the occlusion graph of the mesh, - and then do topological sort on that graph - """ - return def __newellDepthSort(self, mesh): """Newell's depth sorting. """ - by_furthest_z = (lambda f1, f2: - cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])) - ) - - - def isOnSegment(v1, v2, p): - - # when p is at extreme points - if p == v1 or p == v2: - return False - - - EPS = 10e-7 - - l1 = (v1-p).length - l2 = (v2-p).length - l = (v1-v2).length - - print "l: ", l, " l1: ", l1, " l2: ", l2, "diff: %.9f" % (l - (l1+l2) ) - - if abs(l - (l1+l2)) < EPS: - return True - else: - return False - + from hsrtk import * + #global progress - def Distance(point, face): - """ Calculate the distance between a point and a face. + # Find non planar quads and convert them to triangle + #for f in mesh.faces: + # f.sel = 0 + # if is_nonplanar_quad(f.v): + # print "NON QUAD??" + # f.sel = 1 - An alternative but more expensive method can be: - - ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]), - Vector(face.no), Vector(point), 0) - - d = Vector(ip - point).length - """ - - plNormal = Vector(face.no) - plVert0 = Vector(face[0]) - - #d = abs( (point * plNormal ) - (plVert0 * plNormal) ) - d = (point * plNormal ) - (plVert0 * plNormal) - debug("d: %.10f - sel: %d, %s\n" % (d, face.sel, str(point)) ) - - return d + # Now reselect all faces + for f in mesh.faces: + f.sel = 1 + mesh.quadToTriangle() # FIXME: using NMesh to sort faces. We should avoid that! nmesh = NMesh.GetRaw(mesh.name) @@ -1517,7 +1697,6 @@ class Renderer: nmesh.faces.sort(by_furthest_z) nmesh.faces.reverse() - # Begin depth sort tests # use the smooth flag to set marked faces @@ -1527,62 +1706,72 @@ class Renderer: facelist = nmesh.faces[:] maplist = [] - #EPS = 10e-7 - EPS = 0 - global progress + # The steps are _at_least_ equal to len(facelist), we do not count the + # feces coming out from splitting!! progress.setActivity("HSR: Newell", len(facelist)) - progress.setQuiet(True) + #progress.setQuiet(True) - #while len(facelist)-1: + while len(facelist): + debug("\n----------------------\n") + debug("len(facelits): %d\n" % len(facelist)) P = facelist[0] - pSign = 1 - if P.sel == 0: - pSign = -1 + pSign = sign(P.normal[2]) + + # We can discard faces parallel to the view vector + #if P.normal[2] == 0: + # facelist.remove(P) + # continue + + split_done = 0 + face_marked = 0 - #while False: for Q in facelist[1:]: debug("P.smooth: " + str(P.smooth) + "\n") debug("Q.smooth: " + str(Q.smooth) + "\n") debug("\n") - qSign = 1 - if Q.sel == 0: - qSign = -1 + qSign = sign(Q.normal[2]) + # TODO: check also if Q is parallel?? - # We need to test only those Qs whose furthest vertex + # Test 0: We need to test only those Qs whose furthest vertex # is closer to the observer than the closest vertex of P. zP = [v.co[2] for v in P.v] zQ = [v.co[2] for v in Q.v] - ZOverlap = min(zP) < max(zQ) + notZOverlap = min(zP) > max(zQ) + EPS - if not ZOverlap: + if notZOverlap: debug("\nTest 0\n") debug("NOT Z OVERLAP!\n") - if not Q.smooth: - # We can safely print P + if Q.smooth == 0: + # If Q is not marked then we can safely print P break else: + debug("met a marked face\n") continue + # Test 1: X extent overlapping xP = [v.co[0] for v in P.v] xQ = [v.co[0] for v in Q.v] - notXOverlap = (max(xP) < min(xQ)) or (max(xQ) < min(xP)) + #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP)) + notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS) if notXOverlap: debug("\nTest 1\n") debug("NOT X OVERLAP!\n") continue + # Test 2: Y extent Overlapping yP = [v.co[1] for v in P.v] yQ = [v.co[1] for v in Q.v] - notYOverlap = (max(yP) < min(yQ)) or (max(yQ) < min(yP)) + #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP)) + notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS) if notYOverlap: debug("\nTest 2\n") @@ -1593,9 +1782,8 @@ class Renderer: # Test 3: P vertices are all behind the plane of Q n = 0 for Pi in P: - print P.col[0] d = qSign * Distance(Vector(Pi), Q) - if d > EPS: + if d <= EPS: n += 1 pVerticesBehindPlaneQ = (n == len(P)) @@ -1608,9 +1796,8 @@ class Renderer: # Test 4: Q vertices in front of the plane of P n = 0 for Qi in Q: - print Q.col[0] d = pSign * Distance(Vector(Qi), P) - if d <= EPS: + if d >= -EPS: n += 1 qVerticesInFrontPlaneP = (n == len(Q)) @@ -1619,64 +1806,36 @@ class Renderer: debug("Q IN FRONT OF P!\n") continue - # Test 5: Line Intersections... TODO - # Check if polygons effectively overlap each other, not only - # boundig boxes as dome before. - # Since we We are working in normalized projection coordinates - # we kust check if polygons intersect. - - def projectionsOverlap(P, Q): - - for i in range(0, len(P.v)): - - v1 = Vector(P.v[i-1]) - v1[2] = 0 - v2 = Vector(P.v[i]) - v2[2] = 0 - - for j in range(0, len(Q.v)): - v3 = Vector(Q.v[j-1]) - v3[2] = 0 - v4 = Vector(Q.v[j]) - v4[2] = 0 - - ret = LineIntersect(v1, v2, v3, v4) - # if line v1-v2 and v3-v4 intersect both return - # values are the same. - if ret and ret[0] == ret[1] and isOnSegment(v1, v2, - ret[0]) and isOnSegment(v3, v4, ret[1]): - debug("Projections OVERLAP!!\n") - debug("line1:"+ - " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' + - " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' + - "\n") - debug("return: "+ str(ret)+"\n") - return True - - return False + + # Test 5: Check if projections of polygons effectively overlap, + # in previous tests we checked only bounding boxes. if not projectionsOverlap(P, Q): debug("\nTest 5\n") debug("Projections do not overlap!\n") continue + # We still can't say if P obscures Q. - # We do not know if P obscures Q. + # But if Q is marked we do a face-split trying to resolve a + # difficulty (maybe a visibility cycle). if Q.smooth == 1: - # Split P or Q, TODO - debug("Cycle detected!\n") + # Split P or Q + debug("Possibly a cycle detected!\n") debug("Split here!!\n") - continue + facelist = facesplit(P, Q, facelist, nmesh) + split_done = 1 + break # The question now is: Does Q obscure P? + # Test 3bis: Q vertices are all behind the plane of P n = 0 for Qi in Q: - print Q.col[0] d = pSign * Distance(Vector(Qi), P) - if d > EPS: + if d <= EPS: n += 1 qVerticesBehindPlaneP = (n == len(Q)) @@ -1688,9 +1847,8 @@ class Renderer: # Test 4bis: P vertices in front of the plane of Q n = 0 for Pi in P: - print P.col[0] d = qSign * Distance(Vector(Pi), Q) - if d <= EPS: + if d >= -EPS: n += 1 pVerticesInFrontPlaneQ = (n == len(P)) @@ -1698,59 +1856,48 @@ class Renderer: debug("\nTest 4bis\n") debug("P IN FRONT OF Q!\n") - - import intersection - + + # We don't even know if Q does obscure P, so they should + # intersect each other, split one of them in two parts. if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ: debug("\nSimple Intersection?\n") - # Split P or Q, TODO - print "Test 3bis or 4bis failed" - print "Split here!!2\n" - - """newfaces = intersection.splitOn(P, Q, 0) - print newfaces - facelist.remove(Q) - for nf in newfaces: - if nf: - nf.col = Q.col - facelist.append(nf) - """ - - break - - # We do not know - if Q.smooth: - # split P or Q - print "Split here!!\n" - """ - newfaces = intersection.splitOn(P, Q, 0) - facelist.remove(Q) - for nf in newfaces: - if nf: - nf.col = Q.col - facelist.append(nf) - - """ - break + debug("Test 3bis or 4bis failed\n") + debug("Split here!!2\n") - Q.smooth = 1 + facelist = facesplit(P, Q, facelist, nmesh) + split_done = 1 + break + facelist.remove(Q) facelist.insert(0, Q) + Q.smooth = 1 + face_marked = 1 + debug("Q marked!\n") + break # Write P! - P = facelist[0] - facelist.remove(P) - maplist.append(P) + if split_done == 0 and face_marked == 0: + facelist.remove(P) + maplist.append(P) - progress .update() + progress.update() - - nmesh.faces = maplist + #if facelist == None: + # maplist = [P, Q] + # print [v.co for v in P] + # print [v.co for v in Q] + # break + + # end of while len(facelist) + + nmesh.faces = maplist for f in nmesh.faces: f.sel = 1 + nmesh.update() + def _doHiddenSurfaceRemoval(self, mesh): """Do HSR for the given mesh. """ @@ -2055,9 +2202,6 @@ def vectorize(filename): if editmode: Window.EditMode(1) -# We use a global progress Indicator Object -progress = None - # Here the main if __name__ == "__main__":