X-Git-Url: https://git.ao2.it/vrm.git/blobdiff_plain/6714d352f69b3e26a21f88da4e15b8764f1d950c..58b487476c46b70b9900d613bd875a3d9d42a515:/vrm.py?ds=sidebyside
diff --git a/vrm.py b/vrm.py
index 82922f8..0338065 100755
--- a/vrm.py
+++ b/vrm.py
@@ -58,9 +58,8 @@ __bpydoc__ = """\
# - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
# - Implement Shading Styles? (partially done, to make more flexible).
# - Add Vector Writers other than SVG.
+# - set the background color!
# - Check memory use!!
-# - Support Indexed palettes!! (Useful for ILDA FILES, for example,
-# see http://www.linux-laser.org/download/autotrace/ilda-output.patch)
#
# ---------------------------------------------------------------------
#
@@ -76,6 +75,14 @@ __bpydoc__ = """\
# * The SVG output is now SVG 1.0 valid.
# Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
# * Progress indicator during HSR.
+# * Initial SWF output support (using ming)
+# * Fixed a bug in the animation code, now the projection matrix is
+# recalculated at each frame!
+# * PDF output (using reportlab)
+# * Fixed another problem in the animation code the current frame was off
+# by one
+# * Use fps as specified in blender when VectorWriter handles animation
+# * Remove the real file opening in the abstract VectorWriter
#
# ---------------------------------------------------------------------
@@ -85,15 +92,20 @@ from Blender.Mathutils import *
from math import *
import sys, time
+# Constants
+EPS = 10e-5
+
+# We use a global progress Indicator Object
+progress = None
+
# Some global settings
class config:
polygons = dict()
polygons['SHOW'] = True
- polygons['SHADING'] = 'FLAT'
- #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
- polygons['HSR'] = 'NEWELL'
+ polygons['SHADING'] = 'FLAT' # FLAT or TOON
+ polygons['HSR'] = 'NEWELL' # PAINTER or NEWELL
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
@@ -102,7 +114,7 @@ class config:
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
- edges['STYLE'] = 'MESH'
+ edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
@@ -112,20 +124,610 @@ class config:
output['JOIN_OBJECTS'] = True
-
# Utility functions
-print_debug = True
+print_debug = False
+
+def dumpfaces(flist, filename):
+ """Dump a single face to a file.
+ """
+ if not print_debug:
+ return
+
+ class tmpmesh:
+ pass
+
+ m = tmpmesh()
+ m.faces = flist
+
+ writerobj = SVGVectorWriter(filename)
+
+ writerobj.open()
+ writerobj._printPolygons(m)
+
+ writerobj.close()
+
def debug(msg):
if print_debug:
sys.stderr.write(msg)
+def EQ(v1, v2):
+ return (abs(v1[0]-v2[0]) < EPS and
+ abs(v1[1]-v2[1]) < EPS )
+by_furthest_z = (lambda f1, f2:
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ )
+
def sign(x):
- if x == 0:
- return 0
- elif x < 0:
+
+ if x < -EPS:
+ #if x < 0:
return -1
- else:
+ elif x > EPS:
+ #elif x > 0:
return 1
+ else:
+ return 0
+
+
+# ---------------------------------------------------------------------
+#
+## HSR Utility class
+#
+# ---------------------------------------------------------------------
+
+EPS = 10e-5
+INF = 10e5
+
+class HSR:
+ """A utility class for HSR processing.
+ """
+
+ def is_nonplanar_quad(face):
+ """Determine if a quad is non-planar.
+
+ From: http://mathworld.wolfram.com/Coplanar.html
+
+ Geometric objects lying in a common plane are said to be coplanar.
+ Three noncollinear points determine a plane and so are trivially coplanar.
+ Four points are coplanar iff the volume of the tetrahedron defined by them is
+ 0,
+
+ | x_1 y_1 z_1 1 |
+ | x_2 y_2 z_2 1 |
+ | x_3 y_3 z_3 1 |
+ | x_4 y_4 z_4 1 | == 0
+
+ Coplanarity is equivalent to the statement that the pair of lines
+ determined by the four points are not skew, and can be equivalently stated
+ in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
+
+ An arbitrary number of n points x_1, ..., x_n can be tested for
+ coplanarity by finding the point-plane distances of the points
+ x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
+ and checking if they are all zero.
+ If so, the points are all coplanar.
+
+ We here check only for 4-point complanarity.
+ """
+ n = len(face)
+
+ # assert(n>4)
+ if n < 3 or n > 4:
+ print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
+ raise AssertionError
+
+ elif n == 3:
+ # three points must be complanar
+ return False
+ else: # n == 4
+ x1 = Vector(face[0].co)
+ x2 = Vector(face[1].co)
+ x3 = Vector(face[2].co)
+ x4 = Vector(face[3].co)
+
+ v = (x3-x1) * CrossVecs((x2-x1), (x4-x3))
+ if v != 0:
+ return True
+
+ return False
+
+ is_nonplanar_quad = staticmethod(is_nonplanar_quad)
+
+ def pointInPolygon(poly, v):
+ return False
+
+ pointInPolygon = staticmethod(pointInPolygon)
+
+ def edgeIntersection(s1, s2, do_perturbate=False):
+
+ (x1, y1) = s1[0].co[0], s1[0].co[1]
+ (x2, y2) = s1[1].co[0], s1[1].co[1]
+
+ (x3, y3) = s2[0].co[0], s2[0].co[1]
+ (x4, y4) = s2[1].co[0], s2[1].co[1]
+
+ #z1 = s1[0].co[2]
+ #z2 = s1[1].co[2]
+ #z3 = s2[0].co[2]
+ #z4 = s2[1].co[2]
+
+
+ # calculate delta values (vector components)
+ dx1 = x2 - x1;
+ dx2 = x4 - x3;
+ dy1 = y2 - y1;
+ dy2 = y4 - y3;
+
+ #dz1 = z2 - z1;
+ #dz2 = z4 - z3;
+
+ C = dy2 * dx1 - dx2 * dy1 # /* cross product */
+ if C == 0: #/* parallel */
+ return None
+
+ dx3 = x1 - x3 # /* combined origin offset vector */
+ dy3 = y1 - y3
+
+ a1 = (dy3 * dx2 - dx3 * dy2) / C;
+ a2 = (dy3 * dx1 - dx3 * dy1) / C;
+
+ # check for degeneracies
+ #print_debug("\n")
+ #print_debug(str(a1)+"\n")
+ #print_debug(str(a2)+"\n\n")
+
+ if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
+ # Intersection on boundaries, we consider the point external?
+ return None
+
+ elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): # /* lines cross */
+ x = x1 + a1*dx1
+ y = y1 + a1*dy1
+
+ #z = z1 + a1*dz1
+ z = 0
+ return (NMesh.Vert(x, y, z), a1, a2)
+
+ else:
+ # lines have intersections but not those segments
+ return None
+
+ edgeIntersection = staticmethod(edgeIntersection)
+
+ def isVertInside(self, v):
+ winding_number = 0
+ coincidence = False
+
+ # Create point at infinity
+ point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
+
+ for i in range(len(self.v)):
+ s1 = (point_at_infinity, v)
+ s2 = (self.v[i-1], self.v[i])
+
+ if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
+ coincidence = True
+
+ if HSR.edgeIntersection(s1, s2, do_perturbate=False):
+ winding_number += 1
+
+ # Check even or odd
+ if winding_number % 2 == 0 :
+ return False
+ else:
+ if coincidence:
+ return False
+ return True
+
+ isVertInside = staticmethod(isVertInside)
+
+
+ def det(a, b, c):
+ return ((b[0] - a[0]) * (c[1] - a[1]) -
+ (b[1] - a[1]) * (c[0] - a[0]) )
+
+ det = staticmethod(det)
+
+ def pointInPolygon(q, P):
+ is_in = False
+
+ point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
+
+ det = HSR.det
+
+ for i in range(len(P.v)):
+ p0 = P.v[i-1]
+ p1 = P.v[i]
+ if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0):
+ if det(p0.co, p1.co, q.co) == 0 :
+ #print "On Boundary"
+ return False
+ elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0):
+ is_in = not is_in
+
+ return is_in
+
+ pointInPolygon = staticmethod(pointInPolygon)
+
+ def projectionsOverlap(f1, f2):
+ """ If you have nonconvex, but still simple polygons, an acceptable method
+ is to iterate over all vertices and perform the Point-in-polygon test[1].
+ The advantage of this method is that you can compute the exact
+ intersection point and collision normal that you will need to simulate
+ collision. When you have the point that lies inside the other polygon, you
+ just iterate over all edges of the second polygon again and look for edge
+ intersections. Note that this method detects collsion when it already
+ happens. This algorithm is fast enough to perform it hundreds of times per
+ sec. """
+
+ for i in range(len(f1.v)):
+
+
+ # If a point of f1 in inside f2, there is an overlap!
+ v1 = f1.v[i]
+ #if HSR.isVertInside(f2, v1):
+ if HSR.pointInPolygon(v1, f2):
+ return True
+
+ # If not the polygon can be ovelap as well, so we check for
+ # intersection between an edge of f1 and all the edges of f2
+
+ v0 = f1.v[i-1]
+
+ for j in range(len(f2.v)):
+ v2 = f2.v[j-1]
+ v3 = f2.v[j]
+
+ e1 = v0, v1
+ e2 = v2, v3
+
+ intrs = HSR.edgeIntersection(e1, e2)
+ if intrs:
+ #print_debug(str(v0.co) + " " + str(v1.co) + " " +
+ # str(v2.co) + " " + str(v3.co) )
+ #print_debug("\nIntersection\n")
+
+ return True
+
+ return False
+
+ projectionsOverlap = staticmethod(projectionsOverlap)
+
+ def midpoint(p1, p2):
+ """Return the midpoint of two vertices.
+ """
+ m = MidpointVecs(Vector(p1), Vector(p2))
+ mv = NMesh.Vert(m[0], m[1], m[2])
+
+ return mv
+
+ midpoint = staticmethod(midpoint)
+
+ def facesplit(P, Q, facelist, nmesh):
+ """Split P or Q according to the strategy illustrated in the Newell's
+ paper.
+ """
+
+ by_furthest_z = (lambda f1, f2:
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ )
+
+ # Choose if split P on Q plane or vice-versa
+
+ n = 0
+ for Pi in P:
+ d = HSR.Distance(Vector(Pi), Q)
+ if d <= EPS:
+ n += 1
+ pIntersectQ = (n != len(P))
+
+ n = 0
+ for Qi in Q:
+ d = HSR.Distance(Vector(Qi), P)
+ if d >= -EPS:
+ n += 1
+ qIntersectP = (n != len(Q))
+
+ newfaces = []
+
+ # 1. If parts of P lie in both half-spaces of Q
+ # then splice P in two with the plane of Q
+ if pIntersectQ:
+ #print "We split P"
+ f = P
+ plane = Q
+
+ newfaces = HSR.splitOn(plane, f)
+
+ # 2. Else if parts of Q lie in both half-space of P
+ # then splice Q in two with the plane of P
+ if qIntersectP and newfaces == None:
+ #print "We split Q"
+ f = Q
+ plane = P
+
+ newfaces = HSR.splitOn(plane, f)
+ #print "After"
+
+ # 3. Else slice P in half through the mid-point of
+ # the longest pair of opposite sides
+ if newfaces == None:
+
+ print "We ignore P..."
+ facelist.remove(P)
+ return facelist
+
+ #f = P
+
+ #if len(P)==3:
+ # v1 = midpoint(f[0], f[1])
+ # v2 = midpoint(f[1], f[2])
+ #if len(P)==4:
+ # v1 = midpoint(f[0], f[1])
+ # v2 = midpoint(f[2], f[3])
+ #vec3 = (Vector(v2)+10*Vector(f.normal))
+ #
+ #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
+
+ #plane = NMesh.Face([v1, v2, v3])
+ #
+ #newfaces = splitOn(plane, f)
+
+
+ if newfaces == None:
+ print "Big FAT problem, we weren't able to split POLYGONS!"
+ raise AssertionError
+
+ #print newfaces
+ if newfaces:
+ #for v in f:
+ # if v not in plane and v in nmesh.verts:
+ # nmesh.verts.remove(v)
+ for nf in newfaces:
+
+ nf.mat = f.mat
+ nf.sel = f.sel
+ nf.col = [f.col[0]] * len(nf.v)
+
+ nf.smooth = 0
+
+ for v in nf:
+ nmesh.verts.append(v)
+ # insert pieces in the list
+ facelist.append(nf)
+
+ facelist.remove(f)
+
+ # and resort the faces
+ facelist.sort(by_furthest_z)
+ facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
+ facelist.reverse()
+
+ #print [ f.smooth for f in facelist ]
+
+ return facelist
+
+ facesplit = staticmethod(facesplit)
+
+ def isOnSegment(v1, v2, p, extremes_internal=False):
+ """Check if point p is in segment v1v2.
+ """
+
+ l1 = (v1-p).length
+ l2 = (v2-p).length
+
+ # Should we consider extreme points as internal ?
+ # The test:
+ # if p == v1 or p == v2:
+ if l1 < EPS or l2 < EPS:
+ return extremes_internal
+
+ l = (v1-v2).length
+
+ # if the sum of l1 and l2 is circa l, then the point is on segment,
+ if abs(l - (l1+l2)) < EPS:
+ return True
+ else:
+ return False
+
+ isOnSegment = staticmethod(isOnSegment)
+
+ def Distance(point, face):
+ """ Calculate the distance between a point and a face.
+
+ An alternative but more expensive method can be:
+
+ ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
+ Vector(face.no), Vector(point), 0)
+
+ d = Vector(ip - point).length
+
+ See: http://mathworld.wolfram.com/Point-PlaneDistance.html
+ """
+
+ p = Vector(point)
+ plNormal = Vector(face.no)
+ plVert0 = Vector(face.v[0])
+
+ d = (plVert0 * plNormal) - (p * plNormal)
+
+ #d = plNormal * (plVert0 - p)
+
+ #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
+
+ return d
+
+ Distance = staticmethod(Distance)
+
+ def makeFaces(vl):
+ #
+ # make one or two new faces based on a list of vertex-indices
+ #
+ newfaces = []
+
+ if len(vl) <= 4:
+ nf = NMesh.Face()
+
+ for v in vl:
+ nf.v.append(v)
+
+ newfaces.append(nf)
+
+ else:
+ nf = NMesh.Face()
+
+ nf.v.append(vl[0])
+ nf.v.append(vl[1])
+ nf.v.append(vl[2])
+ nf.v.append(vl[3])
+ newfaces.append(nf)
+
+ nf = NMesh.Face()
+ nf.v.append(vl[3])
+ nf.v.append(vl[4])
+ nf.v.append(vl[0])
+ newfaces.append(nf)
+
+ return newfaces
+
+ makeFaces = staticmethod(makeFaces)
+
+ def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
+ """Split P using the plane of Q.
+ Logic taken from the knife.py python script
+ """
+
+ # Check if P and Q are parallel
+ u = CrossVecs(Vector(Q.no),Vector(P.no))
+ ax = abs(u[0])
+ ay = abs(u[1])
+ az = abs(u[2])
+
+ if (ax+ay+az) < EPS:
+ print "PARALLEL planes!!"
+ return
+
+
+ # The final aim is to find the intersection line between P
+ # and the plane of Q, and split P along this line
+
+ nP = len(P.v)
+
+ # Calculate point-plane Distance between vertices of P and plane Q
+ d = []
+ for i in range(0, nP):
+ d.append(HSR.Distance(P.v[i], Q))
+
+ newVertList = []
+
+ posVertList = []
+ negVertList = []
+ for i in range(nP):
+ d0 = d[i-1]
+ V0 = P.v[i-1]
+
+ d1 = d[i]
+ V1 = P.v[i]
+
+ #print "d0:", d0, "d1:", d1
+
+ # if the vertex lies in the cutplane
+ if abs(d1) < EPS:
+ #print "d1 On cutplane"
+ posVertList.append(V1)
+ negVertList.append(V1)
+ else:
+ # if the previous vertex lies in cutplane
+ if abs(d0) < EPS:
+ #print "d0 on Cutplane"
+ if d1 > 0:
+ #print "d1 on positive Halfspace"
+ posVertList.append(V1)
+ else:
+ #print "d1 on negative Halfspace"
+ negVertList.append(V1)
+ else:
+ # if they are on the same side of the plane
+ if d1*d0 > 0:
+ #print "On the same half-space"
+ if d1 > 0:
+ #print "d1 on positive Halfspace"
+ posVertList.append(V1)
+ else:
+ #print "d1 on negative Halfspace"
+ negVertList.append(V1)
+
+ # the vertices are not on the same side of the plane, so we have an intersection
+ else:
+ #print "Intersection"
+
+ e = Vector(V0), Vector(V1)
+ tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
+
+ inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0)
+ if inters == None:
+ print "Split Break"
+ break
+
+ #print "Intersection", inters
+
+ nv = NMesh.Vert(inters[0], inters[1], inters[2])
+ newVertList.append(nv)
+
+ posVertList.append(nv)
+ negVertList.append(nv)
+
+ if d1 > 0:
+ posVertList.append(V1)
+ else:
+ negVertList.append(V1)
+
+
+ # uniq
+ posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
+ negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+
+ # If vertex are all on the same half-space, return
+ #if len(posVertList) < 3:
+ # print "Problem, we created a face with less that 3 vertices??"
+ # posVertList = []
+ #if len(negVertList) < 3:
+ # print "Problem, we created a face with less that 3 vertices??"
+ # negVertList = []
+
+ if len(posVertList) < 3 or len(negVertList) < 3:
+ #print "RETURN NONE, SURE???"
+ return None
+
+ if not return_positive_faces:
+ posVertList = []
+ if not return_negative_faces:
+ negVertList = []
+
+ newfaces = HSR.addNewFaces(posVertList, negVertList)
+
+ return newfaces
+
+ splitOn = staticmethod(splitOn)
+
+ def addNewFaces(posVertList, negVertList):
+ # Create new faces resulting from the split
+ outfaces = []
+ if len(posVertList) or len(negVertList):
+
+ #newfaces = [posVertList] + [negVertList]
+ newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
+ [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] )
+
+ for nf in newfaces:
+ if nf and len(nf)>2:
+ outfaces += HSR.makeFaces(nf)
+
+ return outfaces
+
+
+ addNewFaces = staticmethod(addNewFaces)
# ---------------------------------------------------------------------
@@ -133,6 +735,7 @@ def sign(x):
## Mesh Utility class
#
# ---------------------------------------------------------------------
+
class MeshUtils:
def buildEdgeFaceUsersCache(me):
@@ -215,6 +818,7 @@ class MeshUtils:
## Shading Utility class
#
# ---------------------------------------------------------------------
+
class ShadingUtils:
shademap = None
@@ -583,46 +1187,484 @@ class VectorWriter:
"""Set the output file name and other properties"""
self.outputFileName = fileName
- self.file = None
context = Scene.GetCurrent().getRenderingContext()
self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
- self.startFrame = 1
- self.endFrame = 1
- self.animation = False
+ self.fps = context.fps
+
+ self.startFrame = 1
+ self.endFrame = 1
+ self.animation = False
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ if startFrame != endFrame:
+ self.startFrame = startFrame
+ self.endFrame = endFrame
+ self.animation = True
+
+ print "Outputting to: ", self.outputFileName
+
+ return
+
+ def close(self):
+ return
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """This is the interface for the needed printing routine.
+ """
+ return
+
+
+## SVG Writer
+
+class SVGVectorWriter(VectorWriter):
+ """A concrete class for writing SVG output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.file = None
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+
+ self.file = open(self.outputFileName, "w")
+
+ self._printHeader()
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self._printFooter()
+
+ if self.file:
+ self.file.close()
+
+ # remember to call the close method of the parent as last
+ VectorWriter.close(self)
+
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+
+ Objects = scene.getChildren()
+
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ if self.animation:
+ framestyle = "display:none"
+ else:
+ framestyle = "display:block"
+
+ # Assign an id to this group so we can set properties on it using DOM
+ self.file.write("\n" %
+ (framenumber, framestyle) )
+
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ self.file.write("\n" % obj.getName())
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh)
+
+ if doPrintEdges:
+ self._printEdges(mesh, showHiddenEdges)
+
+ self.file.write("\n")
+
+ self.file.write("\n")
+
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printHeader(self):
+ """Print SVG header."""
+
+ self.file.write("\n")
+ self.file.write("\n")
+ self.file.write("\n")
+
+ def _printPolygons(self, mesh):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ self.file.write("\n")
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ self.file.write("\n")
+
+ self.file.write("\n")
+
+ def _printEdges(self, mesh, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ self.file.write("\n")
+
+ for e in mesh.edges:
+
+ hidden_stroke_style = ""
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ self.file.write("\n")
+
+ self.file.write("\n")
+
+
+## SWF Writer
+
+try:
+ from ming import *
+ SWFSupported = True
+except:
+ SWFSupported = False
+
+class SWFVectorWriter(VectorWriter):
+ """A concrete class for writing SWF output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.movie = None
+ self.sprite = None
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+ self.movie = SWFMovie()
+ self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+ if self.animation:
+ self.movie.setRate(self.fps)
+ numframes = endFrame - startFrame + 1
+ self.movie.setFrames(numframes)
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self.movie.save(self.outputFileName)
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ Objects = scene.getChildren()
+
+ if self.sprite:
+ self.movie.remove(self.sprite)
+
+ sprite = SWFSprite()
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh, sprite)
+
+ if doPrintEdges:
+ self._printEdges(mesh, sprite, showHiddenEdges)
+
+ sprite.nextFrame()
+ i = self.movie.add(sprite)
+ # Remove the instance the next time
+ self.sprite = i
+ if self.animation:
+ self.movie.nextFrame()
+
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printPolygons(self, mesh, sprite):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r, fcol.g, fcol.b, fcol.a]
+ else:
+ color = [255, 255, 255, 255]
+
+ s = SWFShape()
+ f = s.addFill(color[0], color[1], color[2], color[3])
+ s.setRightFill(f)
+
+ # The starting point of the shape
+ p0 = self._calcCanvasCoord(face.verts[0])
+ s.movePenTo(p0[0], p0[1])
+
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ s.drawLineTo(p[0], p[1])
+
+ # Closing the shape
+ s.drawLineTo(p0[0], p0[1])
+
+ s.end()
+ sprite.add(s)
+
+
+ def _printEdges(self, mesh, sprite, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ s = SWFShape()
+ for e in mesh.edges:
- ##
- # Public Methods
- #
-
- def open(self, startFrame=1, endFrame=1):
- if startFrame != endFrame:
- self.startFrame = startFrame
- self.endFrame = endFrame
- self.animation = True
+ # Next, we set the line width and color for our shape.
+ s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+ 255)
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ # SWF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner and half-trasparent
+ s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
+ stroke_col[2], 128)
- self.file = open(self.outputFileName, "w")
- print "Outputting to: ", self.outputFileName
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
- return
+ # FIXME: this is just a qorkaround, remove that after the
+ # implementation of propoer Viewport clipping
+ if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000:
+ s.movePenTo(p1[0], p1[1])
+ s.drawLineTo(p2[0], p2[1])
+
- def close(self):
- self.file.close()
- return
+ s.end()
+ sprite.add(s)
+
- def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
- showHiddenEdges=False):
- """This is the interface for the needed printing routine.
- """
- return
-
+## PDF Writer
-## SVG Writer
+try:
+ from reportlab.pdfgen import canvas
+ PDFSupported = True
+except:
+ PDFSupported = False
-class SVGVectorWriter(VectorWriter):
- """A concrete class for writing SVG output.
+class PDFVectorWriter(VectorWriter):
+ """A concrete class for writing PDF output.
"""
def __init__(self, fileName):
@@ -630,6 +1672,8 @@ class SVGVectorWriter(VectorWriter):
"""
VectorWriter.__init__(self, fileName)
+ self.canvas = None
+
##
# Public Methods
@@ -639,44 +1683,31 @@ class SVGVectorWriter(VectorWriter):
"""Do some initialization operations.
"""
VectorWriter.open(self, startFrame, endFrame)
- self._printHeader()
+ size = (self.canvasSize[0], self.canvasSize[1])
+ self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
def close(self):
"""Do some finalization operation.
"""
- self._printFooter()
+ self.canvas.save()
# remember to call the close method of the parent
VectorWriter.close(self)
-
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
"""Convert the scene representation to SVG.
"""
-
- Objects = scene.getChildren()
-
context = scene.getRenderingContext()
framenumber = context.currentFrame()
- if self.animation:
- framestyle = "display:none"
- else:
- framestyle = "display:block"
-
- # Assign an id to this group so we can set properties on it using DOM
- self.file.write("\n" %
- (framenumber, framestyle) )
-
+ Objects = scene.getChildren()
for obj in Objects:
if(obj.getType() != 'Mesh'):
continue
- self.file.write("\n" % obj.getName())
-
mesh = obj.getData(mesh=1)
if doPrintPolygons:
@@ -685,10 +1716,7 @@ class SVGVectorWriter(VectorWriter):
if doPrintEdges:
self._printEdges(mesh, showHiddenEdges)
- self.file.write("\n")
-
- self.file.write("\n")
-
+ self.canvas.showPage()
##
# Private Methods
@@ -714,60 +1742,7 @@ class SVGVectorWriter(VectorWriter):
pt[1] += self.canvasSize[1]
return pt
-
- def _printHeader(self):
- """Print SVG header."""
-
- self.file.write("\n")
- self.file.write("\n")
- self.file.write("\n")
-
def _printPolygons(self, mesh):
"""Print the selected (visible) polygons.
"""
@@ -775,58 +1750,35 @@ class SVGVectorWriter(VectorWriter):
if len(mesh.faces) == 0:
return
- self.file.write("\n")
-
for face in mesh.faces:
if not face.sel:
continue
- self.file.write("\n")
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ path.lineTo(p[0], p[1])
+
+ # Closing the shape
+ path.close()
- self.file.write("\n")
+ self.canvas.drawPath(path, stroke=0, fill=1)
def _printEdges(self, mesh, showHiddenEdges=False):
"""Print the wireframe using mesh edges.
@@ -834,31 +1786,33 @@ class SVGVectorWriter(VectorWriter):
stroke_width = config.edges['WIDTH']
stroke_col = config.edges['COLOR']
-
- self.file.write("\n")
+
+ self.canvas.setLineCap(1)
+ self.canvas.setLineJoin(1)
+ self.canvas.setLineWidth(stroke_width)
+ self.canvas.setStrokeColorRGB(stroke_col[0]/255.0, stroke_col[1]/255.0,
+ stroke_col[2]/255)
for e in mesh.edges:
-
- hidden_stroke_style = ""
-
+
+ self.canvas.setLineWidth(stroke_width)
+
if e.sel == 0:
if showHiddenEdges == False:
continue
else:
- hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+ # PDF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner
+ self.canvas.setLineWidth(stroke_width/2.0)
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
-
- self.file.write("\n")
- self.file.write("\n")
+ # FIXME: this is just a workaround, remove that after the
+ # implementation of propoer Viewport clipping
+ if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000:
+ self.canvas.line(p1[0], p1[1], p2[0], p2[1])
+
# ---------------------------------------------------------------------
@@ -880,6 +1834,10 @@ edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
# A dictionary to collect the supported output formats
outputWriters = dict()
outputWriters['SVG'] = SVGVectorWriter
+if SWFSupported:
+ outputWriters['SWF'] = SWFVectorWriter
+if PDFSupported:
+ outputWriters['PDF'] = PDFVectorWriter
class Renderer:
@@ -910,13 +1868,7 @@ class Renderer:
)
# Render from the currently active camera
- self.cameraObj = self._SCENE.getCurrentCamera()
-
- # Get a projector for this camera.
- # NOTE: the projector wants object in world coordinates,
- # so we should remember to apply modelview transformations
- # _before_ we do projection transformations.
- self.proj = Projector(self.cameraObj, self.canvasRatio)
+ #self.cameraObj = self._SCENE.getCurrentCamera()
# Get the list of lighting sources
obj_lst = self._SCENE.getChildren()
@@ -959,15 +1911,28 @@ class Renderer:
outputWriter.open(startFrame, endFrame)
# Do the rendering process frame by frame
- print "Start Rendering of %d frames" % (endFrame-startFrame)
+ print "Start Rendering of %d frames" % (endFrame-startFrame+1)
for f in xrange(startFrame, endFrame+1):
print "\n\nFrame: %d" % f
- context.currentFrame(f)
+
+ # FIXME To get the correct camera position we have to use +1 here.
+ # Is there a bug somewhere in the Scene module?
+ context.currentFrame(f+1)
+ self.cameraObj = self._SCENE.getCurrentCamera()
# Use some temporary workspace, a full copy of the scene
inputScene = self._SCENE.copy(2)
- # And Set our camera accordingly
- self.cameraObj = inputScene.getCurrentCamera()
+
+ # To get the objects at this frame remove the +1 ...
+ ctx = inputScene.getRenderingContext()
+ ctx.currentFrame(f)
+
+
+ # Get a projector for this camera.
+ # NOTE: the projector wants object in world coordinates,
+ # so we should remember to apply modelview transformations
+ # _before_ we do projection transformations.
+ self.proj = Projector(self.cameraObj, self.canvasRatio)
try:
renderedScene = self.doRenderScene(inputScene)
@@ -1033,14 +1998,17 @@ class Renderer:
self._doModelingTransformation(mesh, obj.matrix)
self._doBackFaceCulling(mesh)
- if True:
+
+
+ # When doing HSR with NEWELL we may want to flip all normals
+ # toward the viewer
+ if config.polygons['HSR'] == "NEWELL":
for f in mesh.faces:
f.sel = 1-f.sel
mesh.flipNormals()
for f in mesh.faces:
f.sel = 1
-
self._doLighting(mesh)
# Do "projection" now so we perform further processing
@@ -1053,7 +2021,6 @@ class Renderer:
self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
-
# Update the object data, important! :)
mesh.update()
@@ -1133,7 +2100,7 @@ class Renderer:
For now clip away only objects according to their center position.
"""
- cpos = self._getObjPosition(self.cameraObj)
+ cam_pos = self._getObjPosition(self.cameraObj)
view_vect = self._cameraViewVector()
near = self.cameraObj.data.clipStart
@@ -1147,7 +2114,10 @@ class Renderer:
for o in Objects:
if o.getType() != 'Mesh': continue;
- obj_vect = Vector(cpos) - self._getObjPosition(o)
+ # TODO: use the object bounding box (that is already in WorldSpace)
+ # bb = o.getBoundBox() and then: for point in bb: ...
+
+ obj_vect = Vector(cam_pos) - self._getObjPosition(o)
d = obj_vect*view_vect
theta = AngleBetweenVecs(obj_vect, view_vect)
@@ -1159,8 +2129,8 @@ class Renderer:
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
"""
- #geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
- geometricObjTypes = ['Mesh', 'Surf', 'Curve']
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
Objects = scene.getChildren()
objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
@@ -1349,7 +2319,7 @@ class Renderer:
for l in self.lights:
light_obj = l
light_pos = self._getObjPosition(l)
- light = light_obj.data
+ light = light_obj.getData()
L = Vector(light_pos).normalize()
@@ -1438,6 +2408,70 @@ class Renderer:
"""Clip faces against the View Frustum.
"""
+ # The Canonical View Volume, 8 vertices, and 6 faces,
+ # We consider its face normals pointing outside
+
+ v1 = NMesh.Vert(1, 1, -1)
+ v2 = NMesh.Vert(1, -1, -1)
+ v3 = NMesh.Vert(-1, -1, -1)
+ v4 = NMesh.Vert(-1, 1, -1)
+ v5 = NMesh.Vert(1, 1, 1)
+ v6 = NMesh.Vert(1, -1, 1)
+ v7 = NMesh.Vert(-1, -1, 1)
+ v8 = NMesh.Vert(-1, 1, 1)
+
+ cvv = []
+ f1 = NMesh.Face([v1, v4, v3, v2])
+ cvv.append(f1)
+ f2 = NMesh.Face([v5, v6, v7, v8])
+ cvv.append(f2)
+ f3 = NMesh.Face([v1, v2, v6, v5])
+ cvv.append(f3)
+ f4 = NMesh.Face([v2, v3, v7, v6])
+ cvv.append(f4)
+ f5 = NMesh.Face([v3, v4, v8, v7])
+ cvv.append(f5)
+ f6 = NMesh.Face([v4, v1, v5, v8])
+ cvv.append(f6)
+
+ nmesh = NMesh.GetRaw(mesh.name)
+ clippedfaces = nmesh.faces[:]
+ facelist = clippedfaces[:]
+
+ for clipface in cvv:
+
+ clippedfaces = []
+ for f in facelist:
+
+ newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
+
+ if not newfaces:
+ # Check if the face is inside the view rectangle
+ # TODO: Do this test before, it is more efficient
+ points_outside = 0
+ for v in f:
+ if abs(v[0]) > 1-EPS or abs(v[1]) > 1-EPS:
+ points_outside += 1
+
+ if points_outside != len(f):
+ clippedfaces.append(f)
+ else:
+ for nf in newfaces:
+ for v in nf:
+ nmesh.verts.append(v)
+
+ nf.mat = f.mat
+ nf.sel = f.sel
+ nf.col = [f.col[0]] * len(nf.v)
+
+ clippedfaces.append(nf)
+
+ facelist = clippedfaces[:]
+
+ nmesh.faces = facelist
+ nmesh.update()
+
+
# HSR routines
def __simpleDepthSort(self, mesh):
"""Sort faces by the furthest vertex.
@@ -1446,14 +2480,14 @@ class Renderer:
solves HSR correctly only for convex meshes.
"""
- global progress
+ #global progress
+
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
progress.setActivity("HSR: Painter", n*log(n))
-
by_furthest_z = (lambda f1, f2: progress.update() and
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
)
# FIXME: using NMesh to sort faces. We should avoid that!
@@ -1465,71 +2499,26 @@ class Renderer:
nmesh.update()
- def __topologicalDepthSort(self, mesh):
- """Occlusion based on topological occlusion.
-
- Build the occlusion graph of the mesh,
- and then do topological sort on that graph
- """
- return
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
"""
- by_furthest_z = (lambda f1, f2:
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
- )
-
- mesh.quadToTriangle(0)
-
- from split import Distance, isOnSegment
-
- def projectionsOverlap(P, Q):
-
- for i in range(0, len(P.v)):
-
- v1 = Vector(P.v[i-1])
- v1[2] = 0
- v2 = Vector(P.v[i])
- v2[2] = 0
-
- EPS = 10e-7
-
- for j in range(0, len(Q.v)):
- v3 = Vector(Q.v[j-1])
- v3[2] = 0
- v4 = Vector(Q.v[j])
- v4[2] = 0
-
- ret = LineIntersect(v1, v2, v3, v4)
- # if line v1-v2 and v3-v4 intersect both return
- # values are the same.
- if ret and ret[0] == ret[1] and isOnSegment(v1, v2,
- ret[0], True) and isOnSegment(v3, v4, ret[1], True):
-
-
- l1 = (ret[0] - v1).length
- l2 = (ret[0] - v2).length
- l3 = (ret[1] - v3).length
- l4 = (ret[1] - v4).length
+ #global progress
- if (l1 < EPS or l2 < EPS) and (l3 < EPS or l4 < EPS):
- continue
+ # Find non planar quads and convert them to triangle
+ #for f in mesh.faces:
+ # f.sel = 0
+ # if is_nonplanar_quad(f.v):
+ # print "NON QUAD??"
+ # f.sel = 1
- debug("Projections OVERLAP!!\n")
- debug("line1:"+
- " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
- " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
- "\n")
- debug("return: "+ str(ret)+"\n")
- return True
- return False
-
-
- from facesplit import facesplit
+ # Now reselect all faces
+ for f in mesh.faces:
+ f.sel = 1
+ mesh.quadToTriangle()
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
@@ -1538,7 +2527,6 @@ class Renderer:
nmesh.faces.sort(by_furthest_z)
nmesh.faces.reverse()
-
# Begin depth sort tests
# use the smooth flag to set marked faces
@@ -1548,44 +2536,24 @@ class Renderer:
facelist = nmesh.faces[:]
maplist = []
- EPS = 10e-8
- #EPS = 0
- global progress
# The steps are _at_least_ equal to len(facelist), we do not count the
- # feces coming out from plitting!!
+ # feces coming out from splitting!!
progress.setActivity("HSR: Newell", len(facelist))
- progress.setQuiet(True)
+ #progress.setQuiet(True)
- steps = -1
- split_done = 0
- marked_face = 0
-
while len(facelist):
- print "\n----------------------"
+ debug("\n----------------------\n")
+ debug("len(facelits): %d\n" % len(facelist))
P = facelist[0]
-
- #steps += 1
- #if steps == 3:
- # maplist = facelist
- # break
- print len(facelist)
- if len(facelist) == 33:
- #maplist = facelist
- break
-
- #pSign = 1
- #if P.normal[2] < 0:
- # pSign = -1
pSign = sign(P.normal[2])
- # We can discard faces thar are perpendicular to the view
- if pSign == 0:
- facelist.remove(P)
- continue
-
+ # We can discard faces parallel to the view vector
+ #if P.normal[2] == 0:
+ # facelist.remove(P)
+ # continue
split_done = 0
face_marked = 0
@@ -1596,19 +2564,17 @@ class Renderer:
debug("Q.smooth: " + str(Q.smooth) + "\n")
debug("\n")
- #qSign = 1
- #if Q.normal[2] < 0:
- # qSign = -1
qSign = sign(Q.normal[2])
+ # TODO: check also if Q is parallel??
- # We need to test only those Qs whose furthest vertex
+ # Test 0: We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
zP = [v.co[2] for v in P.v]
zQ = [v.co[2] for v in Q.v]
- ZOverlap = min(zP) < max(zQ)
+ notZOverlap = min(zP) > max(zQ) + EPS
- if not ZOverlap:
+ if notZOverlap:
debug("\nTest 0\n")
debug("NOT Z OVERLAP!\n")
if Q.smooth == 0:
@@ -1617,21 +2583,25 @@ class Renderer:
else:
debug("met a marked face\n")
continue
-
+
+
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
- notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
if notXOverlap:
debug("\nTest 1\n")
debug("NOT X OVERLAP!\n")
continue
+
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
- notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
if notYOverlap:
debug("\nTest 2\n")
@@ -1642,8 +2612,8 @@ class Renderer:
# Test 3: P vertices are all behind the plane of Q
n = 0
for Pi in P:
- d = qSign * Distance(Vector(Pi), Q)
- if d >= -EPS:
+ d = qSign * HSR.Distance(Vector(Pi), Q)
+ if d <= EPS:
n += 1
pVerticesBehindPlaneQ = (n == len(P))
@@ -1656,8 +2626,8 @@ class Renderer:
# Test 4: Q vertices in front of the plane of P
n = 0
for Qi in Q:
- d = pSign * Distance(Vector(Qi), P)
- if d <= EPS:
+ d = pSign * HSR.Distance(Vector(Qi), P)
+ if d >= -EPS:
n += 1
qVerticesInFrontPlaneP = (n == len(Q))
@@ -1666,39 +2636,37 @@ class Renderer:
debug("Q IN FRONT OF P!\n")
continue
- # Test 5: Line Intersections... TODO
- # Check if polygons effectively overlap each other, not only
- # boundig boxes as done before.
- # Since we We are working in normalized projection coordinates
- # we kust check if polygons intersect.
- if not projectionsOverlap(P, Q):
+ # Test 5: Check if projections of polygons effectively overlap,
+ # in previous tests we checked only bounding boxes.
+
+ #if not projectionsOverlap(P, Q):
+ if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
debug("\nTest 5\n")
debug("Projections do not overlap!\n")
continue
+ # We still can't say if P obscures Q.
- # We still do not know if P obscures Q.
-
- # But if Q is marked we do a split trying to resolve a
+ # But if Q is marked we do a face-split trying to resolve a
# difficulty (maybe a visibility cycle).
if Q.smooth == 1:
# Split P or Q
debug("Possibly a cycle detected!\n")
debug("Split here!!\n")
- old_facelist = facelist[:]
- facelist = facesplit(P, Q, facelist, nmesh)
+
+ facelist = HSR.facesplit(P, Q, facelist, nmesh)
split_done = 1
break
-
# The question now is: Does Q obscure P?
+
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
- d = pSign * Distance(Vector(Qi), P)
- if d >= -EPS:
+ d = pSign * HSR.Distance(Vector(Qi), P)
+ if d <= EPS:
n += 1
qVerticesBehindPlaneP = (n == len(Q))
@@ -1710,8 +2678,8 @@ class Renderer:
# Test 4bis: P vertices in front of the plane of Q
n = 0
for Pi in P:
- d = qSign * Distance(Vector(Pi), Q)
- if d <= EPS:
+ d = qSign * HSR.Distance(Vector(Pi), Q)
+ if d >= -EPS:
n += 1
pVerticesInFrontPlaneQ = (n == len(P))
@@ -1727,76 +2695,44 @@ class Renderer:
debug("Test 3bis or 4bis failed\n")
debug("Split here!!2\n")
- old_facelist = facelist[:]
- facelist = facesplit(P, Q, facelist, nmesh)
-
- steps += 1
- if steps == 2:
- maplist = [P, Q]
- print P, Q
+ facelist = HSR.facesplit(P, Q, facelist, nmesh)
split_done = 1
break
-
facelist.remove(Q)
facelist.insert(0, Q)
Q.smooth = 1
face_marked = 1
-
- # Make merked faces BLUE. so to see them
- #for c in Q.col:
- # c.r = 0
- # c.g = 0
- # c.b = 255
- # c.a = 255
-
debug("Q marked!\n")
- print [f.smooth for f in facelist]
break
-
+
# Write P!
if split_done == 0 and face_marked == 0:
- P = facelist[0]
facelist.remove(P)
maplist.append(P)
+ dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg")
progress.update()
- #if progress.progressModel.getProgress() == 100:
- # break
- if steps == 2:
- """
- for c in Q.col:
- c.r = 0
- c.g = 0
- c.b = 255
- c.a = 255
- for c in P.col:
- c.r = 0
- c.g = 0
- c.b = 255
- c.a = 255
- """
- print steps
- #maplist.append(P)
- #maplist.append(Q)
-
- # for f in facelist:
- # if f not in old_facelist:
- # print "splitted?"
- # maplist.append(f)
- break
- """
- """
+ if len(facelist) == 870:
+ dumpfaces([P, Q], "loopdebug.svg")
+
+
+ #if facelist == None:
+ # maplist = [P, Q]
+ # print [v.co for v in P]
+ # print [v.co for v in Q]
+ # break
+ # end of while len(facelist)
nmesh.faces = maplist
+ #for f in nmesh.faces:
+ # f.sel = 1
- for f in nmesh.faces:
- f.sel = 1
nmesh.update()
- print nmesh.faces
+
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.
@@ -1843,7 +2779,7 @@ class Renderer:
if edgestyleSelect(e, mesh):
e.sel = 1
"""
-
+ #
# ---------------------------------------------------------------------
@@ -2022,6 +2958,9 @@ class GUI:
elif evt == GUI.evtOutFormatMenu:
i = GUI.outFormatMenu.val - 1
config.output['FORMAT']= outputWriters.keys()[i]
+ # Set the new output file
+ global outputfile
+ outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
elif evt == GUI.evtAnimToggle:
config.output['ANIMATION'] = bool(GUI.animToggle.val)
@@ -2102,8 +3041,7 @@ def vectorize(filename):
if editmode: Window.EditMode(1)
-# We use a global progress Indicator Object
-progress = None
+
# Here the main
if __name__ == "__main__":