X-Git-Url: https://git.ao2.it/vrm.git/blobdiff_plain/cb334b8afdb1d2133db56e1c5f22e0d5b999f42a..08e34a873729c718a510ec642d36eebaef6f4ee7:/vrm.py
diff --git a/vrm.py b/vrm.py
index 726c83d..d85b085 100755
--- a/vrm.py
+++ b/vrm.py
@@ -1,24 +1,357 @@
#!BPY
-
"""
Name: 'VRM'
-Blender: 237
+Blender: 241
Group: 'Export'
-Tooltip: 'Vector Rendering Method Export Script'
+Tooltip: 'Vector Rendering Method Export Script 0.3'
"""
+# ---------------------------------------------------------------------
+# Copyright (c) 2006 Antonio Ospite
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+#
+# ---------------------------------------------------------------------
+#
+# NOTE: I do not know who is the original author of 'vrm'.
+# The present code is almost entirely rewritten from scratch,
+# but if I have to give credits to anyone, please let me know,
+# so I can update the copyright.
+#
+# ---------------------------------------------------------------------
+#
+# Additional credits:
+# Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
+# Thanks to Anthony C. D'Agostino for the original backface.py script
+#
+# ---------------------------------------------------------------------
+
import Blender
-from Blender import Scene, Object, Lamp, Camera
+from Blender import Scene, Object, NMesh, Lamp, Camera
+from Blender.Mathutils import *
from math import *
-from Blender.Window import *
-from Blender.Scene import Render
-# distance from camera Z'
-def Distance(PX,PY,PZ):
+# ---------------------------------------------------------------------
+#
+## Projections classes
+#
+# ---------------------------------------------------------------------
+
+class Projector:
+ """Calculate the projection of an object given the camera.
+
+ A projector is useful to so some per-object transformation to obtain the
+ projection of an object given the camera.
+
+ The main method is #doProjection# see the method description for the
+ parameter list.
+ """
+
+ def __init__(self, cameraObj, obMesh, canvasSize):
+ """Calculate the projection matrix.
+
+ The projection matrix depends, in this case, on the camera settings,
+ and also on object transformation matrix.
+ """
+
+ self.size = canvasSize
+
+ camera = cameraObj.getData()
+
+ aspect = float(canvasSize[0])/float(canvasSize[1])
+ near = camera.clipStart
+ far = camera.clipEnd
+
+ fovy = atan(0.5/aspect/(camera.lens/32))
+ fovy = fovy * 360/pi
+
+ # What projection do we want?
+ if camera.type:
+ m2 = self._calcOrthoMatrix(fovy, aspect, near, far, 17) #camera.scale)
+ else:
+ m2 = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+
+
+ # View transformation
+ cam = Matrix(cameraObj.getInverseMatrix())
+ cam.transpose()
+
+ m1 = Matrix(obMesh.getMatrix())
+ m1.transpose()
+
+ mP = cam * m1
+ mP = m2 * mP
+
+ self.projectionMatrix = mP
+
+ ##
+ # Public methods
+ #
+
+ def doProjection(self, v):
+ """Project the point on the view plane.
+
+ Given a vertex calculate the projection using the current projection
+ matrix.
+ """
+
+ # Note that we need the vertex expressed using homogeneous coordinates
+ p = self.projectionMatrix * Vector([v[0], v[1], v[2], 1.0])
+
+ mW = self.size[0]/2
+ mH = self.size[1]/2
+
+ if p[3]<=0:
+ p[0] = round(p[0]*mW)+mW
+ p[1] = round(p[1]*mH)+mH
+ else:
+ p[0] = round((p[0]/p[3])*mW)+mW
+ p[1] = round((p[1]/p[3])*mH)+mH
+
+ # For now we want (0,0) in the top-left corner of the canvas
+ # Mirror and translate along y
+ p[1] *= -1
+ p[1] += self.size[1]
+
+ return p
+
+ ##
+ # Private methods
+ #
+
+ def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
+ """Return a perspective projection matrix."""
+
+ top = near * tan(fovy * pi / 360.0)
+ bottom = -top
+ left = bottom*aspect
+ right= top*aspect
+ x = (2.0 * near) / (right-left)
+ y = (2.0 * near) / (top-bottom)
+ a = (right+left) / (right-left)
+ b = (top+bottom) / (top - bottom)
+ c = - ((far+near) / (far-near))
+ d = - ((2*far*near)/(far-near))
+
+ m = Matrix(
+ [x, 0.0, a, 0.0],
+ [0.0, y, b, 0.0],
+ [0.0, 0.0, c, d],
+ [0.0, 0.0, -1.0, 0.0])
+
+ return m
+
+ def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
+ """Return an orthogonal projection matrix."""
+
+ top = near * tan(fovy * pi / 360.0) * (scale * 10)
+ bottom = -top
+ left = bottom * aspect
+ right= top * aspect
+ rl = right-left
+ tb = top-bottom
+ fn = near-far
+ tx = -((right+left)/rl)
+ ty = -((top+bottom)/tb)
+ tz = ((far+near)/fn)
+
+ m = Matrix(
+ [2.0/rl, 0.0, 0.0, tx],
+ [0.0, 2.0/tb, 0.0, ty],
+ [0.0, 0.0, 2.0/fn, tz],
+ [0.0, 0.0, 0.0, 1.0])
+
+ return m
+
+
+# ---------------------------------------------------------------------
+#
+## Object representation class
+#
+# ---------------------------------------------------------------------
+
+# TODO: a class to represent the needed properties of a 2D vector image
+# Just use a NMesh structure?
+
+
+# ---------------------------------------------------------------------
+#
+## Vector Drawing Classes
+#
+# ---------------------------------------------------------------------
+
+## A generic Writer
+
+class VectorWriter:
+ """
+ A class for printing output in a vectorial format.
+
+ Given a 2D representation of the 3D scene the class is responsible to
+ write it is a vector format.
+
+ Every subclasses of VectorWriter must have at last the following public
+ methods:
+ - printCanvas(mesh) --- where mesh is as specified before.
+ """
+
+ def __init__(self, fileName, canvasSize):
+ """Open the file named #fileName# and set the canvas size."""
+
+ self.file = open(fileName, "w")
+ print "Outputting to: ", fileName
+
+ self.canvasSize = canvasSize
+
+
+ ##
+ # Public Methods
+ #
+
+ def printCanvas(mesh):
+ return
+
+ ##
+ # Private Methods
+ #
+
+ def _printHeader():
+ return
+
+ def _printFooter():
+ return
+
+
+## SVG Writer
+
+class SVGVectorWriter(VectorWriter):
+ """A concrete class for writing SVG output.
+
+ The class does not support animations, yet.
+ Sorry.
+ """
+
+ def __init__(self, file, canvasSize):
+ """Simply call the parent Contructor."""
+ VectorWriter.__init__(self, file, canvasSize)
+
+
+ ##
+ # Public Methods
+ #
- dist = sqrt(PX*PX+PY*PY+PZ*PZ)
- return dist
+ def printCanvas(self, scene):
+ """Convert the scene representation to SVG."""
+
+ self._printHeader()
+
+ Objects = scene.getChildren()
+ for obj in Objects:
+ self.file.write("\n")
+
+ for face in obj.getData().faces:
+ self._printPolygon(face)
+
+ self._printWireframe(obj.getData())
+
+ self.file.write("\n")
+
+ self._printFooter()
+
+ ##
+ # Private Methods
+ #
+
+ def _printHeader(self):
+ """Print SVG header."""
+
+ self.file.write("\n")
+ self.file.write("\n")
+ self.file.write("\n")
+ self.file.close()
+
+ def _printWireframe(self, mesh):
+ """Print the wireframe using mesh edges... is this the correct way?
+ """
+
+ print mesh.edges
+ print
+ print mesh.verts
+
+ stroke_width=0.5
+ stroke_col = [0, 0, 0]
+
+ self.file.write("\n")
+
+ for e in mesh.edges:
+ self.file.write("\n")
+
+ self.file.write("\n")
+
+
+
+ def _printPolygon(self, face):
+ """Print our primitive, finally.
+ """
+
+ wireframe = False
+
+ stroke_width=0.5
+
+ self.file.write("\n")
+
+
+# ---------------------------------------------------------------------
+#
+## Rendering Classes
+#
+# ---------------------------------------------------------------------
def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
@@ -41,206 +374,325 @@ def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
NewPoint.append(NewZ)
return NewPoint
-def vetmatmult(v, M):
-
- v2 = [0, 0, 0, 0]
+class Renderer:
+ """Render a scene viewed from a given camera.
- for i in range(0, 3):
- for j in range(0, 3):
- v2[i] += (v[i]*M[i][j])
+ This class is responsible of the rendering process, hence transormation
+ and projection of the ojects in the scene are invoked by the renderer.
+
+ The user can optionally provide a specific camera for the rendering, see
+ the #doRendering# method for more informations.
+ """
+
+ def __init__(self):
+ """Set the canvas size to a defaulr value.
+
+ The only instance attribute here is the canvas size, which can be
+ queryed to the renderer by other entities.
+ """
+ self.canvasSize = (0.0, 0.0)
+
+
+ ##
+ # Public Methods
+ #
+
+ def getCanvasSize(self):
+ """Return the current canvas size read from Blender rendering context"""
+ return self.canvasSize
+
+ def doRendering(self, scene, cameraObj=None):
+ """Control the rendering process.
+
+ Here we control the entire rendering process invoking the operation
+ needed to transforma project the 3D scene in two dimensions.
+
+ Parameters:
+ scene --- the Blender Scene to render
+ cameraObj --- the camera object to use for the viewing processing
+ """
+
+ if cameraObj == None:
+ cameraObj = scene.getCurrentCamera()
+
+ context = scene.getRenderingContext()
+ self.canvasSize = (context.imageSizeX(), context.imageSizeY())
+
+ Objects = scene.getChildren()
+
+ # A structure to store the transformed scene
+ newscene = Scene.New("flat"+scene.name)
+
+ for obj in Objects:
+
+ if (obj.getType() != "Mesh"):
+ print "Type:", obj.getType(), "\tSorry, only mesh Object supported!"
+ continue
+
+ # Get a projector for this object
+ proj = Projector(cameraObj, obj, self.canvasSize)
+
+ # Let's store the transformed data
+ transformed_mesh = NMesh.New("flat"+obj.name)
+ transformed_mesh.hasVertexColours(1)
+
+ # process Edges
+ for v in obj.getData().verts:
+ transformed_mesh.verts.append(v)
+ transformed_mesh.edges = self._processEdges(obj.getData().edges)
+ print transformed_mesh.edges
- return v2
+
+ # Store the materials
+ materials = obj.getData().getMaterials()
+
+ meshfaces = obj.getData().faces
+
+ for face in meshfaces:
-def flatern(vertx, verty, vertz):
+ # if the face is visible flatten it on the "picture plane"
+ if self._isFaceVisible_old(face, obj, cameraObj):
+
+ # Store transformed face
+ newface = NMesh.Face()
- cam = Camera.get() # Get the cameras in scene
- Lens = cam[0].getLens() # The First Blender camera lens
+ for vert in face:
- camTyp = cam[0].getType()
+ p = proj.doProjection(vert.co)
- msize = (context.imageSizeX(), context.imageSizeY())
- xres = msize[0] # X res for output
- yres = msize[1] # Y res for output
- ratio = xres/yres
+ tmp_vert = NMesh.Vert(p[0], p[1], p[2])
- fov = atan(ratio * 16.0 / Lens) # Get fov stuff
+ # Add the vert to the mesh
+ transformed_mesh.verts.append(tmp_vert)
+
+ newface.v.append(tmp_vert)
+
+
+ # Per-face color calculation
+ # code taken mostly from the original vrm script
+ # TODO: understand the code and rewrite it clearly
+ ambient = -150
+
+ fakelight = Object.Get("Lamp").loc
+ if fakelight == None:
+ fakelight = [1.0, 1.0, -0.3]
+
+ norm = Vector(face.no)
+ vektori = (norm[0]*fakelight[0]+norm[1]*fakelight[1]+norm[2]*fakelight[2])
+ vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(fakelight[0],2)+pow(fakelight[1],2)+pow(fakelight[2],2)))
+ intensity = floor(ambient + 200*acos(vektori/vduzine))/200
+ if intensity < 0:
+ intensity = 0
+
+ if materials:
+ tmp_col = materials[face.mat].getRGBCol()
+ else:
+ tmp_col = [0.5, 0.5, 0.5]
+
+ tmp_col = [ (c>intensity) and int(round((c-intensity)*10)*25.5) for c in tmp_col ]
+
+ vcol = NMesh.Col(tmp_col[0], tmp_col[1], tmp_col[2])
+ newface.col = [vcol, vcol, vcol, 255]
+
+ transformed_mesh.addFace(newface)
+
+ # at the end of the loop on obj
+
+ transformed_obj = Object.New(obj.getType(), "flat"+obj.name)
+ transformed_obj.link(transformed_mesh)
+ transformed_obj.loc = obj.loc
+ newscene.link(transformed_obj)
+
+
+ return newscene
+
+
+ ##
+ # Private Methods
+ #
+
+ def _isFaceVisible_old(self, face, obj, cameraObj):
+ """Determine if the face is visible from the current camera.
+
+ The following code is taken basicly from the original vrm script.
+ """
+
+ camera = cameraObj
+
+ numvert = len(face)
+
+ # backface culling
+
+ # translate and rotate according to the object matrix
+ # and then translate according to the camera position
+ #m = obj.getMatrix()
+ #m.transpose()
+
+ #a = m*Vector(face[0]) - Vector(cameraObj.loc)
+ #b = m*Vector(face[1]) - Vector(cameraObj.loc)
+ #c = m*Vector(face[numvert-1]) - Vector(cameraObj.loc)
+
+ a = []
+ a.append(face[0][0])
+ a.append(face[0][1])
+ a.append(face[0][2])
+ a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
+ a[0] += obj.LocX - camera.LocX
+ a[1] += obj.LocY - camera.LocY
+ a[2] += obj.LocZ - camera.LocZ
+ b = []
+ b.append(face[1][0])
+ b.append(face[1][1])
+ b.append(face[1][2])
+ b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
+ b[0] += obj.LocX - camera.LocX
+ b[1] += obj.LocY - camera.LocY
+ b[2] += obj.LocZ - camera.LocZ
+ c = []
+ c.append(face[numvert-1][0])
+ c.append(face[numvert-1][1])
+ c.append(face[numvert-1][2])
+ c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
+ c[0] += obj.LocX - camera.LocX
+ c[1] += obj.LocY - camera.LocY
+ c[2] += obj.LocZ - camera.LocZ
+
+ norm = [0, 0, 0]
+ norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
+ norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
+ norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
+
+ d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
+ #d = DotVecs(Vector(norm), Vector(a))
+
+ return (d<0)
- dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane
+ def _isFaceVisible(self, face, obj, cameraObj):
+ """Determine if the face is visible from the current camera.
- screenxy=[0,0]
- x=-vertx
- y=verty
- z=vertz
+ The following code is taken basicly from the original vrm script.
+ """
- #----------------------------
- # calculate x'=dist*x/z & y'=dist*x/z
- #----------------------------
- screenxy[0]=int(xres/2.0+4*x*dist/z)
- screenxy[1]=int(yres/2.0+4*y*dist/z)
- return screenxy
+ camera = cameraObj
+ numvert = len(face)
-########
-# Main #
-########
+ # backface culling
-scena = Scene.GetCurrent()
-context = scena.getRenderingContext()
-renderDir = context.getRenderPath()
+ # translate and rotate according to the object matrix
+ # and then translate according to the camera position
+ m = obj.getMatrix()
+ m.transpose()
+
+ a = m*Vector(face[0]) - Vector(cameraObj.loc)
+ b = m*Vector(face[1]) - Vector(cameraObj.loc)
+ c = m*Vector(face[numvert-1]) - Vector(cameraObj.loc)
-msize = (context.imageSizeX(), context.imageSizeY())
+ norm = m*Vector(face.no)
-file=open("proba.svg","w")
+ d = DotVecs(norm, a)
-file.write("\n")
-file.write("")
-file.close()
-DrawProgressBar (1.0,"Finished.")
-print "Finished\n"