X-Git-Url: https://git.ao2.it/vrm.git/blobdiff_plain/cb334b8afdb1d2133db56e1c5f22e0d5b999f42a..40fe52111a7e783234bd644b51b28d206f890f08:/vrm.py diff --git a/vrm.py b/vrm.py index 726c83d..da71fab 100755 --- a/vrm.py +++ b/vrm.py @@ -1,246 +1,2824 @@ #!BPY - """ Name: 'VRM' -Blender: 237 -Group: 'Export' -Tooltip: 'Vector Rendering Method Export Script' +Blender: 242 +Group: 'Render' +Tooltip: 'Vector Rendering Method script' +""" + +__author__ = "Antonio Ospite" +__url__ = ["http://projects.blender.org/projects/vrm"] +__version__ = "0.3.beta" + +__bpydoc__ = """\ + Render the scene and save the result in vector format. """ +# --------------------------------------------------------------------- +# Copyright (c) 2006 Antonio Ospite +# +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program; if not, write to the Free Software +# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +# +# --------------------------------------------------------------------- +# +# Additional credits: +# Thanks to Emilio Aguirre for S2flender from which I took inspirations :) +# Thanks to Nikola Radovanovic, the author of the original VRM script, +# the code you read here has been rewritten _almost_ entirely +# from scratch but Nikola gave me the idea, so I thank him publicly. +# +# --------------------------------------------------------------------- +# +# Things TODO for a next release: +# - FIX the issue with negative scales in object tranformations! +# - Use a better depth sorting algorithm +# - Implement clipping of primitives and do handle object intersections. +# (for now only clipping away whole objects is supported). +# - Review how selections are made (this script uses selection states of +# primitives to represent visibility infos) +# - Use a data structure other than Mesh to represent the 2D image? +# Think to a way to merge (adjacent) polygons that have the same color. +# Or a way to use paths for silhouettes and contours. +# - Consider SMIL for animation handling instead of ECMA Script? (Firefox do +# not support SMIL for animations) +# - Switch to the Mesh structure, should be considerably faster +# (partially done, but with Mesh we cannot sort faces, yet) +# - Implement Edge Styles (silhouettes, contours, etc.) (partially done). +# - Implement Shading Styles? (partially done, to make more flexible). +# - Add Vector Writers other than SVG. +# - set the background color! +# - Check memory use!! +# +# --------------------------------------------------------------------- +# +# Changelog: +# +# vrm-0.3.py - ... +# * First release after code restucturing. +# Now the script offers a useful set of functionalities +# and it can render animations, too. +# * Optimization in Renderer.doEdgeStyle(), build a topology cache +# so to speed up the lookup of adjacent faces of an edge. +# Thanks ideasman42. +# * The SVG output is now SVG 1.0 valid. +# Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html +# * Progress indicator during HSR. +# * Initial SWF output support +# * Fixed a bug in the animation code, now the projection matrix is +# recalculated at each frame! +# +# --------------------------------------------------------------------- + import Blender -from Blender import Scene, Object, Lamp, Camera +from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window +from Blender.Mathutils import * from math import * -from Blender.Window import * -from Blender.Scene import Render +import sys, time + +# Constants +EPS = 10e-5 + +# We use a global progress Indicator Object +progress = None + + +# Some global settings + +class config: + polygons = dict() + polygons['SHOW'] = True + polygons['SHADING'] = 'FLAT' # FLAT or TOON + polygons['HSR'] = 'PAINTER' # PAINTER or NEWELL + # Hidden to the user for now + polygons['EXPANSION_TRICK'] = True + + polygons['TOON_LEVELS'] = 2 + + edges = dict() + edges['SHOW'] = False + edges['SHOW_HIDDEN'] = False + edges['STYLE'] = 'MESH' # MESH or SILHOUETTE + edges['WIDTH'] = 2 + edges['COLOR'] = [0, 0, 0] + + output = dict() + output['FORMAT'] = 'SVG' + output['ANIMATION'] = False + output['JOIN_OBJECTS'] = True + + +# Utility functions +print_debug = False + +def dumpfaces(flist, filename): + """Dump a single face to a file. + """ + if not print_debug: + return + + class tmpmesh: + pass + + m = tmpmesh() + m.faces = flist + + writerobj = SVGVectorWriter(filename) + + writerobj.open() + writerobj._printPolygons(m) + + writerobj.close() + +def debug(msg): + if print_debug: + sys.stderr.write(msg) + +def EQ(v1, v2): + return (abs(v1[0]-v2[0]) < EPS and + abs(v1[1]-v2[1]) < EPS ) +by_furthest_z = (lambda f1, f2: + cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) + ) + +def sign(x): + + if x < -EPS: + #if x < 0: + return -1 + elif x > EPS: + #elif x > 0: + return 1 + else: + return 0 + + +# --------------------------------------------------------------------- +# +## HSR Utility class +# +# --------------------------------------------------------------------- + +EPS = 10e-5 +INF = 10e5 + +class HSR: + """A utility class for HSR processing. + """ + + def is_nonplanar_quad(face): + """Determine if a quad is non-planar. + + From: http://mathworld.wolfram.com/Coplanar.html + + Geometric objects lying in a common plane are said to be coplanar. + Three noncollinear points determine a plane and so are trivially coplanar. + Four points are coplanar iff the volume of the tetrahedron defined by them is + 0, + + | x_1 y_1 z_1 1 | + | x_2 y_2 z_2 1 | + | x_3 y_3 z_3 1 | + | x_4 y_4 z_4 1 | == 0 + + Coplanarity is equivalent to the statement that the pair of lines + determined by the four points are not skew, and can be equivalently stated + in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0. + + An arbitrary number of n points x_1, ..., x_n can be tested for + coplanarity by finding the point-plane distances of the points + x_4, ..., x_n from the plane determined by (x_1,x_2,x_3) + and checking if they are all zero. + If so, the points are all coplanar. + + We here check only for 4-point complanarity. + """ + n = len(face) + + # assert(n>4) + if n < 3 or n > 4: + print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3" + raise AssertionError + + elif n == 3: + # three points must be complanar + return False + else: # n == 4 + x1 = Vector(face[0].co) + x2 = Vector(face[1].co) + x3 = Vector(face[2].co) + x4 = Vector(face[3].co) + + v = (x3-x1) * CrossVecs((x2-x1), (x4-x3)) + if v != 0: + return True + + return False + + is_nonplanar_quad = staticmethod(is_nonplanar_quad) + + def pointInPolygon(poly, v): + return False + + pointInPolygon = staticmethod(pointInPolygon) + + def edgeIntersection(s1, s2, do_perturbate=False): + + (x1, y1) = s1[0].co[0], s1[0].co[1] + (x2, y2) = s1[1].co[0], s1[1].co[1] + + (x3, y3) = s2[0].co[0], s2[0].co[1] + (x4, y4) = s2[1].co[0], s2[1].co[1] + + #z1 = s1[0].co[2] + #z2 = s1[1].co[2] + #z3 = s2[0].co[2] + #z4 = s2[1].co[2] + + + # calculate delta values (vector components) + dx1 = x2 - x1; + dx2 = x4 - x3; + dy1 = y2 - y1; + dy2 = y4 - y3; + + #dz1 = z2 - z1; + #dz2 = z4 - z3; + + C = dy2 * dx1 - dx2 * dy1 # /* cross product */ + if C == 0: #/* parallel */ + return None + + dx3 = x1 - x3 # /* combined origin offset vector */ + dy3 = y1 - y3 + + a1 = (dy3 * dx2 - dx3 * dy2) / C; + a2 = (dy3 * dx1 - dx3 * dy1) / C; + + # check for degeneracies + #print_debug("\n") + #print_debug(str(a1)+"\n") + #print_debug(str(a2)+"\n\n") + + if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1): + # Intersection on boundaries, we consider the point external? + return None + + elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): # /* lines cross */ + x = x1 + a1*dx1 + y = y1 + a1*dy1 + + #z = z1 + a1*dz1 + z = 0 + return (NMesh.Vert(x, y, z), a1, a2) + + else: + # lines have intersections but not those segments + return None + + edgeIntersection = staticmethod(edgeIntersection) + + def isVertInside(self, v): + winding_number = 0 + coincidence = False + + # Create point at infinity + point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF) + + for i in range(len(self.v)): + s1 = (point_at_infinity, v) + s2 = (self.v[i-1], self.v[i]) + + if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co): + coincidence = True + + if HSR.edgeIntersection(s1, s2, do_perturbate=False): + winding_number += 1 + + # Check even or odd + if winding_number % 2 == 0 : + return False + else: + if coincidence: + return False + return True + isVertInside = staticmethod(isVertInside) -# distance from camera Z' -def Distance(PX,PY,PZ): + + def det(a, b, c): + return ((b[0] - a[0]) * (c[1] - a[1]) - + (b[1] - a[1]) * (c[0] - a[0]) ) - dist = sqrt(PX*PX+PY*PY+PZ*PZ) - return dist + det = staticmethod(det) + + def pointInPolygon(q, P): + is_in = False + + point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF) + + det = HSR.det + + for i in range(len(P.v)): + p0 = P.v[i-1] + p1 = P.v[i] + if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0): + if det(p0.co, p1.co, q.co) == 0 : + #print "On Boundary" + return False + elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0): + is_in = not is_in + + return is_in + + pointInPolygon = staticmethod(pointInPolygon) + + def projectionsOverlap(f1, f2): + """ If you have nonconvex, but still simple polygons, an acceptable method + is to iterate over all vertices and perform the Point-in-polygon test[1]. + The advantage of this method is that you can compute the exact + intersection point and collision normal that you will need to simulate + collision. When you have the point that lies inside the other polygon, you + just iterate over all edges of the second polygon again and look for edge + intersections. Note that this method detects collsion when it already + happens. This algorithm is fast enough to perform it hundreds of times per + sec. """ + + for i in range(len(f1.v)): + + + # If a point of f1 in inside f2, there is an overlap! + v1 = f1.v[i] + #if HSR.isVertInside(f2, v1): + if HSR.pointInPolygon(v1, f2): + return True + + # If not the polygon can be ovelap as well, so we check for + # intersection between an edge of f1 and all the edges of f2 + + v0 = f1.v[i-1] + + for j in range(len(f2.v)): + v2 = f2.v[j-1] + v3 = f2.v[j] + + e1 = v0, v1 + e2 = v2, v3 + + intrs = HSR.edgeIntersection(e1, e2) + if intrs: + #print_debug(str(v0.co) + " " + str(v1.co) + " " + + # str(v2.co) + " " + str(v3.co) ) + #print_debug("\nIntersection\n") + + return True + + return False + + projectionsOverlap = staticmethod(projectionsOverlap) + + def midpoint(p1, p2): + """Return the midpoint of two vertices. + """ + m = MidpointVecs(Vector(p1), Vector(p2)) + mv = NMesh.Vert(m[0], m[1], m[2]) + + return mv + + midpoint = staticmethod(midpoint) + + def facesplit(P, Q, facelist, nmesh): + """Split P or Q according to the strategy illustrated in the Newell's + paper. + """ + + by_furthest_z = (lambda f1, f2: + cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) + ) + + # Choose if split P on Q plane or vice-versa + + n = 0 + for Pi in P: + d = HSR.Distance(Vector(Pi), Q) + if d <= EPS: + n += 1 + pIntersectQ = (n != len(P)) + + n = 0 + for Qi in Q: + d = HSR.Distance(Vector(Qi), P) + if d >= -EPS: + n += 1 + qIntersectP = (n != len(Q)) + + newfaces = [] + + # 1. If parts of P lie in both half-spaces of Q + # then splice P in two with the plane of Q + if pIntersectQ: + #print "We split P" + f = P + plane = Q + + newfaces = HSR.splitOn(plane, f) + + # 2. Else if parts of Q lie in both half-space of P + # then splice Q in two with the plane of P + if qIntersectP and newfaces == None: + #print "We split Q" + f = Q + plane = P + + newfaces = HSR.splitOn(plane, f) + #print "After" + + # 3. Else slice P in half through the mid-point of + # the longest pair of opposite sides + if newfaces == None: + + print "We ignore P..." + facelist.remove(P) + return facelist + + #f = P + + #if len(P)==3: + # v1 = midpoint(f[0], f[1]) + # v2 = midpoint(f[1], f[2]) + #if len(P)==4: + # v1 = midpoint(f[0], f[1]) + # v2 = midpoint(f[2], f[3]) + #vec3 = (Vector(v2)+10*Vector(f.normal)) + # + #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2]) + + #plane = NMesh.Face([v1, v2, v3]) + # + #newfaces = splitOn(plane, f) + + + if newfaces == None: + print "Big FAT problem, we weren't able to split POLYGONS!" + raise AssertionError + + #print newfaces + if newfaces: + #for v in f: + # if v not in plane and v in nmesh.verts: + # nmesh.verts.remove(v) + for nf in newfaces: + + nf.mat = f.mat + nf.sel = f.sel + nf.col = [f.col[0]] * len(nf.v) + + nf.smooth = 0 + + for v in nf: + nmesh.verts.append(v) + # insert pieces in the list + facelist.append(nf) + + facelist.remove(f) + + # and resort the faces + facelist.sort(by_furthest_z) + facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth)) + facelist.reverse() + + #print [ f.smooth for f in facelist ] + + return facelist + + facesplit = staticmethod(facesplit) + + def isOnSegment(v1, v2, p, extremes_internal=False): + """Check if point p is in segment v1v2. + """ + + l1 = (v1-p).length + l2 = (v2-p).length + + # Should we consider extreme points as internal ? + # The test: + # if p == v1 or p == v2: + if l1 < EPS or l2 < EPS: + return extremes_internal + + l = (v1-v2).length + + # if the sum of l1 and l2 is circa l, then the point is on segment, + if abs(l - (l1+l2)) < EPS: + return True + else: + return False + + isOnSegment = staticmethod(isOnSegment) + + def Distance(point, face): + """ Calculate the distance between a point and a face. + + An alternative but more expensive method can be: + + ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]), + Vector(face.no), Vector(point), 0) + + d = Vector(ip - point).length + + See: http://mathworld.wolfram.com/Point-PlaneDistance.html + """ + + p = Vector(point) + plNormal = Vector(face.no) + plVert0 = Vector(face.v[0]) + + d = (plVert0 * plNormal) - (p * plNormal) + + #d = plNormal * (plVert0 - p) + + #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point)) + + return d + + Distance = staticmethod(Distance) -def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ): + def makeFaces(vl): + # + # make one or two new faces based on a list of vertex-indices + # + newfaces = [] + + if len(vl) <= 4: + nf = NMesh.Face() + + for v in vl: + nf.v.append(v) + + newfaces.append(nf) + + else: + nf = NMesh.Face() + + nf.v.append(vl[0]) + nf.v.append(vl[1]) + nf.v.append(vl[2]) + nf.v.append(vl[3]) + newfaces.append(nf) + + nf = NMesh.Face() + nf.v.append(vl[3]) + nf.v.append(vl[4]) + nf.v.append(vl[0]) + newfaces.append(nf) + + return newfaces + + makeFaces = staticmethod(makeFaces) + + def splitOn(Q, P): + """Split P using the plane of Q. + Logic taken from the knife.py python script + """ + + # Check if P and Q are parallel + u = CrossVecs(Vector(Q.no),Vector(P.no)) + ax = abs(u[0]) + ay = abs(u[1]) + az = abs(u[2]) + + if (ax+ay+az) < EPS: + print "PARALLEL planes!!" + return + + + # The final aim is to find the intersection line between P + # and the plane of Q, and split P along this line + + nP = len(P.v) + + # Calculate point-plane Distance between vertices of P and plane Q + d = [] + for i in range(0, nP): + d.append(HSR.Distance(P.v[i], Q)) + + newVertList = [] + + posVertList = [] + negVertList = [] + for i in range(nP): + d0 = d[i-1] + V0 = P.v[i-1] + + d1 = d[i] + V1 = P.v[i] + + #print "d0:", d0, "d1:", d1 + + # if the vertex lies in the cutplane + if abs(d1) < EPS: + #print "d1 On cutplane" + posVertList.append(V1) + negVertList.append(V1) + else: + # if the previous vertex lies in cutplane + if abs(d0) < EPS: + #print "d0 on Cutplane" + if d1 > 0: + #print "d1 on positive Halfspace" + posVertList.append(V1) + else: + #print "d1 on negative Halfspace" + negVertList.append(V1) + else: + # if they are on the same side of the plane + if d1*d0 > 0: + #print "On the same half-space" + if d1 > 0: + #print "d1 on positive Halfspace" + posVertList.append(V1) + else: + #print "d1 on negative Halfspace" + negVertList.append(V1) + + # the vertices are not on the same side of the plane, so we have an intersection + else: + #print "Intersection" + + e = Vector(V0), Vector(V1) + tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2]) + + inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0) + if inters == None: + print "Split Break" + break + + #print "Intersection", inters + + nv = NMesh.Vert(inters[0], inters[1], inters[2]) + newVertList.append(nv) + + posVertList.append(nv) + negVertList.append(nv) + + if d1 > 0: + posVertList.append(V1) + else: + negVertList.append(V1) + + + # uniq + posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ] + negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ] + + + # If vertex are all on the same half-space, return + #if len(posVertList) < 3: + # print "Problem, we created a face with less that 3 verteices??" + # posVertList = [] + #if len(negVertList) < 3: + # print "Problem, we created a face with less that 3 verteices??" + # negVertList = [] + + if len(posVertList) < 3 or len(negVertList) < 3: + print "RETURN NONE, SURE???" + return None + + + newfaces = HSR.addNewFaces(posVertList, negVertList) + + return newfaces + + splitOn = staticmethod(splitOn) + + def addNewFaces(posVertList, negVertList): + # Create new faces resulting from the split + outfaces = [] + if len(posVertList) or len(negVertList): + + #newfaces = [posVertList] + [negVertList] + newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] + + [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] ) + + for nf in newfaces: + if nf and len(nf)>2: + outfaces += HSR.makeFaces(nf) + + return outfaces + + + addNewFaces = staticmethod(addNewFaces) + + +# --------------------------------------------------------------------- +# +## Mesh Utility class +# +# --------------------------------------------------------------------- + +class MeshUtils: + + def buildEdgeFaceUsersCache(me): + ''' + Takes a mesh and returns a list aligned with the meshes edges. + Each item is a list of the faces that use the edge + would be the equiv for having ed.face_users as a property + + Taken from .blender/scripts/bpymodules/BPyMesh.py, + thanks to ideasman_42. + ''' + + def sorted_edge_indicies(ed): + i1= ed.v1.index + i2= ed.v2.index + if i1>i2: + i1,i2= i2,i1 + return i1, i2 + + + face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges]) + for f in me.faces: + fvi= [v.index for v in f.v]# face vert idx's + for i in xrange(len(f)): + i1= fvi[i] + i2= fvi[i-1] + + if i1>i2: + i1,i2= i2,i1 + + face_edges_dict[i1,i2][1].append(f) + + face_edges= [None] * len(me.edges) + for ed_index, ed_faces in face_edges_dict.itervalues(): + face_edges[ed_index]= ed_faces + + return face_edges + + def isMeshEdge(adjacent_faces): + """Mesh edge rule. + + A mesh edge is visible if _at_least_one_ of its adjacent faces is selected. + Note: if the edge has no adjacent faces we want to show it as well, + useful for "edge only" portion of objects. + """ + + if len(adjacent_faces) == 0: + return True + + selected_faces = [f for f in adjacent_faces if f.sel] + + if len(selected_faces) != 0: + return True + else: + return False + + def isSilhouetteEdge(adjacent_faces): + """Silhuette selection rule. + + An edge is a silhuette edge if it is shared by two faces with + different selection status or if it is a boundary edge of a selected + face. + """ + + if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or + (len(adjacent_faces) == 2 and + adjacent_faces[0].sel != adjacent_faces[1].sel) + ): + return True + else: + return False + + buildEdgeFaceUsersCache = staticmethod(buildEdgeFaceUsersCache) + isMeshEdge = staticmethod(isMeshEdge) + isSilhouetteEdge = staticmethod(isSilhouetteEdge) + + +# --------------------------------------------------------------------- +# +## Shading Utility class +# +# --------------------------------------------------------------------- + +class ShadingUtils: + + shademap = None + + def toonShadingMapSetup(): + levels = config.polygons['TOON_LEVELS'] + + texels = 2*levels - 1 + tmp_shademap = [0.0] + [(i)/float(texels-1) for i in xrange(1, texels-1) ] + [1.0] + + return tmp_shademap + + def toonShading(u): + + shademap = ShadingUtils.shademap + + if not shademap: + shademap = ShadingUtils.toonShadingMapSetup() + + v = 1.0 + for i in xrange(0, len(shademap)-1): + pivot = (shademap[i]+shademap[i+1])/2.0 + j = int(u>pivot) + + v = shademap[i+j] + + if v < shademap[i+1]: + return v + + return v + + toonShadingMapSetup = staticmethod(toonShadingMapSetup) + toonShading = staticmethod(toonShading) + + +# --------------------------------------------------------------------- +# +## Projections classes +# +# --------------------------------------------------------------------- + +class Projector: + """Calculate the projection of an object given the camera. - NewPoint = [] - # Rotate X - NewY = (PY * cos(AngleX))-(PZ * sin(AngleX)) - NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX)) - # Rotate Y - PZ = NewZ - PY = NewY - NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY)) - NewX = (PX * cos(AngleY))+(PZ * sin(AngleY)) - PX = NewX - PZ = NewZ - # Rotate Z - NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ)) - NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ)) - NewPoint.append(NewX) - NewPoint.append(NewY) - NewPoint.append(NewZ) - return NewPoint - -def vetmatmult(v, M): + A projector is useful to so some per-object transformation to obtain the + projection of an object given the camera. - v2 = [0, 0, 0, 0] + The main method is #doProjection# see the method description for the + parameter list. + """ + + def __init__(self, cameraObj, canvasRatio): + """Calculate the projection matrix. + + The projection matrix depends, in this case, on the camera settings. + TAKE CARE: This projector expects vertices in World Coordinates! + """ + + camera = cameraObj.getData() + + aspect = float(canvasRatio[0])/float(canvasRatio[1]) + near = camera.clipStart + far = camera.clipEnd + + scale = float(camera.scale) + + fovy = atan(0.5/aspect/(camera.lens/32)) + fovy = fovy * 360.0/pi + + # What projection do we want? + if camera.type == 0: + mP = self._calcPerspectiveMatrix(fovy, aspect, near, far) + elif camera.type == 1: + mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale) + + # View transformation + cam = Matrix(cameraObj.getInverseMatrix()) + cam.transpose() + + mP = mP * cam + + self.projectionMatrix = mP + + ## + # Public methods + # + + def doProjection(self, v): + """Project the point on the view plane. + + Given a vertex calculate the projection using the current projection + matrix. + """ + + # Note that we have to work on the vertex using homogeneous coordinates + # From blender 2.42+ we don't need to resize the vector to be 4d + # when applying a 4x4 matrix, but we do that anyway since we need the + # 4th coordinate later + p = self.projectionMatrix * Vector(v).resize4D() + + # Perspective division + if p[3] != 0: + p[0] = p[0]/p[3] + p[1] = p[1]/p[3] + p[2] = p[2]/p[3] + + # restore the size + p[3] = 1.0 + p.resize3D() + + return p + + + ## + # Private methods + # - for i in range(0, 3): - for j in range(0, 3): - v2[i] += (v[i]*M[i][j]) + def _calcPerspectiveMatrix(self, fovy, aspect, near, far): + """Return a perspective projection matrix. + """ + + top = near * tan(fovy * pi / 360.0) + bottom = -top + left = bottom*aspect + right= top*aspect + x = (2.0 * near) / (right-left) + y = (2.0 * near) / (top-bottom) + a = (right+left) / (right-left) + b = (top+bottom) / (top - bottom) + c = - ((far+near) / (far-near)) + d = - ((2*far*near)/(far-near)) + + m = Matrix( + [x, 0.0, a, 0.0], + [0.0, y, b, 0.0], + [0.0, 0.0, c, d], + [0.0, 0.0, -1.0, 0.0]) - return v2 + return m -def flatern(vertx, verty, vertz): + def _calcOrthoMatrix(self, fovy, aspect , near, far, scale): + """Return an orthogonal projection matrix. + """ + + # The 11 in the formula was found emiprically + top = near * tan(fovy * pi / 360.0) * (scale * 11) + bottom = -top + left = bottom * aspect + right= top * aspect + rl = right-left + tb = top-bottom + fn = near-far + tx = -((right+left)/rl) + ty = -((top+bottom)/tb) + tz = ((far+near)/fn) - cam = Camera.get() # Get the cameras in scene - Lens = cam[0].getLens() # The First Blender camera lens + m = Matrix( + [2.0/rl, 0.0, 0.0, tx], + [0.0, 2.0/tb, 0.0, ty], + [0.0, 0.0, 2.0/fn, tz], + [0.0, 0.0, 0.0, 1.0]) + + return m - camTyp = cam[0].getType() - msize = (context.imageSizeX(), context.imageSizeY()) - xres = msize[0] # X res for output - yres = msize[1] # Y res for output - ratio = xres/yres +# --------------------------------------------------------------------- +# +## Progress Indicator +# +# --------------------------------------------------------------------- - fov = atan(ratio * 16.0 / Lens) # Get fov stuff +class Progress: + """A model for a progress indicator. - dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane + Do the progress calculation calculation and + the view independent stuff of a progress indicator. + """ + def __init__(self, steps=0): + self.name = "" + self.steps = steps + self.completed = 0 + self.progress = 0 - screenxy=[0,0] - x=-vertx - y=verty - z=vertz + def setSteps(self, steps): + """Set the number of steps of the activity wich we want to track. + """ + self.steps = steps - #---------------------------- - # calculate x'=dist*x/z & y'=dist*x/z - #---------------------------- - screenxy[0]=int(xres/2.0+4*x*dist/z) - screenxy[1]=int(yres/2.0+4*y*dist/z) - return screenxy + def getSteps(self): + return self.steps + def setName(self, name): + """Set the name of the activity wich we want to track. + """ + self.name = name -######## -# Main # -######## + def getName(self): + return self.name -scena = Scene.GetCurrent() -context = scena.getRenderingContext() -renderDir = context.getRenderPath() + def getProgress(self): + return self.progress -msize = (context.imageSizeX(), context.imageSizeY()) + def reset(self): + self.completed = 0 + self.progress = 0 -file=open("proba.svg","w") + def update(self): + """Update the model, call this method when one step is completed. + """ + if self.progress == 100: + return False -file.write("\n") -file.write("\n") -#file.write("\n") + self.completed += 1 + self.progress = ( float(self.completed) / float(self.steps) ) * 100 + self.progress = int(self.progress) -Objects = Blender.Object.Get() -NUMobjects = len(Objects) + return True -startFrm = context.startFrame() -endFrm = startFrm -#endFrm = context.endFrame() -frames = range(startFrm, endFrm+1) -# are we rendering an animation ? -animation = (len(frames) > 1) +class ProgressIndicator: + """An abstraction of a View for the Progress Model + """ + def __init__(self): -camera = scena.getCurrentCamera() # Get the current camera + # Use a refresh rate so we do not show the progress at + # every update, but every 'self.refresh_rate' times. + self.refresh_rate = 10 + self.shows_counter = 0 -for f in frames: - context.currentFrame(f) - Blender.Set('curframe', f) + self.quiet = False - DrawProgressBar (f/len(frames),"Rendering ..." + str(f)) + self.progressModel = None - print "Frame: ", f, "\n" - if animation : - file.write("\n") + def setQuiet(self, value): + self.quiet = value - for o in Objects: + def setActivity(self, name, steps): + """Initialize the Model. - if o.getType() == "Mesh": + In a future version (with subactivities-progress support) this method + could only set the current activity. + """ + self.progressModel = Progress() + self.progressModel.setName(name) + self.progressModel.setSteps(steps) - obj = o # Get the first selected object - objname = obj.name # The object name + def getActivity(self): + return self.progressModel + def update(self): + """Update the model and show the actual progress. + """ + assert(self.progressModel) - OBJmesh = obj.getData() # Get the mesh data for the object - meshfaces = OBJmesh.faces # The number of faces in the object + if self.progressModel.update(): + if self.quiet: + return - #------------ - # Get the Material Colors - #------------ - - #MATinfo = OBJmesh.getMaterials() - # - #if len(MATinfo) > 0: - # RGB=MATinfo[0].rgbCol - # R=int(RGB[0]*255) - # G=int(RGB[1]*255) - # B=int(RGB[2]*255) - # color=`R`+"."+`G`+"."+`B` - # print color - #else: - # color="100.100.100" - - - for face in range(0, len(meshfaces)): - numvert = len(OBJmesh.faces[face]) - - #if (isVisible(face)): - # print "face visible" - - # backface culling - a = [] - a.append(OBJmesh.faces[face][0][0]) - a.append(OBJmesh.faces[face][0][1]) - a.append(OBJmesh.faces[face][0][2]) - a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ) - a[0] += obj.LocX - camera.LocX - a[1] += obj.LocY - camera.LocY - a[2] += obj.LocZ - camera.LocZ - b = [] - b.append(OBJmesh.faces[face][1][0]) - b.append(OBJmesh.faces[face][1][1]) - b.append(OBJmesh.faces[face][1][2]) - b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ) - b[0] += obj.LocX - camera.LocX - b[1] += obj.LocY - camera.LocY - b[2] += obj.LocZ - camera.LocZ - c = [] - c.append(OBJmesh.faces[face][numvert-1][0]) - c.append(OBJmesh.faces[face][numvert-1][1]) - c.append(OBJmesh.faces[face][numvert-1][2]) - c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ) - c[0] += obj.LocX - camera.LocX - c[1] += obj.LocY - camera.LocY - c[2] += obj.LocZ - camera.LocZ - - norm = [0,0,0] - norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2]) - norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2])) - norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1]) - - d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2] - - # if the face is visible flatten it on the "picture plane" - if d < 0: - file.write("\n") - if animation: - file.write("\n") - file.write("\n") - file.write("\n") - -file.write("") -file.close() -DrawProgressBar (1.0,"Finished.") -print "Finished\n" + self.show(self.progressModel.getProgress(), + self.progressModel.getName()) + + # We return always True here so we can call the update() method also + # from lambda funcs (putting the call in logical AND with other ops) + return True + + def show(self, progress, name=""): + self.shows_counter = (self.shows_counter + 1) % self.refresh_rate + if self.shows_counter != 0: + return + + if progress == 100: + self.shows_counter = -1 + + +class ConsoleProgressIndicator(ProgressIndicator): + """Show a progress bar on stderr, a la wget. + """ + def __init__(self): + ProgressIndicator.__init__(self) + + self.swirl_chars = ["-", "\\", "|", "/"] + self.swirl_count = -1 + + def show(self, progress, name): + ProgressIndicator.show(self, progress, name) + + bar_length = 70 + bar_progress = int( (progress/100.0) * bar_length ) + bar = ("=" * bar_progress).ljust(bar_length) + + self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars) + swirl_char = self.swirl_chars[self.swirl_count] + + progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress) + + sys.stderr.write(progress_bar+"\r") + if progress == 100: + sys.stderr.write("\n") + + +class GraphicalProgressIndicator(ProgressIndicator): + """Interface to the Blender.Window.DrawProgressBar() method. + """ + def __init__(self): + ProgressIndicator.__init__(self) + + #self.swirl_chars = ["-", "\\", "|", "/"] + # We have to use letters with the same width, for now! + # Blender progress bar considers the font widths when + # calculating the progress bar width. + self.swirl_chars = ["\\", "/"] + self.swirl_count = -1 + + def show(self, progress, name): + ProgressIndicator.show(self, progress) + + self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars) + swirl_char = self.swirl_chars[self.swirl_count] + + progress_text = "%s - %c %3d%%" % (name, swirl_char, progress) + + # Finally draw the Progress Bar + Window.WaitCursor(1) # Maybe we can move that call in the constructor? + Window.DrawProgressBar(progress/100.0, progress_text) + + if progress == 100: + Window.DrawProgressBar(1, progress_text) + Window.WaitCursor(0) + + + +# --------------------------------------------------------------------- +# +## 2D Object representation class +# +# --------------------------------------------------------------------- + +# TODO: a class to represent the needed properties of a 2D vector image +# For now just using a [N]Mesh structure. + + +# --------------------------------------------------------------------- +# +## Vector Drawing Classes +# +# --------------------------------------------------------------------- + +## A generic Writer + +class VectorWriter: + """ + A class for printing output in a vectorial format. + + Given a 2D representation of the 3D scene the class is responsible to + write it is a vector format. + + Every subclasses of VectorWriter must have at last the following public + methods: + - open(self) + - close(self) + - printCanvas(self, scene, + doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False): + """ + + def __init__(self, fileName): + """Set the output file name and other properties""" + + self.outputFileName = fileName + self.file = None + + context = Scene.GetCurrent().getRenderingContext() + self.canvasSize = ( context.imageSizeX(), context.imageSizeY() ) + + self.startFrame = 1 + self.endFrame = 1 + self.animation = False + + + ## + # Public Methods + # + + def open(self, startFrame=1, endFrame=1): + if startFrame != endFrame: + self.startFrame = startFrame + self.endFrame = endFrame + self.animation = True + + self.file = open(self.outputFileName, "w") + print "Outputting to: ", self.outputFileName + + return + + def close(self): + if self.file: + self.file.close() + return + + def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, + showHiddenEdges=False): + """This is the interface for the needed printing routine. + """ + return + + +## SVG Writer + +class SVGVectorWriter(VectorWriter): + """A concrete class for writing SVG output. + """ + + def __init__(self, fileName): + """Simply call the parent Contructor. + """ + VectorWriter.__init__(self, fileName) + + + ## + # Public Methods + # + + def open(self, startFrame=1, endFrame=1): + """Do some initialization operations. + """ + VectorWriter.open(self, startFrame, endFrame) + self._printHeader() + + def close(self): + """Do some finalization operation. + """ + self._printFooter() + + # remember to call the close method of the parent + VectorWriter.close(self) + + + def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, + showHiddenEdges=False): + """Convert the scene representation to SVG. + """ + + Objects = scene.getChildren() + + context = scene.getRenderingContext() + framenumber = context.currentFrame() + + if self.animation: + framestyle = "display:none" + else: + framestyle = "display:block" + + # Assign an id to this group so we can set properties on it using DOM + self.file.write("\n" % + (framenumber, framestyle) ) + + + for obj in Objects: + + if(obj.getType() != 'Mesh'): + continue + + self.file.write("\n" % obj.getName()) + + mesh = obj.getData(mesh=1) + + if doPrintPolygons: + self._printPolygons(mesh) + + if doPrintEdges: + self._printEdges(mesh, showHiddenEdges) + + self.file.write("\n") + + self.file.write("\n") + + + ## + # Private Methods + # + + def _calcCanvasCoord(self, v): + """Convert vertex in scene coordinates to canvas coordinates. + """ + + pt = Vector([0, 0, 0]) + + mW = float(self.canvasSize[0])/2.0 + mH = float(self.canvasSize[1])/2.0 + + # rescale to canvas size + pt[0] = v.co[0]*mW + mW + pt[1] = v.co[1]*mH + mH + pt[2] = v.co[2] + + # For now we want (0,0) in the top-left corner of the canvas. + # Mirror and translate along y + pt[1] *= -1 + pt[1] += self.canvasSize[1] + + return pt + + def _printHeader(self): + """Print SVG header.""" + + self.file.write("\n") + self.file.write("\n") + self.file.write("\n\n" % + self.canvasSize) + + if self.animation: + + self.file.write("""\n\n + \n""" % (self.startFrame, self.endFrame, self.startFrame) ) + + def _printFooter(self): + """Print the SVG footer.""" + + self.file.write("\n\n") + + def _printPolygons(self, mesh): + """Print the selected (visible) polygons. + """ + + if len(mesh.faces) == 0: + return + + self.file.write("\n") + + for face in mesh.faces: + if not face.sel: + continue + + self.file.write("\n") + + self.file.write("\n") + + def _printEdges(self, mesh, showHiddenEdges=False): + """Print the wireframe using mesh edges. + """ + + stroke_width = config.edges['WIDTH'] + stroke_col = config.edges['COLOR'] + + self.file.write("\n") + + for e in mesh.edges: + + hidden_stroke_style = "" + + if e.sel == 0: + if showHiddenEdges == False: + continue + else: + hidden_stroke_style = ";\n stroke-dasharray:3, 3" + + p1 = self._calcCanvasCoord(e.v1) + p2 = self._calcCanvasCoord(e.v2) + + self.file.write("\n") + + self.file.write("\n") + + +## SWF Writer + +try: + from ming import * + SWFSupported = True +except: + SWFSupported = False + +class SWFVectorWriter(VectorWriter): + """A concrete class for writing SWF output. + """ + + def __init__(self, fileName): + """Simply call the parent Contructor. + """ + VectorWriter.__init__(self, fileName) + + self.movie = None + self.sprite = None + + + ## + # Public Methods + # + + def open(self, startFrame=1, endFrame=1): + """Do some initialization operations. + """ + VectorWriter.open(self, startFrame, endFrame) + self.movie = SWFMovie() + self.movie.setDimension(self.canvasSize[0], self.canvasSize[1]) + # set fps + self.movie.setRate(25) + numframes = endFrame - startFrame + 1 + self.movie.setFrames(numframes) + + def close(self): + """Do some finalization operation. + """ + self.movie.save(self.outputFileName) + + # remember to call the close method of the parent + VectorWriter.close(self) + + def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, + showHiddenEdges=False): + """Convert the scene representation to SVG. + """ + context = scene.getRenderingContext() + framenumber = context.currentFrame() + + Objects = scene.getChildren() + + if self.sprite: + self.movie.remove(self.sprite) + + sprite = SWFSprite() + + for obj in Objects: + + if(obj.getType() != 'Mesh'): + continue + + mesh = obj.getData(mesh=1) + + if doPrintPolygons: + self._printPolygons(mesh, sprite) + + if doPrintEdges: + self._printEdges(mesh, sprite, showHiddenEdges) + + sprite.nextFrame() + i = self.movie.add(sprite) + # Remove the instance the next time + self.sprite = i + if self.animation: + self.movie.nextFrame() + + + ## + # Private Methods + # + + def _calcCanvasCoord(self, v): + """Convert vertex in scene coordinates to canvas coordinates. + """ + + pt = Vector([0, 0, 0]) + + mW = float(self.canvasSize[0])/2.0 + mH = float(self.canvasSize[1])/2.0 + + # rescale to canvas size + pt[0] = v.co[0]*mW + mW + pt[1] = v.co[1]*mH + mH + pt[2] = v.co[2] + + # For now we want (0,0) in the top-left corner of the canvas. + # Mirror and translate along y + pt[1] *= -1 + pt[1] += self.canvasSize[1] + + return pt + + def _printPolygons(self, mesh, sprite): + """Print the selected (visible) polygons. + """ + + if len(mesh.faces) == 0: + return + + for face in mesh.faces: + if not face.sel: + continue + + if face.col: + fcol = face.col[0] + color = [fcol.r, fcol.g, fcol.b, fcol.a] + else: + color = [255, 255, 255, 255] + + s = SWFShape() + f = s.addFill(color[0], color[1], color[2], color[3]) + s.setRightFill(f) + + # The starting point of the shape + p0 = self._calcCanvasCoord(face.verts[0]) + s.movePenTo(p0[0], p0[1]) + + + for v in face.verts[1:]: + p = self._calcCanvasCoord(v) + s.drawLineTo(p[0], p[1]) + + # Closing the shape + s.drawLineTo(p0[0], p0[1]) + s.end() + sprite.add(s) + + + """ + # use the stroke property to alleviate the "adjacent edges" problem, + # we simulate polygon expansion using borders, + # see http://www.antigrain.com/svg/index.html for more info + stroke_width = 1.0 + + # EXPANSION TRICK is not that useful where there is transparency + if config.polygons['EXPANSION_TRICK'] and color[3] == 255: + # str_col = "#000000" # For debug + self.file.write(" stroke:%s;\n" % str_col) + self.file.write(" stroke-width:" + str(stroke_width) + ";\n") + self.file.write(" stroke-linecap:round;stroke-linejoin:round") + + """ + + def _printEdges(self, mesh, sprite, showHiddenEdges=False): + """Print the wireframe using mesh edges. + """ + + stroke_width = config.edges['WIDTH'] + stroke_col = config.edges['COLOR'] + + s = SWFShape() + + for e in mesh.edges: + + #Next, we set the line width and color for our shape. + s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2], + 255) + + if e.sel == 0: + if showHiddenEdges == False: + continue + else: + # SWF does not support dashed lines natively, so -for now- + # draw hidden lines thinner and half-trasparent + s.setLine(stroke_width/2, stroke_col[0], stroke_col[1], + stroke_col[2], 128) + + p1 = self._calcCanvasCoord(e.v1) + p2 = self._calcCanvasCoord(e.v2) + + # FIXME: this is just a qorkaround, remove that after the + # implementation of propoer Viewport clipping + if abs(p1[0]) < 3000 and abs(p2[0]) < 3000 and abs(p1[1]) < 3000 and abs(p1[2]) < 3000: + s.movePenTo(p1[0], p1[1]) + s.drawLineTo(p2[0], p2[1]) + + + s.end() + sprite.add(s) + + + +# --------------------------------------------------------------------- +# +## Rendering Classes +# +# --------------------------------------------------------------------- + +# A dictionary to collect different shading style methods +shadingStyles = dict() +shadingStyles['FLAT'] = None +shadingStyles['TOON'] = None + +# A dictionary to collect different edge style methods +edgeStyles = dict() +edgeStyles['MESH'] = MeshUtils.isMeshEdge +edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge + +# A dictionary to collect the supported output formats +outputWriters = dict() +outputWriters['SVG'] = SVGVectorWriter +if SWFSupported: + outputWriters['SWF'] = SWFVectorWriter + + +class Renderer: + """Render a scene viewed from the active camera. + + This class is responsible of the rendering process, transformation and + projection of the objects in the scene are invoked by the renderer. + + The rendering is done using the active camera for the current scene. + """ + + def __init__(self): + """Make the rendering process only for the current scene by default. + + We will work on a copy of the scene, to be sure that the current scene do + not get modified in any way. + """ + + # Render the current Scene, this should be a READ-ONLY property + self._SCENE = Scene.GetCurrent() + + # Use the aspect ratio of the scene rendering context + context = self._SCENE.getRenderingContext() + + aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY()) + self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio, + float(context.aspectRatioY()) + ) + + # Render from the currently active camera + self.cameraObj = self._SCENE.getCurrentCamera() + + # Get the list of lighting sources + obj_lst = self._SCENE.getChildren() + self.lights = [ o for o in obj_lst if o.getType() == 'Lamp'] + + # When there are no lights we use a default lighting source + # that have the same position of the camera + if len(self.lights) == 0: + l = Lamp.New('Lamp') + lobj = Object.New('Lamp') + lobj.loc = self.cameraObj.loc + lobj.link(l) + self.lights.append(lobj) + + + ## + # Public Methods + # + + def doRendering(self, outputWriter, animation=False): + """Render picture or animation and write it out. + + The parameters are: + - a Vector writer object that will be used to output the result. + - a flag to tell if we want to render an animation or only the + current frame. + """ + + context = self._SCENE.getRenderingContext() + origCurrentFrame = context.currentFrame() + + # Handle the animation case + if not animation: + startFrame = origCurrentFrame + endFrame = startFrame + outputWriter.open() + else: + startFrame = context.startFrame() + endFrame = context.endFrame() + outputWriter.open(startFrame, endFrame) + + # Do the rendering process frame by frame + print "Start Rendering of %d frames" % (endFrame-startFrame+1) + for f in xrange(startFrame, endFrame+1): + print "\n\nFrame: %d" % f + context.currentFrame(f) + + # Use some temporary workspace, a full copy of the scene + inputScene = self._SCENE.copy(2) + # And Set our camera accordingly + self.cameraObj = inputScene.getCurrentCamera() + + # Get a projector for this camera. + # NOTE: the projector wants object in world coordinates, + # so we should remember to apply modelview transformations + # _before_ we do projection transformations. + self.proj = Projector(self.cameraObj, self.canvasRatio) + + try: + renderedScene = self.doRenderScene(inputScene) + except : + print "There was an error! Aborting." + import traceback + print traceback.print_exc() + + self._SCENE.makeCurrent() + Scene.unlink(inputScene) + del inputScene + return + + outputWriter.printCanvas(renderedScene, + doPrintPolygons = config.polygons['SHOW'], + doPrintEdges = config.edges['SHOW'], + showHiddenEdges = config.edges['SHOW_HIDDEN']) + + # delete the rendered scene + self._SCENE.makeCurrent() + Scene.unlink(renderedScene) + del renderedScene + + outputWriter.close() + print "Done!" + context.currentFrame(origCurrentFrame) + + + def doRenderScene(self, workScene): + """Control the rendering process. + + Here we control the entire rendering process invoking the operation + needed to transform and project the 3D scene in two dimensions. + """ + + # global processing of the scene + + self._doSceneClipping(workScene) + + self._doConvertGeometricObjsToMesh(workScene) + + if config.output['JOIN_OBJECTS']: + self._joinMeshObjectsInScene(workScene) + + self._doSceneDepthSorting(workScene) + + # Per object activities + + Objects = workScene.getChildren() + print "Total Objects: %d" % len(Objects) + for i,obj in enumerate(Objects): + print "\n\n-------" + print "Rendering Object: %d" % i + + if obj.getType() != 'Mesh': + print "Only Mesh supported! - Skipping type:", obj.getType() + continue + + print "Rendering: ", obj.getName() + + mesh = obj.getData(mesh=1) + + self._doModelingTransformation(mesh, obj.matrix) + + self._doBackFaceCulling(mesh) + + + # When doing HSR with NEWELL we may want to flip all normals + # toward the viewer + if config.polygons['HSR'] == "NEWELL": + for f in mesh.faces: + f.sel = 1-f.sel + mesh.flipNormals() + for f in mesh.faces: + f.sel = 1 + + self._doLighting(mesh) + + # Do "projection" now so we perform further processing + # in Normalized View Coordinates + self._doProjection(mesh, self.proj) + + self._doViewFrustumClipping(mesh) + + self._doHiddenSurfaceRemoval(mesh) + + self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']]) + + # Update the object data, important! :) + mesh.update() + + return workScene + + + ## + # Private Methods + # + + # Utility methods + + def _getObjPosition(self, obj): + """Return the obj position in World coordinates. + """ + return obj.matrix.translationPart() + + def _cameraViewVector(self): + """Get the View Direction form the camera matrix. + """ + return Vector(self.cameraObj.matrix[2]).resize3D() + + + # Faces methods + + def _isFaceVisible(self, face): + """Determine if a face of an object is visible from the current camera. + + The view vector is calculated from the camera location and one of the + vertices of the face (expressed in World coordinates, after applying + modelview transformations). + + After those transformations we determine if a face is visible by + computing the angle between the face normal and the view vector, this + angle has to be between -90 and 90 degrees for the face to be visible. + This corresponds somehow to the dot product between the two, if it + results > 0 then the face is visible. + + There is no need to normalize those vectors since we are only interested in + the sign of the cross product and not in the product value. + + NOTE: here we assume the face vertices are in WorldCoordinates, so + please transform the object _before_ doing the test. + """ + + normal = Vector(face.no) + camPos = self._getObjPosition(self.cameraObj) + view_vect = None + + # View Vector in orthographics projections is the view Direction of + # the camera + if self.cameraObj.data.getType() == 1: + view_vect = self._cameraViewVector() + + # View vector in perspective projections can be considered as + # the difference between the camera position and one point of + # the face, we choose the farthest point from the camera. + if self.cameraObj.data.getType() == 0: + vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] ) + view_vect = vv[1] + + + # if d > 0 the face is visible from the camera + d = view_vect * normal + + if d > 0: + return True + else: + return False + + + # Scene methods + + def _doSceneClipping(self, scene): + """Clip whole objects against the View Frustum. + + For now clip away only objects according to their center position. + """ + + cpos = self._getObjPosition(self.cameraObj) + view_vect = self._cameraViewVector() + + near = self.cameraObj.data.clipStart + far = self.cameraObj.data.clipEnd + + aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1]) + fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32)) + fovy = fovy * 360.0/pi + + Objects = scene.getChildren() + for o in Objects: + if o.getType() != 'Mesh': continue; + + obj_vect = Vector(cpos) - self._getObjPosition(o) + + d = obj_vect*view_vect + theta = AngleBetweenVecs(obj_vect, view_vect) + + # if the object is outside the view frustum, clip it away + if (d < near) or (d > far) or (theta > fovy): + scene.unlink(o) + + def _doConvertGeometricObjsToMesh(self, scene): + """Convert all "geometric" objects to mesh ones. + """ + geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text'] + #geometricObjTypes = ['Mesh', 'Surf', 'Curve'] + + Objects = scene.getChildren() + objList = [ o for o in Objects if o.getType() in geometricObjTypes ] + for obj in objList: + old_obj = obj + obj = self._convertToRawMeshObj(obj) + scene.link(obj) + scene.unlink(old_obj) + + + # XXX Workaround for Text and Curve which have some normals + # inverted when they are converted to Mesh, REMOVE that when + # blender will fix that!! + if old_obj.getType() in ['Curve', 'Text']: + me = obj.getData(mesh=1) + for f in me.faces: f.sel = 1; + for v in me.verts: v.sel = 1; + me.remDoubles(0) + me.triangleToQuad() + me.recalcNormals() + me.update() + + + def _doSceneDepthSorting(self, scene): + """Sort objects in the scene. + + The object sorting is done accordingly to the object centers. + """ + + c = self._getObjPosition(self.cameraObj) + + by_center_pos = (lambda o1, o2: + (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and + cmp((self._getObjPosition(o1) - Vector(c)).length, + (self._getObjPosition(o2) - Vector(c)).length) + ) + + # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb, + # then ob1 goes farther than obj2, useful when obj2 has holes + by_bbox = None + + Objects = scene.getChildren() + Objects.sort(by_center_pos) + + # update the scene + for o in Objects: + scene.unlink(o) + scene.link(o) + + def _joinMeshObjectsInScene(self, scene): + """Merge all the Mesh Objects in a scene into a single Mesh Object. + """ + + oList = [o for o in scene.getChildren() if o.getType()=='Mesh'] + + # FIXME: Object.join() do not work if the list contains 1 object + if len(oList) == 1: + return + + mesh = Mesh.New('BigOne') + bigObj = Object.New('Mesh', 'BigOne') + bigObj.link(mesh) + + scene.link(bigObj) + + try: + bigObj.join(oList) + except RuntimeError: + print "\nWarning! - Can't Join Objects\n" + scene.unlink(bigObj) + return + except TypeError: + print "Objects Type error?" + + for o in oList: + scene.unlink(o) + + scene.update() + + + # Per object/mesh methods + + def _convertToRawMeshObj(self, object): + """Convert geometry based object to a mesh object. + """ + me = Mesh.New('RawMesh_'+object.name) + me.getFromObject(object.name) + + newObject = Object.New('Mesh', 'RawMesh_'+object.name) + newObject.link(me) + + # If the object has no materials set a default material + if not me.materials: + me.materials = [Material.New()] + #for f in me.faces: f.mat = 0 + + newObject.setMatrix(object.getMatrix()) + + return newObject + + def _doModelingTransformation(self, mesh, matrix): + """Transform object coordinates to world coordinates. + + This step is done simply applying to the object its tranformation + matrix and recalculating its normals. + """ + # XXX FIXME: blender do not transform normals in the right way when + # there are negative scale values + if matrix[0][0] < 0 or matrix[1][1] < 0 or matrix[2][2] < 0: + print "WARNING: Negative scales, expect incorrect results!" + + mesh.transform(matrix, True) + + def _doBackFaceCulling(self, mesh): + """Simple Backface Culling routine. + + At this level we simply do a visibility test face by face and then + select the vertices belonging to visible faces. + """ + + # Select all vertices, so edges can be displayed even if there are no + # faces + for v in mesh.verts: + v.sel = 1 + + Mesh.Mode(Mesh.SelectModes['FACE']) + # Loop on faces + for f in mesh.faces: + f.sel = 0 + if self._isFaceVisible(f): + f.sel = 1 + + def _doLighting(self, mesh): + """Apply an Illumination and shading model to the object. + + The model used is the Phong one, it may be inefficient, + but I'm just learning about rendering and starting from Phong seemed + the most natural way. + """ + + # If the mesh has vertex colors already, use them, + # otherwise turn them on and do some calculations + if mesh.vertexColors: + return + mesh.vertexColors = 1 + + materials = mesh.materials + + camPos = self._getObjPosition(self.cameraObj) + + # We do per-face color calculation (FLAT Shading), we can easily turn + # to a per-vertex calculation if we want to implement some shading + # technique. For an example see: + # http://www.miralab.unige.ch/papers/368.pdf + for f in mesh.faces: + if not f.sel: + continue + + mat = None + if materials: + mat = materials[f.mat] + + # A new default material + if mat == None: + mat = Material.New('defMat') + + # Check if it is a shadeless material + elif mat.getMode() & Material.Modes['SHADELESS']: + I = mat.getRGBCol() + # Convert to a value between 0 and 255 + tmp_col = [ int(c * 255.0) for c in I] + + for c in f.col: + c.r = tmp_col[0] + c.g = tmp_col[1] + c.b = tmp_col[2] + #c.a = tmp_col[3] + + continue + + + # do vertex color calculation + + TotDiffSpec = Vector([0.0, 0.0, 0.0]) + + for l in self.lights: + light_obj = l + light_pos = self._getObjPosition(l) + light = light_obj.getData() + + L = Vector(light_pos).normalize() + + V = (Vector(camPos) - Vector(f.cent)).normalize() + + N = Vector(f.no).normalize() + + if config.polygons['SHADING'] == 'TOON': + NL = ShadingUtils.toonShading(N*L) + else: + NL = (N*L) + + # Should we use NL instead of (N*L) here? + R = 2 * (N*L) * N - L + + Ip = light.getEnergy() + + # Diffuse co-efficient + kd = mat.getRef() * Vector(mat.getRGBCol()) + for i in [0, 1, 2]: + kd[i] *= light.col[i] + + Idiff = Ip * kd * max(0, NL) + + + # Specular component + ks = mat.getSpec() * Vector(mat.getSpecCol()) + ns = mat.getHardness() + Ispec = Ip * ks * pow(max(0, (V*R)), ns) + + TotDiffSpec += (Idiff+Ispec) + + + # Ambient component + Iamb = Vector(Blender.World.Get()[0].getAmb()) + ka = mat.getAmb() + + # Emissive component (convert to a triplet) + ki = Vector([mat.getEmit()]*3) + + #I = ki + Iamb + (Idiff + Ispec) + I = ki + (ka * Iamb) + TotDiffSpec + + + # Set Alpha component + I = list(I) + I.append(mat.getAlpha()) + + # Clamp I values between 0 and 1 + I = [ min(c, 1) for c in I] + I = [ max(0, c) for c in I] + + # Convert to a value between 0 and 255 + tmp_col = [ int(c * 255.0) for c in I] + + for c in f.col: + c.r = tmp_col[0] + c.g = tmp_col[1] + c.b = tmp_col[2] + c.a = tmp_col[3] + + def _doProjection(self, mesh, projector): + """Apply Viewing and Projection tranformations. + """ + + for v in mesh.verts: + p = projector.doProjection(v.co[:]) + v.co[0] = p[0] + v.co[1] = p[1] + v.co[2] = p[2] + + #mesh.recalcNormals() + #mesh.update() + + # We could reeset Camera matrix, since now + # we are in Normalized Viewing Coordinates, + # but doung that would affect World Coordinate + # processing for other objects + + #self.cameraObj.data.type = 1 + #self.cameraObj.data.scale = 2.0 + #m = Matrix().identity() + #self.cameraObj.setMatrix(m) + + def _doViewFrustumClipping(self, mesh): + """Clip faces against the View Frustum. + """ + + # HSR routines + def __simpleDepthSort(self, mesh): + """Sort faces by the furthest vertex. + + This simple mesthod is known also as the painter algorithm, and it + solves HSR correctly only for convex meshes. + """ + + #global progress + + # The sorting requires circa n*log(n) steps + n = len(mesh.faces) + progress.setActivity("HSR: Painter", n*log(n)) + + by_furthest_z = (lambda f1, f2: progress.update() and + cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS) + ) + + # FIXME: using NMesh to sort faces. We should avoid that! + nmesh = NMesh.GetRaw(mesh.name) + + # remember that _higher_ z values mean further points + nmesh.faces.sort(by_furthest_z) + nmesh.faces.reverse() + + nmesh.update() + + + def __newellDepthSort(self, mesh): + """Newell's depth sorting. + + """ + + #global progress + + # Find non planar quads and convert them to triangle + #for f in mesh.faces: + # f.sel = 0 + # if is_nonplanar_quad(f.v): + # print "NON QUAD??" + # f.sel = 1 + + + # Now reselect all faces + for f in mesh.faces: + f.sel = 1 + mesh.quadToTriangle() + + # FIXME: using NMesh to sort faces. We should avoid that! + nmesh = NMesh.GetRaw(mesh.name) + + # remember that _higher_ z values mean further points + nmesh.faces.sort(by_furthest_z) + nmesh.faces.reverse() + + # Begin depth sort tests + + # use the smooth flag to set marked faces + for f in nmesh.faces: + f.smooth = 0 + + facelist = nmesh.faces[:] + maplist = [] + + + # The steps are _at_least_ equal to len(facelist), we do not count the + # feces coming out from splitting!! + progress.setActivity("HSR: Newell", len(facelist)) + #progress.setQuiet(True) + + + while len(facelist): + debug("\n----------------------\n") + debug("len(facelits): %d\n" % len(facelist)) + P = facelist[0] + + pSign = sign(P.normal[2]) + + # We can discard faces parallel to the view vector + #if P.normal[2] == 0: + # facelist.remove(P) + # continue + + split_done = 0 + face_marked = 0 + + for Q in facelist[1:]: + + debug("P.smooth: " + str(P.smooth) + "\n") + debug("Q.smooth: " + str(Q.smooth) + "\n") + debug("\n") + + qSign = sign(Q.normal[2]) + # TODO: check also if Q is parallel?? + + # Test 0: We need to test only those Qs whose furthest vertex + # is closer to the observer than the closest vertex of P. + + zP = [v.co[2] for v in P.v] + zQ = [v.co[2] for v in Q.v] + notZOverlap = min(zP) > max(zQ) + EPS + + if notZOverlap: + debug("\nTest 0\n") + debug("NOT Z OVERLAP!\n") + if Q.smooth == 0: + # If Q is not marked then we can safely print P + break + else: + debug("met a marked face\n") + continue + + + # Test 1: X extent overlapping + xP = [v.co[0] for v in P.v] + xQ = [v.co[0] for v in Q.v] + #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP)) + notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS) + + if notXOverlap: + debug("\nTest 1\n") + debug("NOT X OVERLAP!\n") + continue + + + # Test 2: Y extent Overlapping + yP = [v.co[1] for v in P.v] + yQ = [v.co[1] for v in Q.v] + #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP)) + notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS) + + if notYOverlap: + debug("\nTest 2\n") + debug("NOT Y OVERLAP!\n") + continue + + + # Test 3: P vertices are all behind the plane of Q + n = 0 + for Pi in P: + d = qSign * HSR.Distance(Vector(Pi), Q) + if d <= EPS: + n += 1 + pVerticesBehindPlaneQ = (n == len(P)) + + if pVerticesBehindPlaneQ: + debug("\nTest 3\n") + debug("P BEHIND Q!\n") + continue + + + # Test 4: Q vertices in front of the plane of P + n = 0 + for Qi in Q: + d = pSign * HSR.Distance(Vector(Qi), P) + if d >= -EPS: + n += 1 + qVerticesInFrontPlaneP = (n == len(Q)) + + if qVerticesInFrontPlaneP: + debug("\nTest 4\n") + debug("Q IN FRONT OF P!\n") + continue + + + # Test 5: Check if projections of polygons effectively overlap, + # in previous tests we checked only bounding boxes. + + #if not projectionsOverlap(P, Q): + if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)): + debug("\nTest 5\n") + debug("Projections do not overlap!\n") + continue + + # We still can't say if P obscures Q. + + # But if Q is marked we do a face-split trying to resolve a + # difficulty (maybe a visibility cycle). + if Q.smooth == 1: + # Split P or Q + debug("Possibly a cycle detected!\n") + debug("Split here!!\n") + + facelist = HSR.facesplit(P, Q, facelist, nmesh) + split_done = 1 + break + + # The question now is: Does Q obscure P? + + + # Test 3bis: Q vertices are all behind the plane of P + n = 0 + for Qi in Q: + d = pSign * HSR.Distance(Vector(Qi), P) + if d <= EPS: + n += 1 + qVerticesBehindPlaneP = (n == len(Q)) + + if qVerticesBehindPlaneP: + debug("\nTest 3bis\n") + debug("Q BEHIND P!\n") + + + # Test 4bis: P vertices in front of the plane of Q + n = 0 + for Pi in P: + d = qSign * HSR.Distance(Vector(Pi), Q) + if d >= -EPS: + n += 1 + pVerticesInFrontPlaneQ = (n == len(P)) + + if pVerticesInFrontPlaneQ: + debug("\nTest 4bis\n") + debug("P IN FRONT OF Q!\n") + + + # We don't even know if Q does obscure P, so they should + # intersect each other, split one of them in two parts. + if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ: + debug("\nSimple Intersection?\n") + debug("Test 3bis or 4bis failed\n") + debug("Split here!!2\n") + + facelist = HSR.facesplit(P, Q, facelist, nmesh) + split_done = 1 + break + + facelist.remove(Q) + facelist.insert(0, Q) + Q.smooth = 1 + face_marked = 1 + debug("Q marked!\n") + break + + # Write P! + if split_done == 0 and face_marked == 0: + facelist.remove(P) + maplist.append(P) + dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg") + + progress.update() + + if len(facelist) == 870: + dumpfaces([P, Q], "loopdebug.svg") + + + #if facelist == None: + # maplist = [P, Q] + # print [v.co for v in P] + # print [v.co for v in Q] + # break + + # end of while len(facelist) + + + nmesh.faces = maplist + #for f in nmesh.faces: + # f.sel = 1 + + nmesh.update() + + + def _doHiddenSurfaceRemoval(self, mesh): + """Do HSR for the given mesh. + """ + if len(mesh.faces) == 0: + return + + if config.polygons['HSR'] == 'PAINTER': + print "\nUsing the Painter algorithm for HSR." + self.__simpleDepthSort(mesh) + + elif config.polygons['HSR'] == 'NEWELL': + print "\nUsing the Newell's algorithm for HSR." + self.__newellDepthSort(mesh) + + + def _doEdgesStyle(self, mesh, edgestyleSelect): + """Process Mesh Edges accroding to a given selection style. + + Examples of algorithms: + + Contours: + given an edge if its adjacent faces have the same normal (that is + they are complanar), than deselect it. + + Silhouettes: + given an edge if one its adjacent faces is frontfacing and the + other is backfacing, than select it, else deselect. + """ + + Mesh.Mode(Mesh.SelectModes['EDGE']) + + edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh) + + for i,edge_faces in enumerate(edge_cache): + mesh.edges[i].sel = 0 + if edgestyleSelect(edge_faces): + mesh.edges[i].sel = 1 + + """ + for e in mesh.edges: + + e.sel = 0 + if edgestyleSelect(e, mesh): + e.sel = 1 + """ + # + + +# --------------------------------------------------------------------- +# +## GUI Class and Main Program +# +# --------------------------------------------------------------------- + + +from Blender import BGL, Draw +from Blender.BGL import * + +class GUI: + + def _init(): + + # Output Format menu + output_format = config.output['FORMAT'] + default_value = outputWriters.keys().index(output_format)+1 + GUI.outFormatMenu = Draw.Create(default_value) + GUI.evtOutFormatMenu = 0 + + # Animation toggle button + GUI.animToggle = Draw.Create(config.output['ANIMATION']) + GUI.evtAnimToggle = 1 + + # Join Objects toggle button + GUI.joinObjsToggle = Draw.Create(config.output['JOIN_OBJECTS']) + GUI.evtJoinObjsToggle = 2 + + # Render filled polygons + GUI.polygonsToggle = Draw.Create(config.polygons['SHOW']) + + # Shading Style menu + shading_style = config.polygons['SHADING'] + default_value = shadingStyles.keys().index(shading_style)+1 + GUI.shadingStyleMenu = Draw.Create(default_value) + GUI.evtShadingStyleMenu = 21 + + GUI.evtPolygonsToggle = 3 + # We hide the config.polygons['EXPANSION_TRICK'], for now + + # Render polygon edges + GUI.showEdgesToggle = Draw.Create(config.edges['SHOW']) + GUI.evtShowEdgesToggle = 4 + + # Render hidden edges + GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN']) + GUI.evtShowHiddenEdgesToggle = 5 + + # Edge Style menu + edge_style = config.edges['STYLE'] + default_value = edgeStyles.keys().index(edge_style)+1 + GUI.edgeStyleMenu = Draw.Create(default_value) + GUI.evtEdgeStyleMenu = 6 + + # Edge Width slider + GUI.edgeWidthSlider = Draw.Create(config.edges['WIDTH']) + GUI.evtEdgeWidthSlider = 7 + + # Edge Color Picker + c = config.edges['COLOR'] + GUI.edgeColorPicker = Draw.Create(c[0]/255.0, c[1]/255.0, c[2]/255.0) + GUI.evtEdgeColorPicker = 71 + + # Render Button + GUI.evtRenderButton = 8 + + # Exit Button + GUI.evtExitButton = 9 + + def draw(): + + # initialize static members + GUI._init() + + glClear(GL_COLOR_BUFFER_BIT) + glColor3f(0.0, 0.0, 0.0) + glRasterPos2i(10, 350) + Draw.Text("VRM: Vector Rendering Method script. Version %s." % + __version__) + glRasterPos2i(10, 335) + Draw.Text("Press Q or ESC to quit.") + + # Build the output format menu + glRasterPos2i(10, 310) + Draw.Text("Select the output Format:") + outMenuStruct = "Output Format %t" + for t in outputWriters.keys(): + outMenuStruct = outMenuStruct + "|%s" % t + GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu, + 10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format") + + # Animation toggle + GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle, + 10, 260, 160, 18, GUI.animToggle.val, + "Toggle rendering of animations") + + # Join Objects toggle + GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle, + 10, 235, 160, 18, GUI.joinObjsToggle.val, + "Join objects in the rendered file") + + # Render Button + Draw.Button("Render", GUI.evtRenderButton, 10, 210-25, 75, 25+18, + "Start Rendering") + Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!") + + # Rendering Styles + glRasterPos2i(200, 310) + Draw.Text("Rendering Style:") + + # Render Polygons + GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle, + 200, 285, 160, 18, GUI.polygonsToggle.val, + "Render filled polygons") + + if GUI.polygonsToggle.val == 1: + + # Polygon Shading Style + shadingStyleMenuStruct = "Shading Style %t" + for t in shadingStyles.keys(): + shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower() + GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu, + 200, 260, 160, 18, GUI.shadingStyleMenu.val, + "Choose the shading style") + + + # Render Edges + GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle, + 200, 235, 160, 18, GUI.showEdgesToggle.val, + "Render polygon edges") + + if GUI.showEdgesToggle.val == 1: + + # Edge Style + edgeStyleMenuStruct = "Edge Style %t" + for t in edgeStyles.keys(): + edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower() + GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu, + 200, 210, 160, 18, GUI.edgeStyleMenu.val, + "Choose the edge style") + + # Edge size + GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider, + 200, 185, 140, 18, GUI.edgeWidthSlider.val, + 0.0, 10.0, 0, "Change Edge Width") + + # Edge Color + GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker, + 342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color") + + # Show Hidden Edges + GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges", + GUI.evtShowHiddenEdgesToggle, + 200, 160, 160, 18, GUI.showHiddenEdgesToggle.val, + "Render hidden edges as dashed lines") + + glRasterPos2i(10, 160) + Draw.Text("%s (c) 2006" % __author__) + + def event(evt, val): + + if evt == Draw.ESCKEY or evt == Draw.QKEY: + Draw.Exit() + else: + return + + Draw.Redraw(1) + + def button_event(evt): + + if evt == GUI.evtExitButton: + Draw.Exit() + + elif evt == GUI.evtOutFormatMenu: + i = GUI.outFormatMenu.val - 1 + config.output['FORMAT']= outputWriters.keys()[i] + # Set the new output file + global outputfile + outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower() + + elif evt == GUI.evtAnimToggle: + config.output['ANIMATION'] = bool(GUI.animToggle.val) + + elif evt == GUI.evtJoinObjsToggle: + config.output['JOIN_OBJECTS'] = bool(GUI.joinObjsToggle.val) + + elif evt == GUI.evtPolygonsToggle: + config.polygons['SHOW'] = bool(GUI.polygonsToggle.val) + + elif evt == GUI.evtShadingStyleMenu: + i = GUI.shadingStyleMenu.val - 1 + config.polygons['SHADING'] = shadingStyles.keys()[i] + + elif evt == GUI.evtShowEdgesToggle: + config.edges['SHOW'] = bool(GUI.showEdgesToggle.val) + + elif evt == GUI.evtShowHiddenEdgesToggle: + config.edges['SHOW_HIDDEN'] = bool(GUI.showHiddenEdgesToggle.val) + + elif evt == GUI.evtEdgeStyleMenu: + i = GUI.edgeStyleMenu.val - 1 + config.edges['STYLE'] = edgeStyles.keys()[i] + + elif evt == GUI.evtEdgeWidthSlider: + config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val) + + elif evt == GUI.evtEdgeColorPicker: + config.edges['COLOR'] = [int(c*255.0) for c in GUI.edgeColorPicker.val] + + elif evt == GUI.evtRenderButton: + label = "Save %s" % config.output['FORMAT'] + # Show the File Selector + global outputfile + Blender.Window.FileSelector(vectorize, label, outputfile) + + else: + print "Event: %d not handled!" % evt + + if evt: + Draw.Redraw(1) + #GUI.conf_debug() + + def conf_debug(): + from pprint import pprint + print "\nConfig" + pprint(config.output) + pprint(config.polygons) + pprint(config.edges) + + _init = staticmethod(_init) + draw = staticmethod(draw) + event = staticmethod(event) + button_event = staticmethod(button_event) + conf_debug = staticmethod(conf_debug) + +# A wrapper function for the vectorizing process +def vectorize(filename): + """The vectorizing process is as follows: + + - Instanciate the writer and the renderer + - Render! + """ + + if filename == "": + print "\nERROR: invalid file name!" + return + + from Blender import Window + editmode = Window.EditMode() + if editmode: Window.EditMode(0) + + actualWriter = outputWriters[config.output['FORMAT']] + writer = actualWriter(filename) + + renderer = Renderer() + renderer.doRendering(writer, config.output['ANIMATION']) + + if editmode: Window.EditMode(1) + + + +# Here the main +if __name__ == "__main__": + + global progress + + outputfile = "" + basename = Blender.sys.basename(Blender.Get('filename')) + if basename != "": + outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower() + + if Blender.mode == 'background': + progress = ConsoleProgressIndicator() + vectorize(outputfile) + else: + progress = GraphicalProgressIndicator() + Draw.Register(GUI.draw, GUI.event, GUI.button_event)