X-Git-Url: https://git.ao2.it/vrm.git/blobdiff_plain/b68056f960f3135bfa0d7e6327d06bf412b420cf..c71b2b3970d0bdcd1df68026aa3315141b42ded0:/vrm.py?ds=inline
diff --git a/vrm.py b/vrm.py
index 00c8ed4..312d8af 100755
--- a/vrm.py
+++ b/vrm.py
@@ -3,7 +3,15 @@
Name: 'VRM'
Blender: 241
Group: 'Export'
-Tooltip: 'Vector Rendering Method Export Script 0.3'
+Tooltip: 'Vector Rendering Method Export Script'
+"""
+
+__author__ = "Antonio Ospite"
+__url__ = ["blender"]
+__version__ = "0.3"
+
+__bpydoc__ = """\
+ Render the scene and save the result in vector format.
"""
# ---------------------------------------------------------------------
@@ -25,25 +33,62 @@ Tooltip: 'Vector Rendering Method Export Script 0.3'
#
# ---------------------------------------------------------------------
#
-# NOTE: I do not know who is the original author of 'vrm'.
-# The present code is almost entirely rewritten from scratch,
-# but if I have to give credits to anyone, please let me know,
-# so I can update the copyright.
+# Additional credits:
+# Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
+# Thanks to Nikola Radovanovic, the author of the original VRM script,
+# the code you read here has been rewritten _almost_ entirely
+# from scratch but Nikola gave me the idea, so I thank him publicly.
#
# ---------------------------------------------------------------------
+#
+# Things TODO for a next release:
+# - Switch to the Mesh structure, should be considerably faster
+# (partially done, but cannot sort faces, yet)
+# - Use a better depth sorting algorithm
+# - Review how selections are made (this script uses selection states of
+# primitives to represent visibility infos)
+# - Implement clipping of primitives and do handle object intersections.
+# (for now only clipping for whole objects is supported).
+# - Implement Edge Styles (silhouettes, contours, etc.)
+# - Implement Edge coloring
+# - Use multiple lighting sources in color calculation
+# - Implement Shading Styles?
+# - Use another representation for the 2D projection?
+# Think to a way to merge adjacent polygons that have the same color.
+# - Add other Vector Writers.
#
-# Additional credits:
-# Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
-# Thanks to Anthony C. D'Agostino for the backface.py script
+# ---------------------------------------------------------------------
+#
+# Changelog:
+#
+# vrm-0.3.py - 2006-05-19
+# * First release after code restucturing.
+# Now the script offers a useful set of functionalities
+# and it can render animations, too.
#
# ---------------------------------------------------------------------
import Blender
-from Blender import Scene, Object, NMesh, Lamp, Camera
+from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera
from Blender.Mathutils import *
from math import *
+# Some global settings
+PRINT_POLYGONS = True
+PRINT_EDGES = False
+SHOW_HIDDEN_EDGES = False
+
+EDGES_WIDTH = 0.5
+
+POLYGON_EXPANSION_TRICK = True
+
+RENDER_ANIMATION = False
+
+# Does not work in batch mode!!
+#OPTIMIZE_FOR_SPACE = True
+
+
# ---------------------------------------------------------------------
#
## Projections classes
@@ -60,40 +105,36 @@ class Projector:
parameter list.
"""
- def __init__(self, cameraObj, obMesh, canvasSize):
+ def __init__(self, cameraObj, canvasRatio):
"""Calculate the projection matrix.
- The projection matrix depends, in this case, on the camera settings,
- and also on object transformation matrix.
+ The projection matrix depends, in this case, on the camera settings.
+ TAKE CARE: This projector expects vertices in World Coordinates!
"""
- self.size = canvasSize
-
camera = cameraObj.getData()
- aspect = float(canvasSize[0])/float(canvasSize[1])
+ aspect = float(canvasRatio[0])/float(canvasRatio[1])
near = camera.clipStart
far = camera.clipEnd
+ scale = float(camera.scale)
+
fovy = atan(0.5/aspect/(camera.lens/32))
- fovy = fovy * 360/pi
+ fovy = fovy * 360.0/pi
# What projection do we want?
if camera.type:
- m2 = self._calcOrthoMatrix(fovy, aspect, near, far, 17) #camera.scale)
+ #mP = self._calcOrthoMatrix(fovy, aspect, near, far, 17) #camera.scale)
+ mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
else:
- m2 = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+ mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
-
# View transformation
cam = Matrix(cameraObj.getInverseMatrix())
cam.transpose()
-
- m1 = Matrix(obMesh.getMatrix())
- m1.transpose()
- mP = cam * m1
- mP = m2 * mP
+ mP = mP * cam
self.projectionMatrix = mP
@@ -108,24 +149,17 @@ class Projector:
matrix.
"""
- # Note that we need the vertex expressed using homogeneous coordinates
- p = self.projectionMatrix * Vector([v[0], v[1], v[2], 1.0])
-
- mW = self.size[0]/2
- mH = self.size[1]/2
-
- if p[3]<=0:
- p[0] = round(p[0]*mW)+mW
- p[1] = round(p[1]*mH)+mH
- else:
- p[0] = round((p[0]/p[3])*mW)+mW
- p[1] = round((p[1]/p[3])*mH)+mH
-
- # For now we want (0,0) in the top-left corner of the canvas
- # Mirror and translate along y
- p[1] *= -1
- p[1] += self.size[1]
-
+ # Note that we have to work on the vertex using homogeneous coordinates
+ p = self.projectionMatrix * Vector(v).resize4D()
+
+ if p[3]>0:
+ p[0] = p[0]/p[3]
+ p[1] = p[1]/p[3]
+
+ # restore the size
+ p[3] = 1.0
+ p.resize3D()
+
return p
##
@@ -133,7 +167,8 @@ class Projector:
#
def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
- """Return a perspective projection matrix."""
+ """Return a perspective projection matrix.
+ """
top = near * tan(fovy * pi / 360.0)
bottom = -top
@@ -155,9 +190,11 @@ class Projector:
return m
def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
- """Return an orthogonal projection matrix."""
+ """Return an orthogonal projection matrix.
+ """
- top = near * tan(fovy * pi / 360.0) * (scale * 10)
+ # The 11 in the formula was found emiprically
+ top = near * tan(fovy * pi / 360.0) * (scale * 11)
bottom = -top
left = bottom * aspect
right= top * aspect
@@ -179,12 +216,12 @@ class Projector:
# ---------------------------------------------------------------------
#
-## Mesh representation class
+## 2DObject representation class
#
# ---------------------------------------------------------------------
# TODO: a class to represent the needed properties of a 2D vector image
-# Just use a NMesh structure?
+# For now just using a [N]Mesh structure.
# ---------------------------------------------------------------------
@@ -204,118 +241,282 @@ class VectorWriter:
Every subclasses of VectorWriter must have at last the following public
methods:
- - printCanvas(mesh) --- where mesh is as specified before.
+ - open(self)
+ - close(self)
+ - printCanvas(self, scene,
+ doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
"""
- def __init__(self, fileName, canvasSize):
- """Open the file named #fileName# and set the canvas size."""
+ def __init__(self, fileName):
+ """Set the output file name and other properties"""
+
+ self.outputFileName = fileName
+ self.file = None
- self.file = open(fileName, "w")
- print "Outputting to: ", fileName
+ context = Scene.GetCurrent().getRenderingContext()
+ self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
+
+ self.startFrame = 1
+ self.endFrame = 1
+ self.animation = False
- self.canvasSize = canvasSize
-
##
# Public Methods
#
- def printCanvas(mesh):
- return
-
- ##
- # Private Methods
- #
-
- def _printHeader():
+ def open(self, startFrame=1, endFrame=1):
+ if startFrame != endFrame:
+ self.startFrame = startFrame
+ self.endFrame = endFrame
+ self.animation = True
+
+ self.file = open(self.outputFileName, "w")
+ print "Outputting to: ", self.outputFileName
+
return
- def _printFooter():
+ def close(self):
+ self.file.close()
return
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """This is the interface for the needed printing routine.
+ """
+ return
+
## SVG Writer
class SVGVectorWriter(VectorWriter):
"""A concrete class for writing SVG output.
-
- The class does not support animations, yet.
- Sorry.
"""
- def __init__(self, file, canvasSize):
- """Simply call the parent Contructor."""
- VectorWriter.__init__(self, file, canvasSize)
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
##
# Public Methods
#
-
- def printCanvas(self, scene):
- """Convert the scene representation to SVG."""
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
self._printHeader()
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self._printFooter()
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+
Objects = scene.getChildren()
+
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ if self.animation:
+ framestyle = "display:none"
+ else:
+ framestyle = "display:block"
+
+ # Assign an id to this group so we can set properties on it using DOM
+ self.file.write("\n" %
+ (framenumber, framestyle) )
+
for obj in Objects:
- self.file.write("\n")
-
- for face in obj.getData().faces:
- self._printPolygon(face)
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ self.file.write("\n" % obj.getName())
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh)
+
+ if doPrintEdges:
+ self._printEdges(mesh, showHiddenEdges)
+
self.file.write("\n")
-
- self._printFooter()
+
+ self.file.write("\n")
+
##
# Private Methods
#
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
def _printHeader(self):
"""Print SVG header."""
self.file.write("\n")
- self.file.write("\n")
+
+ def _printEdges(self, mesh, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width=EDGES_WIDTH
+ stroke_col = [0, 0, 0]
+
+ self.file.write("\n")
+
+ for e in mesh.edges:
+
+ hidden_stroke_style = ""
+
+ # Consider an edge selected if both vertices are selected
+ if e.v1.sel == 0 or e.v2.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ self.file.write("\n")
+
+ self.file.write("\n")
- self.file.write("\tstyle=\"fill:rgb("+str(color[0])+","+str(color[1])+","+str(color[2])+");")
- self.file.write(" stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
- self.file.write(" stroke-width:"+str(stroke_width)+";\n")
- self.file.write(" stroke-linecap:round;stroke-linejoin:round")
- self.file.write("\"/>\n")
# ---------------------------------------------------------------------
@@ -324,308 +525,553 @@ class SVGVectorWriter(VectorWriter):
#
# ---------------------------------------------------------------------
-def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
-
- NewPoint = []
- # Rotate X
- NewY = (PY * cos(AngleX))-(PZ * sin(AngleX))
- NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX))
- # Rotate Y
- PZ = NewZ
- PY = NewY
- NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY))
- NewX = (PX * cos(AngleY))+(PZ * sin(AngleY))
- PX = NewX
- PZ = NewZ
- # Rotate Z
- NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ))
- NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ))
- NewPoint.append(NewX)
- NewPoint.append(NewY)
- NewPoint.append(NewZ)
- return NewPoint
-
class Renderer:
"""Render a scene viewed from a given camera.
- This class is responsible of the rendering process, hence transormation
- and projection of the ojects in the scene are invoked by the renderer.
+ This class is responsible of the rendering process, transformation and
+ projection of the objects in the scene are invoked by the renderer.
- The user can optionally provide a specific camera for the rendering, see
- the #doRendering# method for more informations.
+ The rendering is done using the active camera for the current scene.
"""
def __init__(self):
- """Set the canvas size to a defaulr value.
-
- The only instance attribute here is the canvas size, which can be
- queryed to the renderer by other entities.
+ """Make the rendering process only for the current scene by default.
+
+ We will work on a copy of the scene, be sure that the current scene do
+ not get modified in any way.
"""
- self.canvasSize = (0.0, 0.0)
+
+ # Render the current Scene, this should be a READ-ONLY property
+ self._SCENE = Scene.GetCurrent()
+
+ # Use the aspect ratio of the scene rendering context
+ context = self._SCENE.getRenderingContext()
+
+ aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY())
+ self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio,
+ float(context.aspectRatioY())
+ )
+
+ # Render from the currently active camera
+ self.cameraObj = self._SCENE.getCurrentCamera()
+ print dir(self._SCENE)
+
+ # Get the list of lighting sources
+ obj_lst = self._SCENE.getChildren()
+ self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
+
+ if len(self.lights) == 0:
+ l = Lamp.New('Lamp')
+ lobj = Object.New('Lamp')
+ lobj.link(l)
+ self.lights.append(lobj)
##
# Public Methods
#
- def getCanvasSize(self):
- """Return the current canvas size read from Blender rendering context"""
- return self.canvasSize
+ def doRendering(self, outputWriter, animation=False):
+ """Render picture or animation and write it out.
- def doRendering(self, scene, cameraObj=None):
- """Control the rendering process.
+ The parameters are:
+ - a Vector writer object that will be used to output the result.
+ - a flag to tell if we want to render an animation or only the
+ current frame.
+ """
- Here we control the entire rendering process invoking the operation
- needed to transforma project the 3D scene in two dimensions.
+ context = self._SCENE.getRenderingContext()
+ currentFrame = context.currentFrame()
+
+ # Handle the animation case
+ if not animation:
+ startFrame = currentFrame
+ endFrame = startFrame
+ outputWriter.open()
+ else:
+ startFrame = context.startFrame()
+ endFrame = context.endFrame()
+ outputWriter.open(startFrame, endFrame)
+
+ # Do the rendering process frame by frame
+ print "Start Rendering!"
+ for f in range(startFrame, endFrame+1):
+ context.currentFrame(f)
+
+ renderedScene = self.doRenderScene(self._SCENE)
+ outputWriter.printCanvas(renderedScene,
+ doPrintPolygons = PRINT_POLYGONS,
+ doPrintEdges = PRINT_EDGES,
+ showHiddenEdges = SHOW_HIDDEN_EDGES)
+
+ # clear the rendered scene
+ self._SCENE.makeCurrent()
+ Scene.unlink(renderedScene)
+ del renderedScene
- Parameters:
- scene --- the Blender Scene to render
- cameraObj --- the camera object to use for the viewing processing
- """
+ outputWriter.close()
+ print "Done!"
+ context.currentFrame(currentFrame)
- if cameraObj == None:
- cameraObj = scene.getCurrentCamera()
-
- context = scene.getRenderingContext()
- self.canvasSize = (context.imageSizeX(), context.imageSizeY())
+
+ def doRenderScene(self, inputScene):
+ """Control the rendering process.
- Objects = scene.getChildren()
+ Here we control the entire rendering process invoking the operation
+ needed to transform and project the 3D scene in two dimensions.
+ """
- # A structure to store the transformed scene
- newscene = Scene.New("flat"+scene.name)
+ # Use some temporary workspace, a full copy of the scene
+ workScene = inputScene.copy(2)
+
+ # Get a projector for this scene.
+ # NOTE: the projector wants object in world coordinates,
+ # so we should apply modelview transformations _before_
+ # projection transformations
+ proj = Projector(self.cameraObj, self.canvasRatio)
+
+ # global processing of the scene
+
+ self._doConvertGeometricObjToMesh(workScene)
+
+ self._doSceneClipping(workScene)
+
+ # FIXME: does not work in batch mode!
+ #if OPTIMIZE_FOR_SPACE:
+ # self._joinMeshObjectsInScene(workScene)
+
+ self._doSceneDepthSorting(workScene)
+ # Per object activities
+
+ Objects = workScene.getChildren()
for obj in Objects:
- if (obj.getType() != "Mesh"):
- print "Type:", obj.getType(), "\tSorry, only mesh Object supported!"
+ if obj.getType() != 'Mesh':
+ print "Only Mesh supported! - Skipping type:", obj.getType()
continue
- # Get a projector for this object
- proj = Projector(cameraObj, obj, self.canvasSize)
-
- # Let's store the transformed data
- transformed_mesh = NMesh.New("flat"+obj.name)
- transformed_mesh.hasVertexColours(1)
-
- # Store the materials
- materials = obj.getData().getMaterials()
-
- meshfaces = obj.getData().faces
-
- for face in meshfaces:
-
- # if the face is visible flatten it on the "picture plane"
- if self._isFaceVisible_old(face, obj, cameraObj):
-
- # Store transformed face
- newface = NMesh.Face()
-
- for vert in face:
-
- p = proj.doProjection(vert.co)
-
- tmp_vert = NMesh.Vert(p[0], p[1], p[2])
-
- # Add the vert to the mesh
- transformed_mesh.verts.append(tmp_vert)
-
- newface.v.append(tmp_vert)
-
-
- # Per-face color calculation
- # code taken mostly from the original vrm script
- # TODO: understand the code and rewrite it clearly
- ambient = -150
-
- fakelight = Object.Get("Lamp").loc
- if fakelight == None:
- fakelight = [1.0, 1.0, -0.3]
-
- norm = Vector(face.no)
- vektori = (norm[0]*fakelight[0]+norm[1]*fakelight[1]+norm[2]*fakelight[2])
- vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(fakelight[0],2)+pow(fakelight[1],2)+pow(fakelight[2],2)))
- intensity = floor(ambient + 200*acos(vektori/vduzine))/200
- if intensity < 0:
- intensity = 0
-
- if materials:
- tmp_col = materials[face.mat].getRGBCol()
- else:
- tmp_col = [0.5, 0.5, 0.5]
-
- tmp_col = [ (c>intensity) and int(round((c-intensity)*10)*25.5) for c in tmp_col ]
-
- vcol = NMesh.Col(tmp_col[0], tmp_col[1], tmp_col[2])
- newface.col = [vcol, vcol, vcol, 255]
-
- transformed_mesh.addFace(newface)
-
- # at the end of the loop on obj
+ print "Rendering: ", obj.getName()
+
+ mesh = obj.data
+
+ self._doModelToWorldCoordinates(mesh, obj.matrix)
+
+ self._doObjectDepthSorting(mesh)
- transformed_obj = Object.New(obj.getType(), "flat"+obj.name)
- transformed_obj.link(transformed_mesh)
- transformed_obj.loc = obj.loc
- newscene.link(transformed_obj)
+ self._doBackFaceCulling(mesh)
+
+ self._doColorAndLighting(mesh)
-
- return newscene
+ # TODO: 'style' can be a function that determine
+ # if an edge should be showed?
+ self._doEdgesStyle(mesh, style=None)
+
+ self._doProjection(mesh, proj)
+
+ # Update the object data, important! :)
+ mesh.update()
+
+ return workScene
##
# Private Methods
#
- def _isFaceVisible_old(self, face, obj, cameraObj):
- """Determine if the face is visible from the current camera.
+ # Utility methods
- The following code is taken basicly from the original vrm script.
+ def _getObjPosition(self, obj):
+ """Return the obj position in World coordinates.
"""
+ return obj.matrix.translationPart()
- camera = cameraObj
-
- numvert = len(face)
-
- # backface culling
-
- # translate and rotate according to the object matrix
- # and then translate according to the camera position
- #m = obj.getMatrix()
- #m.transpose()
-
- #a = m*Vector(face[0]) - Vector(cameraObj.loc)
- #b = m*Vector(face[1]) - Vector(cameraObj.loc)
- #c = m*Vector(face[numvert-1]) - Vector(cameraObj.loc)
-
- a = []
- a.append(face[0][0])
- a.append(face[0][1])
- a.append(face[0][2])
- a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
- a[0] += obj.LocX - camera.LocX
- a[1] += obj.LocY - camera.LocY
- a[2] += obj.LocZ - camera.LocZ
- b = []
- b.append(face[1][0])
- b.append(face[1][1])
- b.append(face[1][2])
- b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
- b[0] += obj.LocX - camera.LocX
- b[1] += obj.LocY - camera.LocY
- b[2] += obj.LocZ - camera.LocZ
- c = []
- c.append(face[numvert-1][0])
- c.append(face[numvert-1][1])
- c.append(face[numvert-1][2])
- c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
- c[0] += obj.LocX - camera.LocX
- c[1] += obj.LocY - camera.LocY
- c[2] += obj.LocZ - camera.LocZ
-
- norm = [0, 0, 0]
- norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
- norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
- norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
-
- d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
- #d = DotVecs(Vector(norm), Vector(a))
-
- return (d<0)
-
- def _isFaceVisible(self, face, obj, cameraObj):
- """Determine if the face is visible from the current camera.
+ def _cameraViewDirection(self):
+ """Get the View Direction form the camera matrix.
+ """
+ return Vector(self.cameraObj.matrix[2]).resize3D()
+
+
+ # Faces methods
+
+ def _isFaceVisible(self, face):
+ """Determine if a face of an object is visible from the current camera.
+
+ The view vector is calculated from the camera location and one of the
+ vertices of the face (expressed in World coordinates, after applying
+ modelview transformations).
+
+ After those transformations we determine if a face is visible by
+ computing the angle between the face normal and the view vector, this
+ angle has to be between -90 and 90 degrees for the face to be visible.
+ This corresponds somehow to the dot product between the two, if it
+ results > 0 then the face is visible.
+
+ There is no need to normalize those vectors since we are only interested in
+ the sign of the cross product and not in the product value.
- The following code is taken basicly from the original vrm script.
+ NOTE: here we assume the face vertices are in WorldCoordinates, so
+ please transform the object _before_ doing the test.
"""
- camera = cameraObj
+ normal = Vector(face.no)
+ camPos = self._getObjPosition(self.cameraObj)
+ view_vect = None
- numvert = len(face)
+ # View Vector in orthographics projections is the view Direction of
+ # the camera
+ if self.cameraObj.data.getType() == 1:
+ view_vect = self._cameraViewDirection()
- # backface culling
+ # View vector in perspective projections can be considered as
+ # the difference between the camera position and one point of
+ # the face, we choose the farthest point from the camera.
+ if self.cameraObj.data.getType() == 0:
+ vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
+ view_vect = vv[1]
- # translate and rotate according to the object matrix
- # and then translate according to the camera position
- m = obj.getMatrix()
- m.transpose()
+ # if d > 0 the face is visible from the camera
+ d = view_vect * normal
- a = m*Vector(face[0]) - Vector(cameraObj.loc)
- b = m*Vector(face[1]) - Vector(cameraObj.loc)
- c = m*Vector(face[numvert-1]) - Vector(cameraObj.loc)
+ if d > 0:
+ return True
+ else:
+ return False
- norm = m*Vector(face.no)
- d = DotVecs(norm, a)
+ # Scene methods
- return (d<0)
+ def _doConvertGeometricObjToMesh(self, scene):
+ """Convert all "geometric" objects to mesh ones.
+ """
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
- def _doClipping(face):
- return
+ Objects = scene.getChildren()
+ objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
+ for obj in objList:
+ old_obj = obj
+ obj = self._convertToRawMeshObj(obj)
+ scene.link(obj)
+ scene.unlink(old_obj)
+
+ # Mesh Cleanup
+ me = obj.getData(mesh=1)
+ for f in me.faces: f.sel = 1;
+ for v in me.verts: v.sel = 1;
+ me.remDoubles(0)
+ me.triangleToQuad()
+ me.recalcNormals()
+ me.update()
+
+ def _doSceneClipping(self, scene):
+ """Clip objects against the View Frustum.
+
+ For now clip away only objects according to their center position.
+ """
+ cpos = self._getObjPosition(self.cameraObj)
+ view_vect = self._cameraViewDirection()
-# ---------------------------------------------------------------------
-#
-## Main Program
-#
-# ---------------------------------------------------------------------
+ near = self.cameraObj.data.clipStart
+ far = self.cameraObj.data.clipEnd
+
+ aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1])
+ fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
+ fovy = fovy * 360.0/pi
+
+ Objects = scene.getChildren()
+ for o in Objects:
+ if o.getType() != 'Mesh': continue;
+
+ obj_vect = Vector(cpos) - self._getObjPosition(o)
+ d = obj_vect*view_vect
+ theta = AngleBetweenVecs(obj_vect, view_vect)
+
+ # if the object is outside the view frustum, clip it away
+ if (d < near) or (d > far) or (theta > fovy):
+ scene.unlink(o)
-# FIXME: really hackish code, just to test if the other parts work
-def depthSorting(scene):
+ def _doSceneDepthSorting(self, scene):
+ """Sort objects in the scene.
- cameraObj = Scene.GetCurrent().getCurrentCamera()
- Objects = scene.getChildren()
+ The object sorting is done accordingly to the object centers.
+ """
- Objects.sort(lambda obj1, obj2:
- cmp(Vector(Vector(cameraObj.loc) - Vector(obj1.loc)).length,
- Vector(Vector(cameraObj.loc) - Vector(obj2.loc)).length
- )
+ c = self._getObjPosition(self.cameraObj)
+
+ by_center_pos = (lambda o1, o2:
+ (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+ cmp((self._getObjPosition(o1) - Vector(c)).length,
+ (self._getObjPosition(o2) - Vector(c)).length)
)
-
- # hackish sorting of faces according to the max z value of a vertex
- for o in Objects:
- mesh = o.data
- mesh.faces.sort(
- lambda f1, f2:
- # Sort faces according to the min z coordinate in a face
- #cmp(min([v[2] for v in f1]), min([v[2] for v in f2])))
+ # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
+ # then ob1 goes farther than obj2, useful when obj2 has holes
+ by_bbox = None
+
+ Objects = scene.getChildren()
+ Objects.sort(by_center_pos)
+
+ # update the scene
+ for o in Objects:
+ scene.unlink(o)
+ scene.link(o)
+
+ def _joinMeshObjectsInScene(self, scene):
+ """Merge all the Mesh Objects in a scene into a single Mesh Object.
+ """
+ mesh = Mesh.New()
+ bigObj = Object.New('Mesh', 'BigOne')
+ bigObj.link(mesh)
- # Sort faces according to the max z coordinate in a face
- cmp(max([v[2] for v in f1]), max([v[2] for v in f2])))
-
- # Sort faces according to the avg z coordinate in a face
- #cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2)))
+ oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
+ bigObj.join(oList)
+ scene.link(bigObj)
+ for o in oList:
+ scene.unlink(o)
+
+ scene.update()
+
+
+ # Per object methods
+
+ def _convertToRawMeshObj(self, object):
+ """Convert geometry based object to a mesh object.
+ """
+ me = Mesh.New('RawMesh_'+object.name)
+ me.getFromObject(object.name)
+
+ newObject = Object.New('Mesh', 'RawMesh_'+object.name)
+ newObject.link(me)
+
+ # If the object has no materials set a default material
+ if not me.materials:
+ me.materials = [Material.New()]
+ #for f in me.faces: f.mat = 0
+
+ newObject.setMatrix(object.getMatrix())
+
+ return newObject
+
+ def _doModelToWorldCoordinates(self, mesh, matrix):
+ """Transform object coordinates to world coordinates.
+
+ This step is done simply applying to the object its tranformation
+ matrix and recalculating its normals.
+ """
+ mesh.transform(matrix, True)
+
+ def _doObjectDepthSorting(self, mesh):
+ """Sort faces in an object.
+
+ The faces in the object are sorted following the distance of the
+ vertices from the camera position.
+ """
+ c = self._getObjPosition(self.cameraObj)
+
+ # hackish sorting of faces
+
+ # Sort faces according to the max distance from the camera
+ by_max_vert_dist = (lambda f1, f2:
+ cmp(max([(Vector(v.co)-Vector(c)).length for v in f1]),
+ max([(Vector(v.co)-Vector(c)).length for v in f2])))
+
+ # Sort faces according to the min distance from the camera
+ by_min_vert_dist = (lambda f1, f2:
+ cmp(min([(Vector(v.co)-Vector(c)).length for v in f1]),
+ min([(Vector(v.co)-Vector(c)).length for v in f2])))
+
+ # Sort faces according to the avg distance from the camera
+ by_avg_vert_dist = (lambda f1, f2:
+ cmp(sum([(Vector(v.co)-Vector(c)).length for v in f1])/len(f1),
+ sum([(Vector(v.co)-Vector(c)).length for v in f2])/len(f2)))
+
+ mesh.faces.sort(by_max_vert_dist)
mesh.faces.reverse()
- mesh.update()
+
+ def _doBackFaceCulling(self, mesh):
+ """Simple Backface Culling routine.
- # update the scene
- for o in scene.getChildren():
- scene.unlink(o)
- for o in Objects:
- scene.link(o)
-
-def vectorize(filename):
+ At this level we simply do a visibility test face by face and then
+ select the vertices belonging to visible faces.
+ """
+
+ # Select all vertices, so edges can be displayed even if there are no
+ # faces
+ for v in mesh.verts:
+ v.sel = 1
+
+ Mesh.Mode(Mesh.SelectModes['FACE'])
+ # Loop on faces
+ for f in mesh.faces:
+ f.sel = 0
+ if self._isFaceVisible(f):
+ f.sel = 1
+
+ # Is this the correct way to propagate the face selection info to the
+ # vertices belonging to a face ??
+ # TODO: Using the Mesh module this should come for free. Right?
+ Mesh.Mode(Mesh.SelectModes['VERTEX'])
+ for f in mesh.faces:
+ if not f.sel:
+ for v in f: v.sel = 0;
+
+ for f in mesh.faces:
+ if f.sel:
+ for v in f: v.sel = 1;
+
+ def _doColorAndLighting(self, mesh):
+ """Apply an Illumination model to the object.
+
+ The Illumination model used is the Phong one, it may be inefficient,
+ but I'm just learning about rendering and starting from Phong seemed
+ the most natural way.
+ """
+
+ # If the mesh has vertex colors already, use them,
+ # otherwise turn them on and do some calculations
+ if mesh.hasVertexColours():
+ return
+ mesh.hasVertexColours(True)
+
+ materials = mesh.materials
+
+ # TODO: use multiple lighting sources
+ light_obj = self.lights[0]
+ light_pos = self._getObjPosition(light_obj)
+ light = light_obj.data
+
+ camPos = self._getObjPosition(self.cameraObj)
+
+ # We do per-face color calculation (FLAT Shading), we can easily turn
+ # to a per-vertex calculation if we want to implement some shading
+ # technique. For an example see:
+ # http://www.miralab.unige.ch/papers/368.pdf
+ for f in mesh.faces:
+ if not f.sel:
+ continue
+
+ mat = None
+ if materials:
+ mat = materials[f.mat]
+
+ # A new default material
+ if mat == None:
+ mat = Material.New('defMat')
+
+ L = Vector(light_pos).normalize()
+
+ V = (Vector(camPos) - Vector(f.v[0].co)).normalize()
+
+ N = Vector(f.no).normalize()
+
+ R = 2 * (N*L) * N - L
- print "Filename: %s" % filename
+ # TODO: Attenuation factor (not used for now)
+ a0 = 1; a1 = 0.0; a2 = 0.0
+ d = (Vector(f.v[0].co) - Vector(light_pos)).length
+ fd = min(1, 1.0/(a0 + a1*d + a2*d*d))
+
+ # Ambient component
+ Ia = 1.0
+ ka = mat.getAmb() * Vector([0.1, 0.1, 0.1])
+ Iamb = Ia * ka
+
+ # Diffuse component (add light.col for kd)
+ kd = mat.getRef() * Vector(mat.getRGBCol())
+ Ip = light.getEnergy()
+ Idiff = Ip * kd * (N*L)
+
+ # Specular component
+ ks = mat.getSpec() * Vector(mat.getSpecCol())
+ ns = mat.getHardness()
+ Ispec = Ip * ks * pow((V * R), ns)
+
+ # Emissive component
+ ki = Vector([mat.getEmit()]*3)
+
+ I = ki + Iamb + Idiff + Ispec
+
+ # Clamp I values between 0 and 1
+ I = [ min(c, 1) for c in I]
+ I = [ max(0, c) for c in I]
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ vcol = NMesh.Col(tmp_col[0], tmp_col[1], tmp_col[2], 255)
+ f.col = []
+ for v in f.v:
+ f.col.append(vcol)
+
+ def _doEdgesStyle(self, mesh, style):
+ """Process Mesh Edges.
+
+ Examples of algorithms:
+
+ Contours:
+ given an edge if its adjacent faces have the same normal (that is
+ they are complanar), than deselect it.
+
+ Silhouettes:
+ given an edge if one its adjacent faces is frontfacing and the
+ other is backfacing, than select it, else deselect.
+ """
+ #print "\tTODO: _doEdgeStyle()"
+ return
+
+ def _doProjection(self, mesh, projector):
+ """Calculate the Projection for the object.
+ """
+ # TODO: maybe using the object.transform() can be faster?
+
+ for v in mesh.verts:
+ p = projector.doProjection(v.co)
+ v.co[0] = p[0]
+ v.co[1] = p[1]
+ v.co[2] = p[2]
+
+
+
+# ---------------------------------------------------------------------
+#
+## Main Program
+#
+# ---------------------------------------------------------------------
+
+def vectorize(filename):
+ """The vectorizing process is as follows:
+
+ - Instanciate the writer and the renderer
+ - Render!
+ """
+ from Blender import Window
+ editmode = Window.EditMode()
+ if editmode: Window.EditMode(0)
+
+ writer = SVGVectorWriter(filename)
- scene = Scene.GetCurrent()
renderer = Renderer()
+ renderer.doRendering(writer, RENDER_ANIMATION)
- flatScene = renderer.doRendering(scene)
- canvasSize = renderer.getCanvasSize()
+ if editmode: Window.EditMode(1)
- depthSorting(flatScene)
+def vectorize_gui(filename):
+ """Draw the gui.
- writer = SVGVectorWriter(filename, canvasSize)
- writer.printCanvas(flatScene)
+ I would like to keep that simple, really.
+ """
+ Blender.Window.FileSelector (vectorize, 'Save SVG', filename)
+ Blender.Redraw()
- Blender.Scene.unlink(flatScene)
- del flatScene
# Here the main
if __name__ == "__main__":
+
+ basename = Blender.sys.basename(Blender.Get('filename'))
+ outputfile = Blender.sys.splitext(basename)[0]+".svg"
+
+ # with this trick we can run the script in batch mode
try:
- Blender.Window.FileSelector (vectorize, 'Save SVG', "proba.svg")
+ vectorize_gui(outputfile)
except:
- vectorize("proba.svg")
-
+ vectorize(outputfile)