X-Git-Url: https://git.ao2.it/vrm.git/blobdiff_plain/6ba923abf01462d9bd14c33835c1bf5872f594e0..e698795c41649342529627cf69716979fc2ede02:/vrm.py diff --git a/vrm.py b/vrm.py index bc44cfd..7cf79bc 100755 --- a/vrm.py +++ b/vrm.py @@ -92,8 +92,8 @@ class config: polygons = dict() polygons['SHOW'] = True polygons['SHADING'] = 'FLAT' - polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL' - #polygons['HSR'] = 'NEWELL' + #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL' + polygons['HSR'] = 'NEWELL' # Hidden to the user for now polygons['EXPANSION_TRICK'] = True @@ -113,12 +113,22 @@ class config: -# Debug utility function +# Utility functions print_debug = False def debug(msg): if print_debug: sys.stderr.write(msg) +EPS = 10e-5 + +def sign(x): + if x < -EPS: + return -1 + elif x > EPS: + return 1 + else: + return 0 + # --------------------------------------------------------------------- # @@ -436,8 +446,13 @@ class ProgressIndicator: self.refresh_rate = 10 self.shows_counter = 0 + self.quiet = False + self.progressModel = None + def setQuiet(self, value): + self.quiet = value + def setActivity(self, name, steps): """Initialize the Model. @@ -457,6 +472,9 @@ class ProgressIndicator: assert(self.progressModel) if self.progressModel.update(): + if self.quiet: + return + self.show(self.progressModel.getProgress(), self.progressModel.getName()) @@ -792,7 +810,8 @@ class SVGVectorWriter(VectorWriter): opacity_string = "" if color[3] != 255: opacity = float(color[3])/255.0 - opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity) + #opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity) + opacity_string = "opacity: %g;" % (opacity) self.file.write("\tstyle=\"fill:" + str_col + ";") self.file.write(opacity_string) @@ -802,7 +821,9 @@ class SVGVectorWriter(VectorWriter): # see http://www.antigrain.com/svg/index.html for more info stroke_width = 1.0 - if config.polygons['EXPANSION_TRICK']: + # EXPANSION TRICK is not that useful where there is transparency + if config.polygons['EXPANSION_TRICK'] and color[3] == 255: + # str_col = "#000000" # For debug self.file.write(" stroke:%s;\n" % str_col) self.file.write(" stroke-width:" + str(stroke_width) + ";\n") self.file.write(" stroke-linecap:round;stroke-linejoin:round") @@ -1002,6 +1023,7 @@ class Renderer: Objects = workScene.getChildren() print "Total Objects: %d" % len(Objects) for i,obj in enumerate(Objects): + print "\n\n-------" print "Rendering Object: %d" % i if obj.getType() != 'Mesh': @@ -1016,8 +1038,18 @@ class Renderer: self._doBackFaceCulling(mesh) + # When doing HSR with NEWELL we may want to flip all normals + # toward the viewer + if config.polygons['HSR'] == "NEWELL": + for f in mesh.faces: + f.sel = 1-f.sel + mesh.flipNormals() + for f in mesh.faces: + f.sel = 1 + self._doLighting(mesh) + # Do "projection" now so we perform further processing # in Normalized View Coordinates self._doProjection(mesh, self.proj) @@ -1135,6 +1167,7 @@ class Renderer: """Convert all "geometric" objects to mesh ones. """ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text'] + #geometricObjTypes = ['Mesh', 'Surf', 'Curve'] Objects = scene.getChildren() objList = [ o for o in Objects if o.getType() in geometricObjTypes ] @@ -1296,26 +1329,26 @@ class Renderer: mat = None if materials: mat = materials[f.mat] - # Check if it is a shadeless material - if mat.getMode() & Material.Modes['SHADELESS']: - I = mat.getRGBCol() - # Convert to a value between 0 and 255 - tmp_col = [ int(c * 255.0) for c in I] - - for c in f.col: - c.r = tmp_col[0] - c.g = tmp_col[1] - c.b = tmp_col[2] - #c.a = tmp_col[3] - - continue - - # A new default material if mat == None: mat = Material.New('defMat') + # Check if it is a shadeless material + elif mat.getMode() & Material.Modes['SHADELESS']: + I = mat.getRGBCol() + # Convert to a value between 0 and 255 + tmp_col = [ int(c * 255.0) for c in I] + + for c in f.col: + c.r = tmp_col[0] + c.g = tmp_col[1] + c.b = tmp_col[2] + #c.a = tmp_col[3] + + continue + + # do vertex color calculation TotDiffSpec = Vector([0.0, 0.0, 0.0]) @@ -1427,7 +1460,7 @@ class Renderer: by_furthest_z = (lambda f1, f2: progress.update() and - cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])) + cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) ) # FIXME: using NMesh to sort faces. We should avoid that! @@ -1451,30 +1484,80 @@ class Renderer: """Newell's depth sorting. """ + global EPS + by_furthest_z = (lambda f1, f2: - cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])) + cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) ) - def Distance(point, face): - """ Calculate the distance between a point and a face. + mesh.quadToTriangle() + + from split import Distance, isOnSegment + + def projectionsOverlap(P, Q): + + for i in range(0, len(P.v)): + + v1 = Vector(P.v[i-1]) + v1[2] = 0 + v2 = Vector(P.v[i]) + v2[2] = 0 + + EPS = 10e-5 + + for j in range(0, len(Q.v)): + + v3 = Vector(Q.v[j-1]) + v3[2] = 0 + v4 = Vector(Q.v[j]) + v4[2] = 0 - An alternative but more expensive method can be: + #print "\n\nTEST if we have coincidence!" + #print v1, v2 + #print v3, v4 + #print "distances:" + d1 = (v1-v3).length + d2 = (v1-v4).length + d3 = (v2-v3).length + d4 = (v2-v4).length + #print d1, d2, d3, d4 + #print "-----------------------\n" - ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]), - Vector(face.no), Vector(point), 0) + if d1 < EPS or d2 < EPS or d3 < EPS or d4 < EPS: + continue + + # TODO: Replace with LineIntersect2D in newer API + ret = LineIntersect(v1, v2, v3, v4) + + # if line v1-v2 and v3-v4 intersect both return + # values are the same. + if ret and ret[0] == ret[1] and isOnSegment(v1, v2, ret[0], True) and isOnSegment(v3, v4, ret[1], True): - d = Vector(ip - point).length - """ + #l1 = (ret[0] - v1).length + #l2 = (ret[0] - v2).length - plNormal = Vector(face.no) - plVert0 = Vector(face[0]) + #l3 = (ret[1] - v3).length + #l4 = (ret[1] - v4).length - #d = abs( (point * plNormal ) - (plVert0 * plNormal) ) - d = (point * plNormal ) - (plVert0 * plNormal) - debug("d: "+ str(d) + "\n") + #print "New DISTACES againt the intersection point:" + #print l1, l2, l3, l4 + #print "-----------------------\n" - return d + #if l1 < EPS or l2 < EPS or l3 < EPS or l4 < EPS: + # continue + debug("Projections OVERLAP!!\n") + debug("line1:"+ + " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' + + " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' + + "\n") + debug("return: "+ str(ret)+"\n") + return True + + return False + + + from facesplit import facesplit # FIXME: using NMesh to sort faces. We should avoid that! nmesh = NMesh.GetRaw(mesh.name) @@ -1493,17 +1576,33 @@ class Renderer: facelist = nmesh.faces[:] maplist = [] - EPS = 10e-7 + EPS = 10e-5 global progress + + # The steps are _at_least_ equal to len(facelist), we do not count the + # feces coming out from splitting!! progress.setActivity("HSR: Newell", len(facelist)) + #progress.setQuiet(True) + + + #split_done = 0 + #marked_face = 0 while len(facelist): + debug("\n----------------------\n") + debug("len(facelits): %d\n" % len(facelist)) P = facelist[0] - pSign = 1 - if P.sel == 0: - pSign = -1 + pSign = sign(P.normal[2]) + + # We can discard faces parallel to the view vector + if pSign == 0: + facelist.remove(P) + continue + + split_done = 0 + face_marked = 0 for Q in facelist[1:]: @@ -1511,38 +1610,45 @@ class Renderer: debug("Q.smooth: " + str(Q.smooth) + "\n") debug("\n") - qSign = 1 - if Q.sel == 0: - qSign = -1 - + qSign = sign(Q.normal[2]) + # We need to test only those Qs whose furthest vertex # is closer to the observer than the closest vertex of P. zP = [v.co[2] for v in P.v] zQ = [v.co[2] for v in Q.v] - ZOverlap = min(zP) < max(zQ) + notZOverlap = min(zP) > max(zQ) + EPS - if not ZOverlap: - if not Q.smooth: - # We can safely print P + if notZOverlap: + debug("\nTest 0\n") + debug("NOT Z OVERLAP!\n") + if Q.smooth == 0: + # If Q is not marked then we can safely print P break else: + debug("met a marked face\n") continue # Test 1: X extent overlapping xP = [v.co[0] for v in P.v] xQ = [v.co[0] for v in Q.v] - notXOverlap = (max(xP) < min(xQ)) or (max(xQ) < min(xP)) + #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP)) + notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS) if notXOverlap: + debug("\nTest 1\n") + debug("NOT X OVERLAP!\n") continue # Test 2: Y extent Overlapping yP = [v.co[1] for v in P.v] yQ = [v.co[1] for v in Q.v] - notYOverlap = (max(yP) < min(yQ)) or (max(yQ) < min(yP)) + #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP)) + notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS) if notYOverlap: + debug("\nTest 2\n") + debug("NOT Y OVERLAP!\n") continue @@ -1550,7 +1656,7 @@ class Renderer: n = 0 for Pi in P: d = qSign * Distance(Vector(Pi), Q) - if d < EPS: + if d <= EPS: n += 1 pVerticesBehindPlaneQ = (n == len(P)) @@ -1564,7 +1670,7 @@ class Renderer: n = 0 for Qi in Q: d = pSign * Distance(Vector(Qi), P) - if d >= EPS: + if d >= -EPS: n += 1 qVerticesInFrontPlaneP = (n == len(Q)) @@ -1574,14 +1680,29 @@ class Renderer: continue # Test 5: Line Intersections... TODO + # Check if polygons effectively overlap each other, not only + # boundig boxes as done before. + # Since we We are working in normalized projection coordinates + # we kust check if polygons intersect. + + if not projectionsOverlap(P, Q): + debug("\nTest 5\n") + debug("Projections do not overlap!\n") + continue - # We do not know if P obscures Q. + # We still do not know if P obscures Q. + + # But if Q is marked we do a split trying to resolve a + # difficulty (maybe a visibility cycle). if Q.smooth == 1: - # Split P or Q, TODO + # Split P or Q + debug("Possibly a cycle detected!\n") debug("Split here!!\n") - continue + facelist = facesplit(P, Q, facelist, nmesh) + split_done = 1 + break # The question now is: Does Q obscure P? @@ -1589,67 +1710,62 @@ class Renderer: n = 0 for Qi in Q: d = pSign * Distance(Vector(Qi), P) - if d < EPS: + if d <= EPS: n += 1 qVerticesBehindPlaneP = (n == len(Q)) + if qVerticesBehindPlaneP: + debug("\nTest 3bis\n") + debug("Q BEHIND P!\n") + # Test 4bis: P vertices in front of the plane of Q n = 0 for Pi in P: d = qSign * Distance(Vector(Pi), Q) - if d >= EPS: + if d >= -EPS: n += 1 pVerticesInFrontPlaneQ = (n == len(P)) + if pVerticesInFrontPlaneQ: + debug("\nTest 4bis\n") + debug("P IN FRONT OF Q!\n") - """ - import intersection - + + # We don't even know if Q does obscure P, so they should + # intersect each other, split one of them in two parts. if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ: - # Split P or Q, TODO - print "Test 3bis or 4bis failed" - print "Split here!!2\n" - - newfaces = intersection.splitOn(nmesh, P, Q, 0) - facelist.remove(Q) - for nf in newfaces: - if nf: - nf.col = Q.col - facelist.append(nf) - - break - - # We do not know - if Q.smooth: - # split P or Q - print "Split here!!\n" - newfaces = intersection.splitOn(nmesh, P, Q, 0) - facelist.remove(Q) - for nf in newfaces: - if nf: - nf.col = Q.col - facelist.append(nf) - - break - """ - - Q.smooth = 1 + debug("\nSimple Intersection?\n") + debug("Test 3bis or 4bis failed\n") + debug("Split here!!2\n") + + facelist = facesplit(P, Q, facelist, nmesh) + split_done = 1 + break + facelist.remove(Q) facelist.insert(0, Q) + Q.smooth = 1 + face_marked = 1 + debug("Q marked!\n") + break # Write P! - facelist.remove(P) - maplist.append(P) + if split_done == 0 and face_marked == 0: + facelist.remove(P) + maplist.append(P) - progress.update() + progress.update() + + # end of while len(facelist) + - nmesh.faces = maplist for f in nmesh.faces: f.sel = 1 nmesh.update() + #print nmesh.faces def _doHiddenSurfaceRemoval(self, mesh): """Do HSR for the given mesh. @@ -1658,11 +1774,11 @@ class Renderer: return if config.polygons['HSR'] == 'PAINTER': - print "\n\nUsing the Painter algorithm for HSR.\n" + print "\nUsing the Painter algorithm for HSR." self.__simpleDepthSort(mesh) elif config.polygons['HSR'] == 'NEWELL': - print "\n\nUsing the Newell's algorithm for HSR.\n" + print "\nUsing the Newell's algorithm for HSR." self.__newellDepthSort(mesh)