X-Git-Url: https://git.ao2.it/vrm.git/blobdiff_plain/6522c892513097a6f9da53d64b5c38cf8d417c31..40fe52111a7e783234bd644b51b28d206f890f08:/vrm.py diff --git a/vrm.py b/vrm.py index 5e2c128..da71fab 100755 --- a/vrm.py +++ b/vrm.py @@ -58,9 +58,8 @@ __bpydoc__ = """\ # - Implement Edge Styles (silhouettes, contours, etc.) (partially done). # - Implement Shading Styles? (partially done, to make more flexible). # - Add Vector Writers other than SVG. +# - set the background color! # - Check memory use!! -# - Support Indexed palettes!! (Useful for ILDA FILES, for example, -# see http://www.linux-laser.org/download/autotrace/ilda-output.patch) # # --------------------------------------------------------------------- # @@ -76,6 +75,9 @@ __bpydoc__ = """\ # * The SVG output is now SVG 1.0 valid. # Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html # * Progress indicator during HSR. +# * Initial SWF output support +# * Fixed a bug in the animation code, now the projection matrix is +# recalculated at each frame! # # --------------------------------------------------------------------- @@ -88,15 +90,17 @@ import sys, time # Constants EPS = 10e-5 +# We use a global progress Indicator Object +progress = None + # Some global settings class config: polygons = dict() polygons['SHOW'] = True - polygons['SHADING'] = 'TOON' - #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL' - polygons['HSR'] = 'NEWELL' + polygons['SHADING'] = 'FLAT' # FLAT or TOON + polygons['HSR'] = 'PAINTER' # PAINTER or NEWELL # Hidden to the user for now polygons['EXPANSION_TRICK'] = True @@ -105,7 +109,7 @@ class config: edges = dict() edges['SHOW'] = False edges['SHOW_HIDDEN'] = False - edges['STYLE'] = 'MESH' # or SILHOUETTE + edges['STYLE'] = 'MESH' # MESH or SILHOUETTE edges['WIDTH'] = 2 edges['COLOR'] = [0, 0, 0] @@ -115,16 +119,606 @@ class config: output['JOIN_OBJECTS'] = True - # Utility functions +print_debug = False + +def dumpfaces(flist, filename): + """Dump a single face to a file. + """ + if not print_debug: + return + + class tmpmesh: + pass + + m = tmpmesh() + m.faces = flist + + writerobj = SVGVectorWriter(filename) + + writerobj.open() + writerobj._printPolygons(m) + + writerobj.close() + +def debug(msg): + if print_debug: + sys.stderr.write(msg) + +def EQ(v1, v2): + return (abs(v1[0]-v2[0]) < EPS and + abs(v1[1]-v2[1]) < EPS ) +by_furthest_z = (lambda f1, f2: + cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) + ) + def sign(x): - if x < 0: + if x < -EPS: + #if x < 0: return -1 - elif x > 0: + elif x > EPS: + #elif x > 0: return 1 - #else: - # return 0 + else: + return 0 + + +# --------------------------------------------------------------------- +# +## HSR Utility class +# +# --------------------------------------------------------------------- + +EPS = 10e-5 +INF = 10e5 + +class HSR: + """A utility class for HSR processing. + """ + + def is_nonplanar_quad(face): + """Determine if a quad is non-planar. + + From: http://mathworld.wolfram.com/Coplanar.html + + Geometric objects lying in a common plane are said to be coplanar. + Three noncollinear points determine a plane and so are trivially coplanar. + Four points are coplanar iff the volume of the tetrahedron defined by them is + 0, + + | x_1 y_1 z_1 1 | + | x_2 y_2 z_2 1 | + | x_3 y_3 z_3 1 | + | x_4 y_4 z_4 1 | == 0 + + Coplanarity is equivalent to the statement that the pair of lines + determined by the four points are not skew, and can be equivalently stated + in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0. + + An arbitrary number of n points x_1, ..., x_n can be tested for + coplanarity by finding the point-plane distances of the points + x_4, ..., x_n from the plane determined by (x_1,x_2,x_3) + and checking if they are all zero. + If so, the points are all coplanar. + + We here check only for 4-point complanarity. + """ + n = len(face) + + # assert(n>4) + if n < 3 or n > 4: + print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3" + raise AssertionError + + elif n == 3: + # three points must be complanar + return False + else: # n == 4 + x1 = Vector(face[0].co) + x2 = Vector(face[1].co) + x3 = Vector(face[2].co) + x4 = Vector(face[3].co) + + v = (x3-x1) * CrossVecs((x2-x1), (x4-x3)) + if v != 0: + return True + + return False + + is_nonplanar_quad = staticmethod(is_nonplanar_quad) + + def pointInPolygon(poly, v): + return False + + pointInPolygon = staticmethod(pointInPolygon) + + def edgeIntersection(s1, s2, do_perturbate=False): + + (x1, y1) = s1[0].co[0], s1[0].co[1] + (x2, y2) = s1[1].co[0], s1[1].co[1] + + (x3, y3) = s2[0].co[0], s2[0].co[1] + (x4, y4) = s2[1].co[0], s2[1].co[1] + + #z1 = s1[0].co[2] + #z2 = s1[1].co[2] + #z3 = s2[0].co[2] + #z4 = s2[1].co[2] + + + # calculate delta values (vector components) + dx1 = x2 - x1; + dx2 = x4 - x3; + dy1 = y2 - y1; + dy2 = y4 - y3; + + #dz1 = z2 - z1; + #dz2 = z4 - z3; + + C = dy2 * dx1 - dx2 * dy1 # /* cross product */ + if C == 0: #/* parallel */ + return None + + dx3 = x1 - x3 # /* combined origin offset vector */ + dy3 = y1 - y3 + + a1 = (dy3 * dx2 - dx3 * dy2) / C; + a2 = (dy3 * dx1 - dx3 * dy1) / C; + + # check for degeneracies + #print_debug("\n") + #print_debug(str(a1)+"\n") + #print_debug(str(a2)+"\n\n") + + if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1): + # Intersection on boundaries, we consider the point external? + return None + + elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): # /* lines cross */ + x = x1 + a1*dx1 + y = y1 + a1*dy1 + + #z = z1 + a1*dz1 + z = 0 + return (NMesh.Vert(x, y, z), a1, a2) + + else: + # lines have intersections but not those segments + return None + + edgeIntersection = staticmethod(edgeIntersection) + + def isVertInside(self, v): + winding_number = 0 + coincidence = False + + # Create point at infinity + point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF) + + for i in range(len(self.v)): + s1 = (point_at_infinity, v) + s2 = (self.v[i-1], self.v[i]) + + if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co): + coincidence = True + + if HSR.edgeIntersection(s1, s2, do_perturbate=False): + winding_number += 1 + + # Check even or odd + if winding_number % 2 == 0 : + return False + else: + if coincidence: + return False + return True + + isVertInside = staticmethod(isVertInside) + + + def det(a, b, c): + return ((b[0] - a[0]) * (c[1] - a[1]) - + (b[1] - a[1]) * (c[0] - a[0]) ) + + det = staticmethod(det) + + def pointInPolygon(q, P): + is_in = False + + point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF) + + det = HSR.det + + for i in range(len(P.v)): + p0 = P.v[i-1] + p1 = P.v[i] + if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0): + if det(p0.co, p1.co, q.co) == 0 : + #print "On Boundary" + return False + elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0): + is_in = not is_in + + return is_in + + pointInPolygon = staticmethod(pointInPolygon) + + def projectionsOverlap(f1, f2): + """ If you have nonconvex, but still simple polygons, an acceptable method + is to iterate over all vertices and perform the Point-in-polygon test[1]. + The advantage of this method is that you can compute the exact + intersection point and collision normal that you will need to simulate + collision. When you have the point that lies inside the other polygon, you + just iterate over all edges of the second polygon again and look for edge + intersections. Note that this method detects collsion when it already + happens. This algorithm is fast enough to perform it hundreds of times per + sec. """ + + for i in range(len(f1.v)): + + + # If a point of f1 in inside f2, there is an overlap! + v1 = f1.v[i] + #if HSR.isVertInside(f2, v1): + if HSR.pointInPolygon(v1, f2): + return True + + # If not the polygon can be ovelap as well, so we check for + # intersection between an edge of f1 and all the edges of f2 + + v0 = f1.v[i-1] + + for j in range(len(f2.v)): + v2 = f2.v[j-1] + v3 = f2.v[j] + + e1 = v0, v1 + e2 = v2, v3 + + intrs = HSR.edgeIntersection(e1, e2) + if intrs: + #print_debug(str(v0.co) + " " + str(v1.co) + " " + + # str(v2.co) + " " + str(v3.co) ) + #print_debug("\nIntersection\n") + + return True + + return False + + projectionsOverlap = staticmethod(projectionsOverlap) + + def midpoint(p1, p2): + """Return the midpoint of two vertices. + """ + m = MidpointVecs(Vector(p1), Vector(p2)) + mv = NMesh.Vert(m[0], m[1], m[2]) + + return mv + + midpoint = staticmethod(midpoint) + + def facesplit(P, Q, facelist, nmesh): + """Split P or Q according to the strategy illustrated in the Newell's + paper. + """ + + by_furthest_z = (lambda f1, f2: + cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) + ) + + # Choose if split P on Q plane or vice-versa + + n = 0 + for Pi in P: + d = HSR.Distance(Vector(Pi), Q) + if d <= EPS: + n += 1 + pIntersectQ = (n != len(P)) + + n = 0 + for Qi in Q: + d = HSR.Distance(Vector(Qi), P) + if d >= -EPS: + n += 1 + qIntersectP = (n != len(Q)) + + newfaces = [] + + # 1. If parts of P lie in both half-spaces of Q + # then splice P in two with the plane of Q + if pIntersectQ: + #print "We split P" + f = P + plane = Q + + newfaces = HSR.splitOn(plane, f) + + # 2. Else if parts of Q lie in both half-space of P + # then splice Q in two with the plane of P + if qIntersectP and newfaces == None: + #print "We split Q" + f = Q + plane = P + + newfaces = HSR.splitOn(plane, f) + #print "After" + + # 3. Else slice P in half through the mid-point of + # the longest pair of opposite sides + if newfaces == None: + + print "We ignore P..." + facelist.remove(P) + return facelist + + #f = P + + #if len(P)==3: + # v1 = midpoint(f[0], f[1]) + # v2 = midpoint(f[1], f[2]) + #if len(P)==4: + # v1 = midpoint(f[0], f[1]) + # v2 = midpoint(f[2], f[3]) + #vec3 = (Vector(v2)+10*Vector(f.normal)) + # + #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2]) + + #plane = NMesh.Face([v1, v2, v3]) + # + #newfaces = splitOn(plane, f) + + + if newfaces == None: + print "Big FAT problem, we weren't able to split POLYGONS!" + raise AssertionError + + #print newfaces + if newfaces: + #for v in f: + # if v not in plane and v in nmesh.verts: + # nmesh.verts.remove(v) + for nf in newfaces: + + nf.mat = f.mat + nf.sel = f.sel + nf.col = [f.col[0]] * len(nf.v) + + nf.smooth = 0 + + for v in nf: + nmesh.verts.append(v) + # insert pieces in the list + facelist.append(nf) + + facelist.remove(f) + + # and resort the faces + facelist.sort(by_furthest_z) + facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth)) + facelist.reverse() + + #print [ f.smooth for f in facelist ] + + return facelist + + facesplit = staticmethod(facesplit) + + def isOnSegment(v1, v2, p, extremes_internal=False): + """Check if point p is in segment v1v2. + """ + + l1 = (v1-p).length + l2 = (v2-p).length + + # Should we consider extreme points as internal ? + # The test: + # if p == v1 or p == v2: + if l1 < EPS or l2 < EPS: + return extremes_internal + + l = (v1-v2).length + + # if the sum of l1 and l2 is circa l, then the point is on segment, + if abs(l - (l1+l2)) < EPS: + return True + else: + return False + + isOnSegment = staticmethod(isOnSegment) + + def Distance(point, face): + """ Calculate the distance between a point and a face. + + An alternative but more expensive method can be: + + ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]), + Vector(face.no), Vector(point), 0) + + d = Vector(ip - point).length + + See: http://mathworld.wolfram.com/Point-PlaneDistance.html + """ + + p = Vector(point) + plNormal = Vector(face.no) + plVert0 = Vector(face.v[0]) + + d = (plVert0 * plNormal) - (p * plNormal) + + #d = plNormal * (plVert0 - p) + + #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point)) + + return d + + Distance = staticmethod(Distance) + + def makeFaces(vl): + # + # make one or two new faces based on a list of vertex-indices + # + newfaces = [] + + if len(vl) <= 4: + nf = NMesh.Face() + + for v in vl: + nf.v.append(v) + + newfaces.append(nf) + + else: + nf = NMesh.Face() + + nf.v.append(vl[0]) + nf.v.append(vl[1]) + nf.v.append(vl[2]) + nf.v.append(vl[3]) + newfaces.append(nf) + + nf = NMesh.Face() + nf.v.append(vl[3]) + nf.v.append(vl[4]) + nf.v.append(vl[0]) + newfaces.append(nf) + + return newfaces + + makeFaces = staticmethod(makeFaces) + + def splitOn(Q, P): + """Split P using the plane of Q. + Logic taken from the knife.py python script + """ + + # Check if P and Q are parallel + u = CrossVecs(Vector(Q.no),Vector(P.no)) + ax = abs(u[0]) + ay = abs(u[1]) + az = abs(u[2]) + + if (ax+ay+az) < EPS: + print "PARALLEL planes!!" + return + + + # The final aim is to find the intersection line between P + # and the plane of Q, and split P along this line + + nP = len(P.v) + + # Calculate point-plane Distance between vertices of P and plane Q + d = [] + for i in range(0, nP): + d.append(HSR.Distance(P.v[i], Q)) + + newVertList = [] + + posVertList = [] + negVertList = [] + for i in range(nP): + d0 = d[i-1] + V0 = P.v[i-1] + + d1 = d[i] + V1 = P.v[i] + + #print "d0:", d0, "d1:", d1 + + # if the vertex lies in the cutplane + if abs(d1) < EPS: + #print "d1 On cutplane" + posVertList.append(V1) + negVertList.append(V1) + else: + # if the previous vertex lies in cutplane + if abs(d0) < EPS: + #print "d0 on Cutplane" + if d1 > 0: + #print "d1 on positive Halfspace" + posVertList.append(V1) + else: + #print "d1 on negative Halfspace" + negVertList.append(V1) + else: + # if they are on the same side of the plane + if d1*d0 > 0: + #print "On the same half-space" + if d1 > 0: + #print "d1 on positive Halfspace" + posVertList.append(V1) + else: + #print "d1 on negative Halfspace" + negVertList.append(V1) + + # the vertices are not on the same side of the plane, so we have an intersection + else: + #print "Intersection" + + e = Vector(V0), Vector(V1) + tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2]) + + inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0) + if inters == None: + print "Split Break" + break + + #print "Intersection", inters + + nv = NMesh.Vert(inters[0], inters[1], inters[2]) + newVertList.append(nv) + + posVertList.append(nv) + negVertList.append(nv) + + if d1 > 0: + posVertList.append(V1) + else: + negVertList.append(V1) + + + # uniq + posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ] + negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ] + + + # If vertex are all on the same half-space, return + #if len(posVertList) < 3: + # print "Problem, we created a face with less that 3 verteices??" + # posVertList = [] + #if len(negVertList) < 3: + # print "Problem, we created a face with less that 3 verteices??" + # negVertList = [] + + if len(posVertList) < 3 or len(negVertList) < 3: + print "RETURN NONE, SURE???" + return None + + + newfaces = HSR.addNewFaces(posVertList, negVertList) + + return newfaces + + splitOn = staticmethod(splitOn) + + def addNewFaces(posVertList, negVertList): + # Create new faces resulting from the split + outfaces = [] + if len(posVertList) or len(negVertList): + + #newfaces = [posVertList] + [negVertList] + newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] + + [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] ) + + for nf in newfaces: + if nf and len(nf)>2: + outfaces += HSR.makeFaces(nf) + + return outfaces + + + addNewFaces = staticmethod(addNewFaces) # --------------------------------------------------------------------- @@ -132,6 +726,7 @@ def sign(x): ## Mesh Utility class # # --------------------------------------------------------------------- + class MeshUtils: def buildEdgeFaceUsersCache(me): @@ -214,6 +809,7 @@ class MeshUtils: ## Shading Utility class # # --------------------------------------------------------------------- + class ShadingUtils: shademap = None @@ -608,7 +1204,8 @@ class VectorWriter: return def close(self): - self.file.close() + if self.file: + self.file.close() return def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, @@ -782,10 +1379,11 @@ class SVGVectorWriter(VectorWriter): self.file.write("\n") +## SWF Writer + +try: + from ming import * + SWFSupported = True +except: + SWFSupported = False + +class SWFVectorWriter(VectorWriter): + """A concrete class for writing SWF output. + """ + + def __init__(self, fileName): + """Simply call the parent Contructor. + """ + VectorWriter.__init__(self, fileName) + + self.movie = None + self.sprite = None + + + ## + # Public Methods + # + + def open(self, startFrame=1, endFrame=1): + """Do some initialization operations. + """ + VectorWriter.open(self, startFrame, endFrame) + self.movie = SWFMovie() + self.movie.setDimension(self.canvasSize[0], self.canvasSize[1]) + # set fps + self.movie.setRate(25) + numframes = endFrame - startFrame + 1 + self.movie.setFrames(numframes) + + def close(self): + """Do some finalization operation. + """ + self.movie.save(self.outputFileName) + + # remember to call the close method of the parent + VectorWriter.close(self) + + def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, + showHiddenEdges=False): + """Convert the scene representation to SVG. + """ + context = scene.getRenderingContext() + framenumber = context.currentFrame() + + Objects = scene.getChildren() + + if self.sprite: + self.movie.remove(self.sprite) + + sprite = SWFSprite() + + for obj in Objects: + + if(obj.getType() != 'Mesh'): + continue + + mesh = obj.getData(mesh=1) + + if doPrintPolygons: + self._printPolygons(mesh, sprite) + + if doPrintEdges: + self._printEdges(mesh, sprite, showHiddenEdges) + + sprite.nextFrame() + i = self.movie.add(sprite) + # Remove the instance the next time + self.sprite = i + if self.animation: + self.movie.nextFrame() + + + ## + # Private Methods + # + + def _calcCanvasCoord(self, v): + """Convert vertex in scene coordinates to canvas coordinates. + """ + + pt = Vector([0, 0, 0]) + + mW = float(self.canvasSize[0])/2.0 + mH = float(self.canvasSize[1])/2.0 + + # rescale to canvas size + pt[0] = v.co[0]*mW + mW + pt[1] = v.co[1]*mH + mH + pt[2] = v.co[2] + + # For now we want (0,0) in the top-left corner of the canvas. + # Mirror and translate along y + pt[1] *= -1 + pt[1] += self.canvasSize[1] + + return pt + + def _printPolygons(self, mesh, sprite): + """Print the selected (visible) polygons. + """ + + if len(mesh.faces) == 0: + return + + for face in mesh.faces: + if not face.sel: + continue + + if face.col: + fcol = face.col[0] + color = [fcol.r, fcol.g, fcol.b, fcol.a] + else: + color = [255, 255, 255, 255] + + s = SWFShape() + f = s.addFill(color[0], color[1], color[2], color[3]) + s.setRightFill(f) + + # The starting point of the shape + p0 = self._calcCanvasCoord(face.verts[0]) + s.movePenTo(p0[0], p0[1]) + + + for v in face.verts[1:]: + p = self._calcCanvasCoord(v) + s.drawLineTo(p[0], p[1]) + + # Closing the shape + s.drawLineTo(p0[0], p0[1]) + s.end() + sprite.add(s) + + + """ + # use the stroke property to alleviate the "adjacent edges" problem, + # we simulate polygon expansion using borders, + # see http://www.antigrain.com/svg/index.html for more info + stroke_width = 1.0 + + # EXPANSION TRICK is not that useful where there is transparency + if config.polygons['EXPANSION_TRICK'] and color[3] == 255: + # str_col = "#000000" # For debug + self.file.write(" stroke:%s;\n" % str_col) + self.file.write(" stroke-width:" + str(stroke_width) + ";\n") + self.file.write(" stroke-linecap:round;stroke-linejoin:round") + + """ + + def _printEdges(self, mesh, sprite, showHiddenEdges=False): + """Print the wireframe using mesh edges. + """ + + stroke_width = config.edges['WIDTH'] + stroke_col = config.edges['COLOR'] + + s = SWFShape() + + for e in mesh.edges: + + #Next, we set the line width and color for our shape. + s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2], + 255) + + if e.sel == 0: + if showHiddenEdges == False: + continue + else: + # SWF does not support dashed lines natively, so -for now- + # draw hidden lines thinner and half-trasparent + s.setLine(stroke_width/2, stroke_col[0], stroke_col[1], + stroke_col[2], 128) + + p1 = self._calcCanvasCoord(e.v1) + p2 = self._calcCanvasCoord(e.v2) + + # FIXME: this is just a qorkaround, remove that after the + # implementation of propoer Viewport clipping + if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000: + s.movePenTo(p1[0], p1[1]) + s.drawLineTo(p2[0], p2[1]) + + + s.end() + sprite.add(s) + + + # --------------------------------------------------------------------- # ## Rendering Classes @@ -881,6 +1673,8 @@ edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge # A dictionary to collect the supported output formats outputWriters = dict() outputWriters['SVG'] = SVGVectorWriter +if SWFSupported: + outputWriters['SWF'] = SWFVectorWriter class Renderer: @@ -913,12 +1707,6 @@ class Renderer: # Render from the currently active camera self.cameraObj = self._SCENE.getCurrentCamera() - # Get a projector for this camera. - # NOTE: the projector wants object in world coordinates, - # so we should remember to apply modelview transformations - # _before_ we do projection transformations. - self.proj = Projector(self.cameraObj, self.canvasRatio) - # Get the list of lighting sources obj_lst = self._SCENE.getChildren() self.lights = [ o for o in obj_lst if o.getType() == 'Lamp'] @@ -960,7 +1748,7 @@ class Renderer: outputWriter.open(startFrame, endFrame) # Do the rendering process frame by frame - print "Start Rendering of %d frames" % (endFrame-startFrame) + print "Start Rendering of %d frames" % (endFrame-startFrame+1) for f in xrange(startFrame, endFrame+1): print "\n\nFrame: %d" % f context.currentFrame(f) @@ -970,6 +1758,12 @@ class Renderer: # And Set our camera accordingly self.cameraObj = inputScene.getCurrentCamera() + # Get a projector for this camera. + # NOTE: the projector wants object in world coordinates, + # so we should remember to apply modelview transformations + # _before_ we do projection transformations. + self.proj = Projector(self.cameraObj, self.canvasRatio) + try: renderedScene = self.doRenderScene(inputScene) except : @@ -1031,14 +1825,11 @@ class Renderer: mesh = obj.getData(mesh=1) - # Triangolarize the mesh?? - for f in mesh.faces: f.sel = 1 - mesh.quadToTriangle() - self._doModelingTransformation(mesh, obj.matrix) self._doBackFaceCulling(mesh) + # When doing HSR with NEWELL we may want to flip all normals # toward the viewer if config.polygons['HSR'] == "NEWELL": @@ -1050,7 +1841,6 @@ class Renderer: self._doLighting(mesh) - # Do "projection" now so we perform further processing # in Normalized View Coordinates self._doProjection(mesh, self.proj) @@ -1061,7 +1851,6 @@ class Renderer: self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']]) - # Update the object data, important! :) mesh.update() @@ -1454,7 +2243,8 @@ class Renderer: solves HSR correctly only for convex meshes. """ - global progress + #global progress + # The sorting requires circa n*log(n) steps n = len(mesh.faces) progress.setActivity("HSR: Painter", n*log(n)) @@ -1472,12 +2262,13 @@ class Renderer: nmesh.update() + def __newellDepthSort(self, mesh): """Newell's depth sorting. """ - from hsrtk import * + #global progress # Find non planar quads and convert them to triangle #for f in mesh.faces: @@ -1490,6 +2281,7 @@ class Renderer: # Now reselect all faces for f in mesh.faces: f.sel = 1 + mesh.quadToTriangle() # FIXME: using NMesh to sort faces. We should avoid that! nmesh = NMesh.GetRaw(mesh.name) @@ -1498,7 +2290,6 @@ class Renderer: nmesh.faces.sort(by_furthest_z) nmesh.faces.reverse() - # Begin depth sort tests # use the smooth flag to set marked faces @@ -1511,7 +2302,6 @@ class Renderer: # The steps are _at_least_ equal to len(facelist), we do not count the # feces coming out from splitting!! - global progress progress.setActivity("HSR: Newell", len(facelist)) #progress.setQuiet(True) @@ -1524,9 +2314,9 @@ class Renderer: pSign = sign(P.normal[2]) # We can discard faces parallel to the view vector - if P.normal[2] == 0: - facelist.remove(P) - continue + #if P.normal[2] == 0: + # facelist.remove(P) + # continue split_done = 0 face_marked = 0 @@ -1545,7 +2335,7 @@ class Renderer: zP = [v.co[2] for v in P.v] zQ = [v.co[2] for v in Q.v] - notZOverlap = min(zP) > max(zQ)+EPS + notZOverlap = min(zP) > max(zQ) + EPS if notZOverlap: debug("\nTest 0\n") @@ -1557,7 +2347,7 @@ class Renderer: debug("met a marked face\n") continue - + # Test 1: X extent overlapping xP = [v.co[0] for v in P.v] xQ = [v.co[0] for v in Q.v] @@ -1585,7 +2375,7 @@ class Renderer: # Test 3: P vertices are all behind the plane of Q n = 0 for Pi in P: - d = qSign * Distance(Vector(Pi), Q) + d = qSign * HSR.Distance(Vector(Pi), Q) if d <= EPS: n += 1 pVerticesBehindPlaneQ = (n == len(P)) @@ -1599,7 +2389,7 @@ class Renderer: # Test 4: Q vertices in front of the plane of P n = 0 for Qi in Q: - d = pSign * Distance(Vector(Qi), P) + d = pSign * HSR.Distance(Vector(Qi), P) if d >= -EPS: n += 1 qVerticesInFrontPlaneP = (n == len(Q)) @@ -1613,7 +2403,8 @@ class Renderer: # Test 5: Check if projections of polygons effectively overlap, # in previous tests we checked only bounding boxes. - if not projectionsOverlap(P, Q): + #if not projectionsOverlap(P, Q): + if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)): debug("\nTest 5\n") debug("Projections do not overlap!\n") continue @@ -1627,7 +2418,7 @@ class Renderer: debug("Possibly a cycle detected!\n") debug("Split here!!\n") - facelist = facesplit(P, Q, facelist, nmesh) + facelist = HSR.facesplit(P, Q, facelist, nmesh) split_done = 1 break @@ -1637,7 +2428,7 @@ class Renderer: # Test 3bis: Q vertices are all behind the plane of P n = 0 for Qi in Q: - d = pSign * Distance(Vector(Qi), P) + d = pSign * HSR.Distance(Vector(Qi), P) if d <= EPS: n += 1 qVerticesBehindPlaneP = (n == len(Q)) @@ -1650,7 +2441,7 @@ class Renderer: # Test 4bis: P vertices in front of the plane of Q n = 0 for Pi in P: - d = qSign * Distance(Vector(Pi), Q) + d = qSign * HSR.Distance(Vector(Pi), Q) if d >= -EPS: n += 1 pVerticesInFrontPlaneQ = (n == len(P)) @@ -1667,7 +2458,7 @@ class Renderer: debug("Test 3bis or 4bis failed\n") debug("Split here!!2\n") - facelist = facesplit(P, Q, facelist, nmesh) + facelist = HSR.facesplit(P, Q, facelist, nmesh) split_done = 1 break @@ -1677,24 +2468,31 @@ class Renderer: face_marked = 1 debug("Q marked!\n") break - + # Write P! if split_done == 0 and face_marked == 0: facelist.remove(P) maplist.append(P) + dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg") progress.update() - if facelist == None: - maplist = [P, Q] - print [v.co for v in P] - print [v.co for v in Q] - break + if len(facelist) == 870: + dumpfaces([P, Q], "loopdebug.svg") + + + #if facelist == None: + # maplist = [P, Q] + # print [v.co for v in P] + # print [v.co for v in Q] + # break # end of while len(facelist) nmesh.faces = maplist + #for f in nmesh.faces: + # f.sel = 1 nmesh.update() @@ -1744,7 +2542,7 @@ class Renderer: if edgestyleSelect(e, mesh): e.sel = 1 """ - + # # --------------------------------------------------------------------- @@ -1923,6 +2721,9 @@ class GUI: elif evt == GUI.evtOutFormatMenu: i = GUI.outFormatMenu.val - 1 config.output['FORMAT']= outputWriters.keys()[i] + # Set the new output file + global outputfile + outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower() elif evt == GUI.evtAnimToggle: config.output['ANIMATION'] = bool(GUI.animToggle.val) @@ -2003,8 +2804,7 @@ def vectorize(filename): if editmode: Window.EditMode(1) -# We use a global progress Indicator Object -progress = None + # Here the main if __name__ == "__main__":