X-Git-Url: https://git.ao2.it/vrm.git/blobdiff_plain/cb334b8afdb1d2133db56e1c5f22e0d5b999f42a..ae133d0af9d635758bb88c6fc6383d42b207d02f:/vrm.py?ds=inline
diff --git a/vrm.py b/vrm.py
index 726c83d..84e4588 100755
--- a/vrm.py
+++ b/vrm.py
@@ -1,246 +1,3106 @@
#!BPY
-
"""
Name: 'VRM'
-Blender: 237
-Group: 'Export'
-Tooltip: 'Vector Rendering Method Export Script'
+Blender: 242
+Group: 'Render'
+Tooltip: 'Vector Rendering Method script'
+"""
+
+__author__ = "Antonio Ospite"
+__url__ = ["http://projects.blender.org/projects/vrm"]
+__version__ = "0.3.beta"
+
+__bpydoc__ = """\
+ Render the scene and save the result in vector format.
"""
+# ---------------------------------------------------------------------
+# Copyright (c) 2006 Antonio Ospite
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+#
+# ---------------------------------------------------------------------
+#
+# Additional credits:
+# Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
+# Thanks to Nikola Radovanovic, the author of the original VRM script,
+# the code you read here has been rewritten _almost_ entirely
+# from scratch but Nikola gave me the idea, so I thank him publicly.
+#
+# ---------------------------------------------------------------------
+#
+# Things TODO for a next release:
+# - FIX the issue with negative scales in object tranformations!
+# - Use a better depth sorting algorithm
+# - Review how selections are made (this script uses selection states of
+# primitives to represent visibility infos)
+# - Use a data structure other than Mesh to represent the 2D image?
+# Think to a way to merge (adjacent) polygons that have the same color.
+# Or a way to use paths for silhouettes and contours.
+# - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
+# not support SMIL for animations)
+# - Switch to the Mesh structure, should be considerably faster
+# (partially done, but with Mesh we cannot sort faces, yet)
+# - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
+# - Implement Shading Styles? (partially done, to make more flexible).
+# - Add Vector Writers other than SVG.
+# - set the background color!
+# - Check memory use!!
+#
+# ---------------------------------------------------------------------
+#
+# Changelog:
+#
+# vrm-0.3.py - ...
+# * First release after code restucturing.
+# Now the script offers a useful set of functionalities
+# and it can render animations, too.
+# * Optimization in Renderer.doEdgeStyle(), build a topology cache
+# so to speed up the lookup of adjacent faces of an edge.
+# Thanks ideasman42.
+# * The SVG output is now SVG 1.0 valid.
+# Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
+# * Progress indicator during HSR.
+# * Initial SWF output support (using ming)
+# * Fixed a bug in the animation code, now the projection matrix is
+# recalculated at each frame!
+# * PDF output (using reportlab)
+# * Fixed another problem in the animation code the current frame was off
+# by one in the case of camera movement.
+# * Use fps as specified in blender when VectorWriter handles animation
+# * Remove the real file opening in the abstract VectorWriter
+# * View frustum clipping
+# * Scene clipping done using bounding box instead of object center
+# * Fix camera type selection for blender>2.43 (Thanks to Thomas Lachmann)
+# * Compatibility with python 2.3
+#
+# ---------------------------------------------------------------------
+
import Blender
-from Blender import Scene, Object, Lamp, Camera
+from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
+from Blender.Mathutils import *
from math import *
-from Blender.Window import *
-from Blender.Scene import Render
+import sys, time
+def uniq(alist):
+ tmpdict = dict()
+ return [tmpdict.setdefault(e,e) for e in alist if e not in tmpdict]
+ # in python > 2.4 we ca use the following
+ #return [ u for u in alist if u not in locals()['_[1]'] ]
-# distance from camera Z'
-def Distance(PX,PY,PZ):
-
- dist = sqrt(PX*PX+PY*PY+PZ*PZ)
- return dist
-def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
+# Constants
+EPS = 10e-5
+
+# We use a global progress Indicator Object
+progress = None
+
+
+# Some global settings
+
+class config:
+ polygons = dict()
+ polygons['SHOW'] = True
+ polygons['SHADING'] = 'FLAT' # FLAT or TOON
+ polygons['HSR'] = 'NEWELL' # PAINTER or NEWELL
+ # Hidden to the user for now
+ polygons['EXPANSION_TRICK'] = True
+
+ polygons['TOON_LEVELS'] = 2
+
+ edges = dict()
+ edges['SHOW'] = False
+ edges['SHOW_HIDDEN'] = False
+ edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
+ edges['WIDTH'] = 2
+ edges['COLOR'] = [0, 0, 0]
+
+ output = dict()
+ output['FORMAT'] = 'SVG'
+ output['ANIMATION'] = False
+ output['JOIN_OBJECTS'] = True
+
+
+# Utility functions
+print_debug = False
+
+def dumpfaces(flist, filename):
+ """Dump a single face to a file.
+ """
+ if not print_debug:
+ return
+
+ class tmpmesh:
+ pass
+
+ m = tmpmesh()
+ m.faces = flist
+
+ writerobj = SVGVectorWriter(filename)
+
+ writerobj.open()
+ writerobj._printPolygons(m)
+
+ writerobj.close()
+
+def debug(msg):
+ if print_debug:
+ sys.stderr.write(msg)
+
+def EQ(v1, v2):
+ return (abs(v1[0]-v2[0]) < EPS and
+ abs(v1[1]-v2[1]) < EPS )
+by_furthest_z = (lambda f1, f2:
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ )
+
+def sign(x):
+
+ if x < -EPS:
+ #if x < 0:
+ return -1
+ elif x > EPS:
+ #elif x > 0:
+ return 1
+ else:
+ return 0
+
+
+# ---------------------------------------------------------------------
+#
+## HSR Utility class
+#
+# ---------------------------------------------------------------------
+
+EPS = 10e-5
+INF = 10e5
+
+class HSR:
+ """A utility class for HSR processing.
+ """
+
+ def is_nonplanar_quad(face):
+ """Determine if a quad is non-planar.
+
+ From: http://mathworld.wolfram.com/Coplanar.html
+
+ Geometric objects lying in a common plane are said to be coplanar.
+ Three noncollinear points determine a plane and so are trivially coplanar.
+ Four points are coplanar iff the volume of the tetrahedron defined by them is
+ 0,
+
+ | x_1 y_1 z_1 1 |
+ | x_2 y_2 z_2 1 |
+ | x_3 y_3 z_3 1 |
+ | x_4 y_4 z_4 1 | == 0
+
+ Coplanarity is equivalent to the statement that the pair of lines
+ determined by the four points are not skew, and can be equivalently stated
+ in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
+
+ An arbitrary number of n points x_1, ..., x_n can be tested for
+ coplanarity by finding the point-plane distances of the points
+ x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
+ and checking if they are all zero.
+ If so, the points are all coplanar.
+
+ We here check only for 4-point complanarity.
+ """
+ n = len(face)
+
+ # assert(n>4)
+ if n < 3 or n > 4:
+ print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
+ raise AssertionError
+
+ elif n == 3:
+ # three points must be complanar
+ return False
+ else: # n == 4
+ x1 = Vector(face[0].co)
+ x2 = Vector(face[1].co)
+ x3 = Vector(face[2].co)
+ x4 = Vector(face[3].co)
+
+ v = (x3-x1) * CrossVecs((x2-x1), (x4-x3))
+ if v != 0:
+ return True
+
+ return False
+
+ is_nonplanar_quad = staticmethod(is_nonplanar_quad)
+
+ def pointInPolygon(poly, v):
+ return False
+
+ pointInPolygon = staticmethod(pointInPolygon)
+
+ def edgeIntersection(s1, s2, do_perturbate=False):
+
+ (x1, y1) = s1[0].co[0], s1[0].co[1]
+ (x2, y2) = s1[1].co[0], s1[1].co[1]
+
+ (x3, y3) = s2[0].co[0], s2[0].co[1]
+ (x4, y4) = s2[1].co[0], s2[1].co[1]
+
+ #z1 = s1[0].co[2]
+ #z2 = s1[1].co[2]
+ #z3 = s2[0].co[2]
+ #z4 = s2[1].co[2]
+
+
+ # calculate delta values (vector components)
+ dx1 = x2 - x1;
+ dx2 = x4 - x3;
+ dy1 = y2 - y1;
+ dy2 = y4 - y3;
+
+ #dz1 = z2 - z1;
+ #dz2 = z4 - z3;
+
+ C = dy2 * dx1 - dx2 * dy1 # /* cross product */
+ if C == 0: #/* parallel */
+ return None
+
+ dx3 = x1 - x3 # /* combined origin offset vector */
+ dy3 = y1 - y3
+
+ a1 = (dy3 * dx2 - dx3 * dy2) / C;
+ a2 = (dy3 * dx1 - dx3 * dy1) / C;
+
+ # check for degeneracies
+ #print_debug("\n")
+ #print_debug(str(a1)+"\n")
+ #print_debug(str(a2)+"\n\n")
+
+ if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
+ # Intersection on boundaries, we consider the point external?
+ return None
+
+ elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): # /* lines cross */
+ x = x1 + a1*dx1
+ y = y1 + a1*dy1
+
+ #z = z1 + a1*dz1
+ z = 0
+ return (NMesh.Vert(x, y, z), a1, a2)
+
+ else:
+ # lines have intersections but not those segments
+ return None
+
+ edgeIntersection = staticmethod(edgeIntersection)
+
+ def isVertInside(self, v):
+ winding_number = 0
+ coincidence = False
+
+ # Create point at infinity
+ point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
+
+ for i in range(len(self.v)):
+ s1 = (point_at_infinity, v)
+ s2 = (self.v[i-1], self.v[i])
+
+ if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
+ coincidence = True
+
+ if HSR.edgeIntersection(s1, s2, do_perturbate=False):
+ winding_number += 1
+
+ # Check even or odd
+ if winding_number % 2 == 0 :
+ return False
+ else:
+ if coincidence:
+ return False
+ return True
+
+ isVertInside = staticmethod(isVertInside)
+
+
+ def det(a, b, c):
+ return ((b[0] - a[0]) * (c[1] - a[1]) -
+ (b[1] - a[1]) * (c[0] - a[0]) )
- NewPoint = []
- # Rotate X
- NewY = (PY * cos(AngleX))-(PZ * sin(AngleX))
- NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX))
- # Rotate Y
- PZ = NewZ
- PY = NewY
- NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY))
- NewX = (PX * cos(AngleY))+(PZ * sin(AngleY))
- PX = NewX
- PZ = NewZ
- # Rotate Z
- NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ))
- NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ))
- NewPoint.append(NewX)
- NewPoint.append(NewY)
- NewPoint.append(NewZ)
- return NewPoint
+ det = staticmethod(det)
+
+ def pointInPolygon(q, P):
+ is_in = False
+
+ point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
+
+ det = HSR.det
+
+ for i in range(len(P.v)):
+ p0 = P.v[i-1]
+ p1 = P.v[i]
+ if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0):
+ if det(p0.co, p1.co, q.co) == 0 :
+ #print "On Boundary"
+ return False
+ elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0):
+ is_in = not is_in
+
+ return is_in
+
+ pointInPolygon = staticmethod(pointInPolygon)
+
+ def projectionsOverlap(f1, f2):
+ """ If you have nonconvex, but still simple polygons, an acceptable method
+ is to iterate over all vertices and perform the Point-in-polygon test[1].
+ The advantage of this method is that you can compute the exact
+ intersection point and collision normal that you will need to simulate
+ collision. When you have the point that lies inside the other polygon, you
+ just iterate over all edges of the second polygon again and look for edge
+ intersections. Note that this method detects collsion when it already
+ happens. This algorithm is fast enough to perform it hundreds of times per
+ sec. """
+
+ for i in range(len(f1.v)):
+
+
+ # If a point of f1 in inside f2, there is an overlap!
+ v1 = f1.v[i]
+ #if HSR.isVertInside(f2, v1):
+ if HSR.pointInPolygon(v1, f2):
+ return True
+
+ # If not the polygon can be ovelap as well, so we check for
+ # intersection between an edge of f1 and all the edges of f2
+
+ v0 = f1.v[i-1]
+
+ for j in range(len(f2.v)):
+ v2 = f2.v[j-1]
+ v3 = f2.v[j]
+
+ e1 = v0, v1
+ e2 = v2, v3
+
+ intrs = HSR.edgeIntersection(e1, e2)
+ if intrs:
+ #print_debug(str(v0.co) + " " + str(v1.co) + " " +
+ # str(v2.co) + " " + str(v3.co) )
+ #print_debug("\nIntersection\n")
+
+ return True
+
+ return False
+
+ projectionsOverlap = staticmethod(projectionsOverlap)
+
+ def midpoint(p1, p2):
+ """Return the midpoint of two vertices.
+ """
+ m = MidpointVecs(Vector(p1), Vector(p2))
+ mv = NMesh.Vert(m[0], m[1], m[2])
+
+ return mv
+
+ midpoint = staticmethod(midpoint)
+
+ def facesplit(P, Q, facelist, nmesh):
+ """Split P or Q according to the strategy illustrated in the Newell's
+ paper.
+ """
+
+ by_furthest_z = (lambda f1, f2:
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ )
+
+ # Choose if split P on Q plane or vice-versa
+
+ n = 0
+ for Pi in P:
+ d = HSR.Distance(Vector(Pi), Q)
+ if d <= EPS:
+ n += 1
+ pIntersectQ = (n != len(P))
+
+ n = 0
+ for Qi in Q:
+ d = HSR.Distance(Vector(Qi), P)
+ if d >= -EPS:
+ n += 1
+ qIntersectP = (n != len(Q))
+
+ newfaces = []
+
+ # 1. If parts of P lie in both half-spaces of Q
+ # then splice P in two with the plane of Q
+ if pIntersectQ:
+ #print "We split P"
+ f = P
+ plane = Q
+
+ newfaces = HSR.splitOn(plane, f)
+
+ # 2. Else if parts of Q lie in both half-space of P
+ # then splice Q in two with the plane of P
+ if qIntersectP and newfaces == None:
+ #print "We split Q"
+ f = Q
+ plane = P
+
+ newfaces = HSR.splitOn(plane, f)
+ #print "After"
+
+ # 3. Else slice P in half through the mid-point of
+ # the longest pair of opposite sides
+ if newfaces == None:
+
+ print "We ignore P..."
+ facelist.remove(P)
+ return facelist
+
+ #f = P
+
+ #if len(P)==3:
+ # v1 = midpoint(f[0], f[1])
+ # v2 = midpoint(f[1], f[2])
+ #if len(P)==4:
+ # v1 = midpoint(f[0], f[1])
+ # v2 = midpoint(f[2], f[3])
+ #vec3 = (Vector(v2)+10*Vector(f.normal))
+ #
+ #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
+
+ #plane = NMesh.Face([v1, v2, v3])
+ #
+ #newfaces = splitOn(plane, f)
+
+
+ if newfaces == None:
+ print "Big FAT problem, we weren't able to split POLYGONS!"
+ raise AssertionError
+
+ #print newfaces
+ if newfaces:
+ #for v in f:
+ # if v not in plane and v in nmesh.verts:
+ # nmesh.verts.remove(v)
+ for nf in newfaces:
+
+ nf.mat = f.mat
+ nf.sel = f.sel
+ nf.col = [f.col[0]] * len(nf.v)
+
+ nf.smooth = 0
+
+ for v in nf:
+ nmesh.verts.append(v)
+ # insert pieces in the list
+ facelist.append(nf)
+
+ facelist.remove(f)
+
+ # and resort the faces
+ facelist.sort(by_furthest_z)
+ facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
+ facelist.reverse()
+
+ #print [ f.smooth for f in facelist ]
+
+ return facelist
+
+ facesplit = staticmethod(facesplit)
+
+ def isOnSegment(v1, v2, p, extremes_internal=False):
+ """Check if point p is in segment v1v2.
+ """
+
+ l1 = (v1-p).length
+ l2 = (v2-p).length
+
+ # Should we consider extreme points as internal ?
+ # The test:
+ # if p == v1 or p == v2:
+ if l1 < EPS or l2 < EPS:
+ return extremes_internal
+
+ l = (v1-v2).length
+
+ # if the sum of l1 and l2 is circa l, then the point is on segment,
+ if abs(l - (l1+l2)) < EPS:
+ return True
+ else:
+ return False
+
+ isOnSegment = staticmethod(isOnSegment)
+
+ def Distance(point, face):
+ """ Calculate the distance between a point and a face.
+
+ An alternative but more expensive method can be:
+
+ ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
+ Vector(face.no), Vector(point), 0)
+
+ d = Vector(ip - point).length
+
+ See: http://mathworld.wolfram.com/Point-PlaneDistance.html
+ """
+
+ p = Vector(point)
+ plNormal = Vector(face.no)
+ plVert0 = Vector(face.v[0])
+
+ d = (plVert0 * plNormal) - (p * plNormal)
+
+ #d = plNormal * (plVert0 - p)
+
+ #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
-def vetmatmult(v, M):
+ return d
+
+ Distance = staticmethod(Distance)
+
+ def makeFaces(vl):
+ #
+ # make one or two new faces based on a list of vertex-indices
+ #
+ newfaces = []
+
+ if len(vl) <= 4:
+ nf = NMesh.Face()
+
+ for v in vl:
+ nf.v.append(v)
+
+ newfaces.append(nf)
+
+ else:
+ nf = NMesh.Face()
+
+ nf.v.append(vl[0])
+ nf.v.append(vl[1])
+ nf.v.append(vl[2])
+ nf.v.append(vl[3])
+ newfaces.append(nf)
+
+ nf = NMesh.Face()
+ nf.v.append(vl[3])
+ nf.v.append(vl[4])
+ nf.v.append(vl[0])
+ newfaces.append(nf)
+
+ return newfaces
+
+ makeFaces = staticmethod(makeFaces)
+
+ def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
+ """Split P using the plane of Q.
+ Logic taken from the knife.py python script
+ """
+
+ # Check if P and Q are parallel
+ u = CrossVecs(Vector(Q.no),Vector(P.no))
+ ax = abs(u[0])
+ ay = abs(u[1])
+ az = abs(u[2])
+
+ if (ax+ay+az) < EPS:
+ print "PARALLEL planes!!"
+ return
+
+
+ # The final aim is to find the intersection line between P
+ # and the plane of Q, and split P along this line
+
+ nP = len(P.v)
+
+ # Calculate point-plane Distance between vertices of P and plane Q
+ d = []
+ for i in range(0, nP):
+ d.append(HSR.Distance(P.v[i], Q))
+
+ newVertList = []
+
+ posVertList = []
+ negVertList = []
+ for i in range(nP):
+ d0 = d[i-1]
+ V0 = P.v[i-1]
+
+ d1 = d[i]
+ V1 = P.v[i]
+
+ #print "d0:", d0, "d1:", d1
+
+ # if the vertex lies in the cutplane
+ if abs(d1) < EPS:
+ #print "d1 On cutplane"
+ posVertList.append(V1)
+ negVertList.append(V1)
+ else:
+ # if the previous vertex lies in cutplane
+ if abs(d0) < EPS:
+ #print "d0 on Cutplane"
+ if d1 > 0:
+ #print "d1 on positive Halfspace"
+ posVertList.append(V1)
+ else:
+ #print "d1 on negative Halfspace"
+ negVertList.append(V1)
+ else:
+ # if they are on the same side of the plane
+ if d1*d0 > 0:
+ #print "On the same half-space"
+ if d1 > 0:
+ #print "d1 on positive Halfspace"
+ posVertList.append(V1)
+ else:
+ #print "d1 on negative Halfspace"
+ negVertList.append(V1)
+
+ # the vertices are not on the same side of the plane, so we have an intersection
+ else:
+ #print "Intersection"
+
+ e = Vector(V0), Vector(V1)
+ tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
+
+ inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0)
+ if inters == None:
+ print "Split Break"
+ break
+
+ #print "Intersection", inters
+
+ nv = NMesh.Vert(inters[0], inters[1], inters[2])
+ newVertList.append(nv)
+
+ posVertList.append(nv)
+ negVertList.append(nv)
+
+ if d1 > 0:
+ posVertList.append(V1)
+ else:
+ negVertList.append(V1)
+
+
+ # uniq for python > 2.4
+ #posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
+ #negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+ # a more portable way
+ posVertList = uniq(posVertList)
+ negVertList = uniq(negVertList)
+
+
+ # If vertex are all on the same half-space, return
+ #if len(posVertList) < 3:
+ # print "Problem, we created a face with less that 3 vertices??"
+ # posVertList = []
+ #if len(negVertList) < 3:
+ # print "Problem, we created a face with less that 3 vertices??"
+ # negVertList = []
+
+ if len(posVertList) < 3 or len(negVertList) < 3:
+ #print "RETURN NONE, SURE???"
+ return None
+
+ if not return_positive_faces:
+ posVertList = []
+ if not return_negative_faces:
+ negVertList = []
+
+ newfaces = HSR.addNewFaces(posVertList, negVertList)
+
+ return newfaces
+
+ splitOn = staticmethod(splitOn)
+
+ def addNewFaces(posVertList, negVertList):
+ # Create new faces resulting from the split
+ outfaces = []
+ if len(posVertList) or len(negVertList):
+
+ #newfaces = [posVertList] + [negVertList]
+ newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
+ [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] )
+
+ for nf in newfaces:
+ if nf and len(nf)>2:
+ outfaces += HSR.makeFaces(nf)
+
+ return outfaces
+
+
+ addNewFaces = staticmethod(addNewFaces)
+
+
+# ---------------------------------------------------------------------
+#
+## Mesh Utility class
+#
+# ---------------------------------------------------------------------
+
+class MeshUtils:
+
+ def buildEdgeFaceUsersCache(me):
+ '''
+ Takes a mesh and returns a list aligned with the meshes edges.
+ Each item is a list of the faces that use the edge
+ would be the equiv for having ed.face_users as a property
+
+ Taken from .blender/scripts/bpymodules/BPyMesh.py,
+ thanks to ideasman_42.
+ '''
+
+ def sorted_edge_indicies(ed):
+ i1= ed.v1.index
+ i2= ed.v2.index
+ if i1>i2:
+ i1,i2= i2,i1
+ return i1, i2
+
+
+ face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
+ for f in me.faces:
+ fvi= [v.index for v in f.v]# face vert idx's
+ for i in xrange(len(f)):
+ i1= fvi[i]
+ i2= fvi[i-1]
+
+ if i1>i2:
+ i1,i2= i2,i1
+
+ face_edges_dict[i1,i2][1].append(f)
+
+ face_edges= [None] * len(me.edges)
+ for ed_index, ed_faces in face_edges_dict.itervalues():
+ face_edges[ed_index]= ed_faces
+
+ return face_edges
+
+ def isMeshEdge(adjacent_faces):
+ """Mesh edge rule.
+
+ A mesh edge is visible if _at_least_one_ of its adjacent faces is selected.
+ Note: if the edge has no adjacent faces we want to show it as well,
+ useful for "edge only" portion of objects.
+ """
+
+ if len(adjacent_faces) == 0:
+ return True
+
+ selected_faces = [f for f in adjacent_faces if f.sel]
+
+ if len(selected_faces) != 0:
+ return True
+ else:
+ return False
+
+ def isSilhouetteEdge(adjacent_faces):
+ """Silhuette selection rule.
+
+ An edge is a silhuette edge if it is shared by two faces with
+ different selection status or if it is a boundary edge of a selected
+ face.
+ """
+
+ if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or
+ (len(adjacent_faces) == 2 and
+ adjacent_faces[0].sel != adjacent_faces[1].sel)
+ ):
+ return True
+ else:
+ return False
+
+ buildEdgeFaceUsersCache = staticmethod(buildEdgeFaceUsersCache)
+ isMeshEdge = staticmethod(isMeshEdge)
+ isSilhouetteEdge = staticmethod(isSilhouetteEdge)
+
+
+# ---------------------------------------------------------------------
+#
+## Shading Utility class
+#
+# ---------------------------------------------------------------------
+
+class ShadingUtils:
+
+ shademap = None
+
+ def toonShadingMapSetup():
+ levels = config.polygons['TOON_LEVELS']
+
+ texels = 2*levels - 1
+ tmp_shademap = [0.0] + [(i)/float(texels-1) for i in xrange(1, texels-1) ] + [1.0]
+
+ return tmp_shademap
+
+ def toonShading(u):
+
+ shademap = ShadingUtils.shademap
+
+ if not shademap:
+ shademap = ShadingUtils.toonShadingMapSetup()
+
+ v = 1.0
+ for i in xrange(0, len(shademap)-1):
+ pivot = (shademap[i]+shademap[i+1])/2.0
+ j = int(u>pivot)
+
+ v = shademap[i+j]
+
+ if v < shademap[i+1]:
+ return v
+
+ return v
+
+ toonShadingMapSetup = staticmethod(toonShadingMapSetup)
+ toonShading = staticmethod(toonShading)
+
+
+# ---------------------------------------------------------------------
+#
+## Projections classes
+#
+# ---------------------------------------------------------------------
+
+class Projector:
+ """Calculate the projection of an object given the camera.
- v2 = [0, 0, 0, 0]
+ A projector is useful to so some per-object transformation to obtain the
+ projection of an object given the camera.
- for i in range(0, 3):
- for j in range(0, 3):
- v2[i] += (v[i]*M[i][j])
+ The main method is #doProjection# see the method description for the
+ parameter list.
+ """
- return v2
+ def __init__(self, cameraObj, canvasRatio):
+ """Calculate the projection matrix.
-def flatern(vertx, verty, vertz):
+ The projection matrix depends, in this case, on the camera settings.
+ TAKE CARE: This projector expects vertices in World Coordinates!
+ """
- cam = Camera.get() # Get the cameras in scene
- Lens = cam[0].getLens() # The First Blender camera lens
+ camera = cameraObj.getData()
- camTyp = cam[0].getType()
+ aspect = float(canvasRatio[0])/float(canvasRatio[1])
+ near = camera.clipStart
+ far = camera.clipEnd
- msize = (context.imageSizeX(), context.imageSizeY())
- xres = msize[0] # X res for output
- yres = msize[1] # Y res for output
- ratio = xres/yres
+ scale = float(camera.scale)
- fov = atan(ratio * 16.0 / Lens) # Get fov stuff
+ fovy = atan(0.5/aspect/(camera.lens/32))
+ fovy = fovy * 360.0/pi
+
+
+ if Blender.Get('version') < 243:
+ camPersp = 0
+ camOrtho = 1
+ else:
+ camPersp = 'persp'
+ camOrtho = 'ortho'
+
+ # What projection do we want?
+ if camera.type == camPersp:
+ mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+ elif camera.type == camOrtho:
+ mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
+
+
+ # View transformation
+ cam = Matrix(cameraObj.getInverseMatrix())
+ cam.transpose()
+
+ mP = mP * cam
+
+ self.projectionMatrix = mP
+
+ ##
+ # Public methods
+ #
+
+ def doProjection(self, v):
+ """Project the point on the view plane.
+
+ Given a vertex calculate the projection using the current projection
+ matrix.
+ """
+
+ # Note that we have to work on the vertex using homogeneous coordinates
+ # From blender 2.42+ we don't need to resize the vector to be 4d
+ # when applying a 4x4 matrix, but we do that anyway since we need the
+ # 4th coordinate later
+ p = self.projectionMatrix * Vector(v).resize4D()
+
+ # Perspective division
+ if p[3] != 0:
+ p[0] = p[0]/p[3]
+ p[1] = p[1]/p[3]
+ p[2] = p[2]/p[3]
+
+ # restore the size
+ p[3] = 1.0
+ p.resize3D()
+
+ return p
+
+
+ ##
+ # Private methods
+ #
- dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane
+ def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
+ """Return a perspective projection matrix.
+ """
+
+ top = near * tan(fovy * pi / 360.0)
+ bottom = -top
+ left = bottom*aspect
+ right= top*aspect
+ x = (2.0 * near) / (right-left)
+ y = (2.0 * near) / (top-bottom)
+ a = (right+left) / (right-left)
+ b = (top+bottom) / (top - bottom)
+ c = - ((far+near) / (far-near))
+ d = - ((2*far*near)/(far-near))
+
+ m = Matrix(
+ [x, 0.0, a, 0.0],
+ [0.0, y, b, 0.0],
+ [0.0, 0.0, c, d],
+ [0.0, 0.0, -1.0, 0.0])
- screenxy=[0,0]
- x=-vertx
- y=verty
- z=vertz
+ return m
- #----------------------------
- # calculate x'=dist*x/z & y'=dist*x/z
- #----------------------------
- screenxy[0]=int(xres/2.0+4*x*dist/z)
- screenxy[1]=int(yres/2.0+4*y*dist/z)
- return screenxy
+ def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
+ """Return an orthogonal projection matrix.
+ """
+
+ # The 11 in the formula was found emiprically
+ top = near * tan(fovy * pi / 360.0) * (scale * 11)
+ bottom = -top
+ left = bottom * aspect
+ right= top * aspect
+ rl = right-left
+ tb = top-bottom
+ fn = near-far
+ tx = -((right+left)/rl)
+ ty = -((top+bottom)/tb)
+ tz = ((far+near)/fn)
+ m = Matrix(
+ [2.0/rl, 0.0, 0.0, tx],
+ [0.0, 2.0/tb, 0.0, ty],
+ [0.0, 0.0, 2.0/fn, tz],
+ [0.0, 0.0, 0.0, 1.0])
+
+ return m
-########
-# Main #
-########
-scena = Scene.GetCurrent()
-context = scena.getRenderingContext()
-renderDir = context.getRenderPath()
+# ---------------------------------------------------------------------
+#
+## Progress Indicator
+#
+# ---------------------------------------------------------------------
-msize = (context.imageSizeX(), context.imageSizeY())
+class Progress:
+ """A model for a progress indicator.
+
+ Do the progress calculation calculation and
+ the view independent stuff of a progress indicator.
+ """
+ def __init__(self, steps=0):
+ self.name = ""
+ self.steps = steps
+ self.completed = 0
+ self.progress = 0
-file=open("proba.svg","w")
+ def setSteps(self, steps):
+ """Set the number of steps of the activity wich we want to track.
+ """
+ self.steps = steps
-file.write("\n")
-file.write("")
-file.close()
-DrawProgressBar (1.0,"Finished.")
-print "Finished\n"
+ In a future version (with subactivities-progress support) this method
+ could only set the current activity.
+ """
+ self.progressModel = Progress()
+ self.progressModel.setName(name)
+ self.progressModel.setSteps(steps)
+
+ def getActivity(self):
+ return self.progressModel
+
+ def update(self):
+ """Update the model and show the actual progress.
+ """
+ assert(self.progressModel)
+
+ if self.progressModel.update():
+ if self.quiet:
+ return
+
+ self.show(self.progressModel.getProgress(),
+ self.progressModel.getName())
+
+ # We return always True here so we can call the update() method also
+ # from lambda funcs (putting the call in logical AND with other ops)
+ return True
+
+ def show(self, progress, name=""):
+ self.shows_counter = (self.shows_counter + 1) % self.refresh_rate
+ if self.shows_counter != 0:
+ return
+
+ if progress == 100:
+ self.shows_counter = -1
+
+
+class ConsoleProgressIndicator(ProgressIndicator):
+ """Show a progress bar on stderr, a la wget.
+ """
+ def __init__(self):
+ ProgressIndicator.__init__(self)
+
+ self.swirl_chars = ["-", "\\", "|", "/"]
+ self.swirl_count = -1
+
+ def show(self, progress, name):
+ ProgressIndicator.show(self, progress, name)
+
+ bar_length = 70
+ bar_progress = int( (progress/100.0) * bar_length )
+ bar = ("=" * bar_progress).ljust(bar_length)
+
+ self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+ swirl_char = self.swirl_chars[self.swirl_count]
+
+ progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress)
+
+ sys.stderr.write(progress_bar+"\r")
+ if progress == 100:
+ sys.stderr.write("\n")
+
+
+class GraphicalProgressIndicator(ProgressIndicator):
+ """Interface to the Blender.Window.DrawProgressBar() method.
+ """
+ def __init__(self):
+ ProgressIndicator.__init__(self)
+
+ #self.swirl_chars = ["-", "\\", "|", "/"]
+ # We have to use letters with the same width, for now!
+ # Blender progress bar considers the font widths when
+ # calculating the progress bar width.
+ self.swirl_chars = ["\\", "/"]
+ self.swirl_count = -1
+
+ def show(self, progress, name):
+ ProgressIndicator.show(self, progress)
+
+ self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+ swirl_char = self.swirl_chars[self.swirl_count]
+
+ progress_text = "%s - %c %3d%%" % (name, swirl_char, progress)
+
+ # Finally draw the Progress Bar
+ Window.WaitCursor(1) # Maybe we can move that call in the constructor?
+ Window.DrawProgressBar(progress/100.0, progress_text)
+
+ if progress == 100:
+ Window.DrawProgressBar(1, progress_text)
+ Window.WaitCursor(0)
+
+
+
+# ---------------------------------------------------------------------
+#
+## 2D Object representation class
+#
+# ---------------------------------------------------------------------
+
+# TODO: a class to represent the needed properties of a 2D vector image
+# For now just using a [N]Mesh structure.
+
+
+# ---------------------------------------------------------------------
+#
+## Vector Drawing Classes
+#
+# ---------------------------------------------------------------------
+
+## A generic Writer
+
+class VectorWriter:
+ """
+ A class for printing output in a vectorial format.
+
+ Given a 2D representation of the 3D scene the class is responsible to
+ write it is a vector format.
+
+ Every subclasses of VectorWriter must have at last the following public
+ methods:
+ - open(self)
+ - close(self)
+ - printCanvas(self, scene,
+ doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
+ """
+
+ def __init__(self, fileName):
+ """Set the output file name and other properties"""
+
+ self.outputFileName = fileName
+
+ context = Scene.GetCurrent().getRenderingContext()
+ self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
+
+ self.fps = context.fps
+
+ self.startFrame = 1
+ self.endFrame = 1
+ self.animation = False
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ if startFrame != endFrame:
+ self.startFrame = startFrame
+ self.endFrame = endFrame
+ self.animation = True
+
+ print "Outputting to: ", self.outputFileName
+
+ return
+
+ def close(self):
+ return
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """This is the interface for the needed printing routine.
+ """
+ return
+
+
+## SVG Writer
+
+class SVGVectorWriter(VectorWriter):
+ """A concrete class for writing SVG output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.file = None
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+
+ self.file = open(self.outputFileName, "w")
+
+ self._printHeader()
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self._printFooter()
+
+ if self.file:
+ self.file.close()
+
+ # remember to call the close method of the parent as last
+ VectorWriter.close(self)
+
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+
+ Objects = scene.getChildren()
+
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ if self.animation:
+ framestyle = "display:none"
+ else:
+ framestyle = "display:block"
+
+ # Assign an id to this group so we can set properties on it using DOM
+ self.file.write("\n" %
+ (framenumber, framestyle) )
+
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ self.file.write("\n" % obj.getName())
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh)
+
+ if doPrintEdges:
+ self._printEdges(mesh, showHiddenEdges)
+
+ self.file.write("\n")
+
+ self.file.write("\n")
+
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printHeader(self):
+ """Print SVG header."""
+
+ self.file.write("\n")
+ self.file.write("\n")
+ self.file.write("\n")
+
+ def _printPolygons(self, mesh):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ self.file.write("\n")
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ self.file.write("\n")
+
+ self.file.write("\n")
+
+ def _printEdges(self, mesh, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ self.file.write("\n")
+
+ for e in mesh.edges:
+
+ hidden_stroke_style = ""
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ self.file.write("\n")
+
+ self.file.write("\n")
+
+
+## SWF Writer
+
+try:
+ from ming import *
+ SWFSupported = True
+except:
+ SWFSupported = False
+
+class SWFVectorWriter(VectorWriter):
+ """A concrete class for writing SWF output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.movie = None
+ self.sprite = None
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+ self.movie = SWFMovie()
+ self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+ if self.animation:
+ self.movie.setRate(self.fps)
+ numframes = endFrame - startFrame + 1
+ self.movie.setFrames(numframes)
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self.movie.save(self.outputFileName)
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ Objects = scene.getChildren()
+
+ if self.sprite:
+ self.movie.remove(self.sprite)
+
+ sprite = SWFSprite()
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh, sprite)
+
+ if doPrintEdges:
+ self._printEdges(mesh, sprite, showHiddenEdges)
+
+ sprite.nextFrame()
+ i = self.movie.add(sprite)
+ # Remove the instance the next time
+ self.sprite = i
+ if self.animation:
+ self.movie.nextFrame()
+
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printPolygons(self, mesh, sprite):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r, fcol.g, fcol.b, fcol.a]
+ else:
+ color = [255, 255, 255, 255]
+
+ s = SWFShape()
+ f = s.addFill(color[0], color[1], color[2], color[3])
+ s.setRightFill(f)
+
+ # The starting point of the shape
+ p0 = self._calcCanvasCoord(face.verts[0])
+ s.movePenTo(p0[0], p0[1])
+
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ s.drawLineTo(p[0], p[1])
+
+ # Closing the shape
+ s.drawLineTo(p0[0], p0[1])
+
+ s.end()
+ sprite.add(s)
+
+
+ def _printEdges(self, mesh, sprite, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ s = SWFShape()
+
+ for e in mesh.edges:
+
+ # Next, we set the line width and color for our shape.
+ s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+ 255)
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ # SWF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner and half-trasparent
+ s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
+ stroke_col[2], 128)
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ s.movePenTo(p1[0], p1[1])
+ s.drawLineTo(p2[0], p2[1])
+
+ s.end()
+ sprite.add(s)
+
+
+## PDF Writer
+
+try:
+ from reportlab.pdfgen import canvas
+ PDFSupported = True
+except:
+ PDFSupported = False
+
+class PDFVectorWriter(VectorWriter):
+ """A concrete class for writing PDF output.
+ """
+
+ def __init__(self, fileName):
+ """Simply call the parent Contructor.
+ """
+ VectorWriter.__init__(self, fileName)
+
+ self.canvas = None
+
+
+ ##
+ # Public Methods
+ #
+
+ def open(self, startFrame=1, endFrame=1):
+ """Do some initialization operations.
+ """
+ VectorWriter.open(self, startFrame, endFrame)
+ size = (self.canvasSize[0], self.canvasSize[1])
+ self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
+
+ def close(self):
+ """Do some finalization operation.
+ """
+ self.canvas.save()
+
+ # remember to call the close method of the parent
+ VectorWriter.close(self)
+
+ def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+ showHiddenEdges=False):
+ """Convert the scene representation to SVG.
+ """
+ context = scene.getRenderingContext()
+ framenumber = context.currentFrame()
+
+ Objects = scene.getChildren()
+
+ for obj in Objects:
+
+ if(obj.getType() != 'Mesh'):
+ continue
+
+ mesh = obj.getData(mesh=1)
+
+ if doPrintPolygons:
+ self._printPolygons(mesh)
+
+ if doPrintEdges:
+ self._printEdges(mesh, showHiddenEdges)
+
+ self.canvas.showPage()
+
+ ##
+ # Private Methods
+ #
+
+ def _calcCanvasCoord(self, v):
+ """Convert vertex in scene coordinates to canvas coordinates.
+ """
+
+ pt = Vector([0, 0, 0])
+
+ mW = float(self.canvasSize[0])/2.0
+ mH = float(self.canvasSize[1])/2.0
+
+ # rescale to canvas size
+ pt[0] = v.co[0]*mW + mW
+ pt[1] = v.co[1]*mH + mH
+ pt[2] = v.co[2]
+
+ # For now we want (0,0) in the top-left corner of the canvas.
+ # Mirror and translate along y
+ pt[1] *= -1
+ pt[1] += self.canvasSize[1]
+
+ return pt
+
+ def _printPolygons(self, mesh):
+ """Print the selected (visible) polygons.
+ """
+
+ if len(mesh.faces) == 0:
+ return
+
+ for face in mesh.faces:
+ if not face.sel:
+ continue
+
+ if face.col:
+ fcol = face.col[0]
+ color = [fcol.r/255.0, fcol.g/255.0, fcol.b/255.0,
+ fcol.a/255.0]
+ else:
+ color = [1, 1, 1, 1]
+
+ self.canvas.setFillColorRGB(color[0], color[1], color[2])
+ # For debug
+ self.canvas.setStrokeColorRGB(0, 0, 0)
+
+ path = self.canvas.beginPath()
+
+ # The starting point of the path
+ p0 = self._calcCanvasCoord(face.verts[0])
+ path.moveTo(p0[0], p0[1])
+
+ for v in face.verts[1:]:
+ p = self._calcCanvasCoord(v)
+ path.lineTo(p[0], p[1])
+
+ # Closing the shape
+ path.close()
+
+ self.canvas.drawPath(path, stroke=0, fill=1)
+
+ def _printEdges(self, mesh, showHiddenEdges=False):
+ """Print the wireframe using mesh edges.
+ """
+
+ stroke_width = config.edges['WIDTH']
+ stroke_col = config.edges['COLOR']
+
+ self.canvas.setLineCap(1)
+ self.canvas.setLineJoin(1)
+ self.canvas.setLineWidth(stroke_width)
+ self.canvas.setStrokeColorRGB(stroke_col[0]/255.0, stroke_col[1]/255.0,
+ stroke_col[2]/255)
+
+ for e in mesh.edges:
+
+ self.canvas.setLineWidth(stroke_width)
+
+ if e.sel == 0:
+ if showHiddenEdges == False:
+ continue
+ else:
+ # PDF does not support dashed lines natively, so -for now-
+ # draw hidden lines thinner
+ self.canvas.setLineWidth(stroke_width/2.0)
+
+ p1 = self._calcCanvasCoord(e.v1)
+ p2 = self._calcCanvasCoord(e.v2)
+
+ self.canvas.line(p1[0], p1[1], p2[0], p2[1])
+
+
+
+# ---------------------------------------------------------------------
+#
+## Rendering Classes
+#
+# ---------------------------------------------------------------------
+
+# A dictionary to collect different shading style methods
+shadingStyles = dict()
+shadingStyles['FLAT'] = None
+shadingStyles['TOON'] = None
+
+# A dictionary to collect different edge style methods
+edgeStyles = dict()
+edgeStyles['MESH'] = MeshUtils.isMeshEdge
+edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
+
+# A dictionary to collect the supported output formats
+outputWriters = dict()
+outputWriters['SVG'] = SVGVectorWriter
+if SWFSupported:
+ outputWriters['SWF'] = SWFVectorWriter
+if PDFSupported:
+ outputWriters['PDF'] = PDFVectorWriter
+
+
+class Renderer:
+ """Render a scene viewed from the active camera.
+
+ This class is responsible of the rendering process, transformation and
+ projection of the objects in the scene are invoked by the renderer.
+
+ The rendering is done using the active camera for the current scene.
+ """
+
+ def __init__(self):
+ """Make the rendering process only for the current scene by default.
+
+ We will work on a copy of the scene, to be sure that the current scene do
+ not get modified in any way.
+ """
+
+ # Render the current Scene, this should be a READ-ONLY property
+ self._SCENE = Scene.GetCurrent()
+
+ # Use the aspect ratio of the scene rendering context
+ context = self._SCENE.getRenderingContext()
+
+ aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY())
+ self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio,
+ float(context.aspectRatioY())
+ )
+
+ # Render from the currently active camera
+ #self.cameraObj = self._SCENE.getCurrentCamera()
+
+ # Get the list of lighting sources
+ obj_lst = self._SCENE.getChildren()
+ self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
+
+ # When there are no lights we use a default lighting source
+ # that have the same position of the camera
+ if len(self.lights) == 0:
+ l = Lamp.New('Lamp')
+ lobj = Object.New('Lamp')
+ lobj.loc = self.cameraObj.loc
+ lobj.link(l)
+ self.lights.append(lobj)
+
+
+ ##
+ # Public Methods
+ #
+
+ def doRendering(self, outputWriter, animation=False):
+ """Render picture or animation and write it out.
+
+ The parameters are:
+ - a Vector writer object that will be used to output the result.
+ - a flag to tell if we want to render an animation or only the
+ current frame.
+ """
+
+ context = self._SCENE.getRenderingContext()
+ origCurrentFrame = context.currentFrame()
+
+ # Handle the animation case
+ if not animation:
+ startFrame = origCurrentFrame
+ endFrame = startFrame
+ outputWriter.open()
+ else:
+ startFrame = context.startFrame()
+ endFrame = context.endFrame()
+ outputWriter.open(startFrame, endFrame)
+
+ # Do the rendering process frame by frame
+ print "Start Rendering of %d frames" % (endFrame-startFrame+1)
+ for f in xrange(startFrame, endFrame+1):
+ print "\n\nFrame: %d" % f
+
+ # FIXME To get the correct camera position we have to use +1 here.
+ # Is there a bug somewhere in the Scene module?
+ context.currentFrame(f+1)
+ self.cameraObj = self._SCENE.getCurrentCamera()
+
+ # Use some temporary workspace, a full copy of the scene
+ inputScene = self._SCENE.copy(2)
+
+ # To get the objects at this frame remove the +1 ...
+ ctx = inputScene.getRenderingContext()
+ ctx.currentFrame(f)
+
+
+ # Get a projector for this camera.
+ # NOTE: the projector wants object in world coordinates,
+ # so we should remember to apply modelview transformations
+ # _before_ we do projection transformations.
+ self.proj = Projector(self.cameraObj, self.canvasRatio)
+
+ try:
+ renderedScene = self.doRenderScene(inputScene)
+ except :
+ print "There was an error! Aborting."
+ import traceback
+ print traceback.print_exc()
+
+ self._SCENE.makeCurrent()
+ Scene.unlink(inputScene)
+ del inputScene
+ return
+
+ outputWriter.printCanvas(renderedScene,
+ doPrintPolygons = config.polygons['SHOW'],
+ doPrintEdges = config.edges['SHOW'],
+ showHiddenEdges = config.edges['SHOW_HIDDEN'])
+
+ # delete the rendered scene
+ self._SCENE.makeCurrent()
+ Scene.unlink(renderedScene)
+ del renderedScene
+
+ outputWriter.close()
+ print "Done!"
+ context.currentFrame(origCurrentFrame)
+
+
+ def doRenderScene(self, workScene):
+ """Control the rendering process.
+
+ Here we control the entire rendering process invoking the operation
+ needed to transform and project the 3D scene in two dimensions.
+ """
+
+ # global processing of the scene
+
+ self._doSceneClipping(workScene)
+
+ self._doConvertGeometricObjsToMesh(workScene)
+
+ if config.output['JOIN_OBJECTS']:
+ self._joinMeshObjectsInScene(workScene)
+
+ self._doSceneDepthSorting(workScene)
+
+ # Per object activities
+
+ Objects = workScene.getChildren()
+ print "Total Objects: %d" % len(Objects)
+ for i,obj in enumerate(Objects):
+ print "\n\n-------"
+ print "Rendering Object: %d" % i
+
+ if obj.getType() != 'Mesh':
+ print "Only Mesh supported! - Skipping type:", obj.getType()
+ continue
+
+ print "Rendering: ", obj.getName()
+
+ mesh = obj.getData(mesh=1)
+
+ self._doModelingTransformation(mesh, obj.matrix)
+
+ self._doBackFaceCulling(mesh)
+
+
+ # When doing HSR with NEWELL we may want to flip all normals
+ # toward the viewer
+ if config.polygons['HSR'] == "NEWELL":
+ for f in mesh.faces:
+ f.sel = 1-f.sel
+ mesh.flipNormals()
+ for f in mesh.faces:
+ f.sel = 1
+
+ self._doLighting(mesh)
+
+ # Do "projection" now so we perform further processing
+ # in Normalized View Coordinates
+ self._doProjection(mesh, self.proj)
+
+ self._doViewFrustumClipping(mesh)
+
+ self._doHiddenSurfaceRemoval(mesh)
+
+ self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
+
+ # Update the object data, important! :)
+ mesh.update()
+
+ return workScene
+
+
+ ##
+ # Private Methods
+ #
+
+ # Utility methods
+
+ def _getObjPosition(self, obj):
+ """Return the obj position in World coordinates.
+ """
+ return obj.matrix.translationPart()
+
+ def _cameraViewVector(self):
+ """Get the View Direction form the camera matrix.
+ """
+ return Vector(self.cameraObj.matrix[2]).resize3D()
+
+
+ # Faces methods
+
+ def _isFaceVisible(self, face):
+ """Determine if a face of an object is visible from the current camera.
+
+ The view vector is calculated from the camera location and one of the
+ vertices of the face (expressed in World coordinates, after applying
+ modelview transformations).
+
+ After those transformations we determine if a face is visible by
+ computing the angle between the face normal and the view vector, this
+ angle has to be between -90 and 90 degrees for the face to be visible.
+ This corresponds somehow to the dot product between the two, if it
+ results > 0 then the face is visible.
+
+ There is no need to normalize those vectors since we are only interested in
+ the sign of the cross product and not in the product value.
+
+ NOTE: here we assume the face vertices are in WorldCoordinates, so
+ please transform the object _before_ doing the test.
+ """
+
+ normal = Vector(face.no)
+ camPos = self._getObjPosition(self.cameraObj)
+ view_vect = None
+
+ # View Vector in orthographics projections is the view Direction of
+ # the camera
+ if self.cameraObj.data.getType() == 1:
+ view_vect = self._cameraViewVector()
+
+ # View vector in perspective projections can be considered as
+ # the difference between the camera position and one point of
+ # the face, we choose the farthest point from the camera.
+ if self.cameraObj.data.getType() == 0:
+ vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
+ view_vect = vv[1]
+
+
+ # if d > 0 the face is visible from the camera
+ d = view_vect * normal
+
+ if d > 0:
+ return True
+ else:
+ return False
+
+
+ # Scene methods
+
+ def _doSceneClipping(self, scene):
+ """Clip whole objects against the View Frustum.
+
+ For now clip away only objects according to their center position.
+ """
+
+ cam_pos = self._getObjPosition(self.cameraObj)
+ view_vect = self._cameraViewVector()
+
+ near = self.cameraObj.data.clipStart
+ far = self.cameraObj.data.clipEnd
+
+ aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1])
+ fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
+ fovy = fovy * 360.0/pi
+
+ Objects = scene.getChildren()
+ for o in Objects:
+ if o.getType() != 'Mesh': continue;
+
+ """
+ obj_vect = Vector(cam_pos) - self._getObjPosition(o)
+
+ d = obj_vect*view_vect
+ theta = AngleBetweenVecs(obj_vect, view_vect)
+
+ # if the object is outside the view frustum, clip it away
+ if (d < near) or (d > far) or (theta > fovy):
+ scene.unlink(o)
+ """
+
+ # Use the object bounding box
+ # (whose points are already in WorldSpace Coordinate)
+
+ bb = o.getBoundBox()
+
+ points_outside = 0
+ for p in bb:
+ p_vect = Vector(cam_pos) - Vector(p)
+
+ d = p_vect * view_vect
+ theta = AngleBetweenVecs(p_vect, view_vect)
+
+ # Is this point outside the view frustum?
+ if (d < near) or (d > far) or (theta > fovy):
+ points_outside += 1
+
+ # If the bb is all outside the view frustum we clip the whole
+ # object away
+ if points_outside == len(bb):
+ scene.unlink(o)
+
+
+
+ def _doConvertGeometricObjsToMesh(self, scene):
+ """Convert all "geometric" objects to mesh ones.
+ """
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
+
+ Objects = scene.getChildren()
+ objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
+ for obj in objList:
+ old_obj = obj
+ obj = self._convertToRawMeshObj(obj)
+ scene.link(obj)
+ scene.unlink(old_obj)
+
+
+ # XXX Workaround for Text and Curve which have some normals
+ # inverted when they are converted to Mesh, REMOVE that when
+ # blender will fix that!!
+ if old_obj.getType() in ['Curve', 'Text']:
+ me = obj.getData(mesh=1)
+ for f in me.faces: f.sel = 1;
+ for v in me.verts: v.sel = 1;
+ me.remDoubles(0)
+ me.triangleToQuad()
+ me.recalcNormals()
+ me.update()
+
+
+ def _doSceneDepthSorting(self, scene):
+ """Sort objects in the scene.
+
+ The object sorting is done accordingly to the object centers.
+ """
+
+ c = self._getObjPosition(self.cameraObj)
+
+ by_obj_center_pos = (lambda o1, o2:
+ (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+ cmp((self._getObjPosition(o1) - Vector(c)).length,
+ (self._getObjPosition(o2) - Vector(c)).length)
+ )
+
+ # Implement sorting by bounding box, the object with the bb
+ # nearest to the camera should be drawn as last.
+ by_nearest_bbox_point = (lambda o1, o2:
+ (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+ cmp( min( [(Vector(p) - Vector(c)).length for p in o1.getBoundBox()] ),
+ min( [(Vector(p) - Vector(c)).length for p in o2.getBoundBox()] )
+ )
+ )
+
+
+ Objects = scene.getChildren()
+ #Objects.sort(by_obj_center_pos)
+ Objects.sort(by_nearest_bbox_point)
+
+ # update the scene
+ for o in Objects:
+ scene.unlink(o)
+ scene.link(o)
+
+ def _joinMeshObjectsInScene(self, scene):
+ """Merge all the Mesh Objects in a scene into a single Mesh Object.
+ """
+
+ oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
+
+ # FIXME: Object.join() do not work if the list contains 1 object
+ if len(oList) == 1:
+ return
+
+ mesh = Mesh.New('BigOne')
+ bigObj = Object.New('Mesh', 'BigOne')
+ bigObj.link(mesh)
+
+ scene.link(bigObj)
+
+ try:
+ bigObj.join(oList)
+ except RuntimeError:
+ print "\nWarning! - Can't Join Objects\n"
+ scene.unlink(bigObj)
+ return
+ except TypeError:
+ print "Objects Type error?"
+
+ for o in oList:
+ scene.unlink(o)
+
+ scene.update()
+
+
+ # Per object/mesh methods
+
+ def _convertToRawMeshObj(self, object):
+ """Convert geometry based object to a mesh object.
+ """
+ me = Mesh.New('RawMesh_'+object.name)
+ me.getFromObject(object.name)
+
+ newObject = Object.New('Mesh', 'RawMesh_'+object.name)
+ newObject.link(me)
+
+ # If the object has no materials set a default material
+ if not me.materials:
+ me.materials = [Material.New()]
+ #for f in me.faces: f.mat = 0
+
+ newObject.setMatrix(object.getMatrix())
+
+ return newObject
+
+ def _doModelingTransformation(self, mesh, matrix):
+ """Transform object coordinates to world coordinates.
+
+ This step is done simply applying to the object its tranformation
+ matrix and recalculating its normals.
+ """
+ # XXX FIXME: blender do not transform normals in the right way when
+ # there are negative scale values
+ if matrix[0][0] < 0 or matrix[1][1] < 0 or matrix[2][2] < 0:
+ print "WARNING: Negative scales, expect incorrect results!"
+
+ mesh.transform(matrix, True)
+
+ def _doBackFaceCulling(self, mesh):
+ """Simple Backface Culling routine.
+
+ At this level we simply do a visibility test face by face and then
+ select the vertices belonging to visible faces.
+ """
+
+ # Select all vertices, so edges can be displayed even if there are no
+ # faces
+ for v in mesh.verts:
+ v.sel = 1
+
+ Mesh.Mode(Mesh.SelectModes['FACE'])
+ # Loop on faces
+ for f in mesh.faces:
+ f.sel = 0
+ if self._isFaceVisible(f):
+ f.sel = 1
+
+ def _doLighting(self, mesh):
+ """Apply an Illumination and shading model to the object.
+
+ The model used is the Phong one, it may be inefficient,
+ but I'm just learning about rendering and starting from Phong seemed
+ the most natural way.
+ """
+
+ # If the mesh has vertex colors already, use them,
+ # otherwise turn them on and do some calculations
+ if mesh.vertexColors:
+ return
+ mesh.vertexColors = 1
+
+ materials = mesh.materials
+
+ camPos = self._getObjPosition(self.cameraObj)
+
+ # We do per-face color calculation (FLAT Shading), we can easily turn
+ # to a per-vertex calculation if we want to implement some shading
+ # technique. For an example see:
+ # http://www.miralab.unige.ch/papers/368.pdf
+ for f in mesh.faces:
+ if not f.sel:
+ continue
+
+ mat = None
+ if materials:
+ mat = materials[f.mat]
+
+ # A new default material
+ if mat == None:
+ mat = Material.New('defMat')
+
+ # Check if it is a shadeless material
+ elif mat.getMode() & Material.Modes['SHADELESS']:
+ I = mat.getRGBCol()
+ # Convert to a value between 0 and 255
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ for c in f.col:
+ c.r = tmp_col[0]
+ c.g = tmp_col[1]
+ c.b = tmp_col[2]
+ #c.a = tmp_col[3]
+
+ continue
+
+
+ # do vertex color calculation
+
+ TotDiffSpec = Vector([0.0, 0.0, 0.0])
+
+ for l in self.lights:
+ light_obj = l
+ light_pos = self._getObjPosition(l)
+ light = light_obj.getData()
+
+ L = Vector(light_pos).normalize()
+
+ V = (Vector(camPos) - Vector(f.cent)).normalize()
+
+ N = Vector(f.no).normalize()
+
+ if config.polygons['SHADING'] == 'TOON':
+ NL = ShadingUtils.toonShading(N*L)
+ else:
+ NL = (N*L)
+
+ # Should we use NL instead of (N*L) here?
+ R = 2 * (N*L) * N - L
+
+ Ip = light.getEnergy()
+
+ # Diffuse co-efficient
+ kd = mat.getRef() * Vector(mat.getRGBCol())
+ for i in [0, 1, 2]:
+ kd[i] *= light.col[i]
+
+ Idiff = Ip * kd * max(0, NL)
+
+
+ # Specular component
+ ks = mat.getSpec() * Vector(mat.getSpecCol())
+ ns = mat.getHardness()
+ Ispec = Ip * ks * pow(max(0, (V*R)), ns)
+
+ TotDiffSpec += (Idiff+Ispec)
+
+
+ # Ambient component
+ Iamb = Vector(Blender.World.Get()[0].getAmb())
+ ka = mat.getAmb()
+
+ # Emissive component (convert to a triplet)
+ ki = Vector([mat.getEmit()]*3)
+
+ #I = ki + Iamb + (Idiff + Ispec)
+ I = ki + (ka * Iamb) + TotDiffSpec
+
+
+ # Set Alpha component
+ I = list(I)
+ I.append(mat.getAlpha())
+
+ # Clamp I values between 0 and 1
+ I = [ min(c, 1) for c in I]
+ I = [ max(0, c) for c in I]
+
+ # Convert to a value between 0 and 255
+ tmp_col = [ int(c * 255.0) for c in I]
+
+ for c in f.col:
+ c.r = tmp_col[0]
+ c.g = tmp_col[1]
+ c.b = tmp_col[2]
+ c.a = tmp_col[3]
+
+ def _doProjection(self, mesh, projector):
+ """Apply Viewing and Projection tranformations.
+ """
+
+ for v in mesh.verts:
+ p = projector.doProjection(v.co[:])
+ v.co[0] = p[0]
+ v.co[1] = p[1]
+ v.co[2] = p[2]
+
+ #mesh.recalcNormals()
+ #mesh.update()
+
+ # We could reeset Camera matrix, since now
+ # we are in Normalized Viewing Coordinates,
+ # but doung that would affect World Coordinate
+ # processing for other objects
+
+ #self.cameraObj.data.type = 1
+ #self.cameraObj.data.scale = 2.0
+ #m = Matrix().identity()
+ #self.cameraObj.setMatrix(m)
+
+ def _doViewFrustumClipping(self, mesh):
+ """Clip faces against the View Frustum.
+ """
+
+ # The Canonical View Volume, 8 vertices, and 6 faces,
+ # We consider its face normals pointing outside
+
+ v1 = NMesh.Vert(1, 1, -1)
+ v2 = NMesh.Vert(1, -1, -1)
+ v3 = NMesh.Vert(-1, -1, -1)
+ v4 = NMesh.Vert(-1, 1, -1)
+ v5 = NMesh.Vert(1, 1, 1)
+ v6 = NMesh.Vert(1, -1, 1)
+ v7 = NMesh.Vert(-1, -1, 1)
+ v8 = NMesh.Vert(-1, 1, 1)
+
+ cvv = []
+ f1 = NMesh.Face([v1, v4, v3, v2])
+ cvv.append(f1)
+ f2 = NMesh.Face([v5, v6, v7, v8])
+ cvv.append(f2)
+ f3 = NMesh.Face([v1, v2, v6, v5])
+ cvv.append(f3)
+ f4 = NMesh.Face([v2, v3, v7, v6])
+ cvv.append(f4)
+ f5 = NMesh.Face([v3, v4, v8, v7])
+ cvv.append(f5)
+ f6 = NMesh.Face([v4, v1, v5, v8])
+ cvv.append(f6)
+
+ nmesh = NMesh.GetRaw(mesh.name)
+ clippedfaces = nmesh.faces[:]
+ facelist = clippedfaces[:]
+
+ for clipface in cvv:
+
+ clippedfaces = []
+
+ for f in facelist:
+
+ newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
+
+ if not newfaces:
+ # Check if the face is all outside the view frustum
+ # TODO: Do this test before, it is more efficient
+ points_outside = 0
+ for v in f:
+ if abs(v[0]) > 1-EPS or abs(v[1]) > 1-EPS or abs(v[2]) > 1-EPS:
+ points_outside += 1
+
+ if points_outside != len(f):
+ clippedfaces.append(f)
+ else:
+ for nf in newfaces:
+ for v in nf:
+ nmesh.verts.append(v)
+
+ nf.mat = f.mat
+ nf.sel = f.sel
+ nf.col = [f.col[0]] * len(nf.v)
+
+ clippedfaces.append(nf)
+ facelist = clippedfaces[:]
+
+
+ nmesh.faces = facelist
+ nmesh.update()
+
+
+ # HSR routines
+ def __simpleDepthSort(self, mesh):
+ """Sort faces by the furthest vertex.
+
+ This simple mesthod is known also as the painter algorithm, and it
+ solves HSR correctly only for convex meshes.
+ """
+
+ #global progress
+
+ # The sorting requires circa n*log(n) steps
+ n = len(mesh.faces)
+ progress.setActivity("HSR: Painter", n*log(n))
+
+ by_furthest_z = (lambda f1, f2: progress.update() and
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ )
+
+ # FIXME: using NMesh to sort faces. We should avoid that!
+ nmesh = NMesh.GetRaw(mesh.name)
+
+ # remember that _higher_ z values mean further points
+ nmesh.faces.sort(by_furthest_z)
+ nmesh.faces.reverse()
+
+ nmesh.update()
+
+
+ def __newellDepthSort(self, mesh):
+ """Newell's depth sorting.
+
+ """
+
+ #global progress
+
+ # Find non planar quads and convert them to triangle
+ #for f in mesh.faces:
+ # f.sel = 0
+ # if is_nonplanar_quad(f.v):
+ # print "NON QUAD??"
+ # f.sel = 1
+
+
+ # Now reselect all faces
+ for f in mesh.faces:
+ f.sel = 1
+ mesh.quadToTriangle()
+
+ # FIXME: using NMesh to sort faces. We should avoid that!
+ nmesh = NMesh.GetRaw(mesh.name)
+
+ # remember that _higher_ z values mean further points
+ nmesh.faces.sort(by_furthest_z)
+ nmesh.faces.reverse()
+
+ # Begin depth sort tests
+
+ # use the smooth flag to set marked faces
+ for f in nmesh.faces:
+ f.smooth = 0
+
+ facelist = nmesh.faces[:]
+ maplist = []
+
+
+ # The steps are _at_least_ equal to len(facelist), we do not count the
+ # feces coming out from splitting!!
+ progress.setActivity("HSR: Newell", len(facelist))
+ #progress.setQuiet(True)
+
+
+ while len(facelist):
+ debug("\n----------------------\n")
+ debug("len(facelits): %d\n" % len(facelist))
+ P = facelist[0]
+
+ pSign = sign(P.normal[2])
+
+ # We can discard faces parallel to the view vector
+ #if P.normal[2] == 0:
+ # facelist.remove(P)
+ # continue
+
+ split_done = 0
+ face_marked = 0
+
+ for Q in facelist[1:]:
+
+ debug("P.smooth: " + str(P.smooth) + "\n")
+ debug("Q.smooth: " + str(Q.smooth) + "\n")
+ debug("\n")
+
+ qSign = sign(Q.normal[2])
+ # TODO: check also if Q is parallel??
+
+ # Test 0: We need to test only those Qs whose furthest vertex
+ # is closer to the observer than the closest vertex of P.
+
+ zP = [v.co[2] for v in P.v]
+ zQ = [v.co[2] for v in Q.v]
+ notZOverlap = min(zP) > max(zQ) + EPS
+
+ if notZOverlap:
+ debug("\nTest 0\n")
+ debug("NOT Z OVERLAP!\n")
+ if Q.smooth == 0:
+ # If Q is not marked then we can safely print P
+ break
+ else:
+ debug("met a marked face\n")
+ continue
+
+
+ # Test 1: X extent overlapping
+ xP = [v.co[0] for v in P.v]
+ xQ = [v.co[0] for v in Q.v]
+ #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
+
+ if notXOverlap:
+ debug("\nTest 1\n")
+ debug("NOT X OVERLAP!\n")
+ continue
+
+
+ # Test 2: Y extent Overlapping
+ yP = [v.co[1] for v in P.v]
+ yQ = [v.co[1] for v in Q.v]
+ #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
+
+ if notYOverlap:
+ debug("\nTest 2\n")
+ debug("NOT Y OVERLAP!\n")
+ continue
+
+
+ # Test 3: P vertices are all behind the plane of Q
+ n = 0
+ for Pi in P:
+ d = qSign * HSR.Distance(Vector(Pi), Q)
+ if d <= EPS:
+ n += 1
+ pVerticesBehindPlaneQ = (n == len(P))
+
+ if pVerticesBehindPlaneQ:
+ debug("\nTest 3\n")
+ debug("P BEHIND Q!\n")
+ continue
+
+
+ # Test 4: Q vertices in front of the plane of P
+ n = 0
+ for Qi in Q:
+ d = pSign * HSR.Distance(Vector(Qi), P)
+ if d >= -EPS:
+ n += 1
+ qVerticesInFrontPlaneP = (n == len(Q))
+
+ if qVerticesInFrontPlaneP:
+ debug("\nTest 4\n")
+ debug("Q IN FRONT OF P!\n")
+ continue
+
+
+ # Test 5: Check if projections of polygons effectively overlap,
+ # in previous tests we checked only bounding boxes.
+
+ #if not projectionsOverlap(P, Q):
+ if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
+ debug("\nTest 5\n")
+ debug("Projections do not overlap!\n")
+ continue
+
+ # We still can't say if P obscures Q.
+
+ # But if Q is marked we do a face-split trying to resolve a
+ # difficulty (maybe a visibility cycle).
+ if Q.smooth == 1:
+ # Split P or Q
+ debug("Possibly a cycle detected!\n")
+ debug("Split here!!\n")
+
+ facelist = HSR.facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
+
+ # The question now is: Does Q obscure P?
+
+
+ # Test 3bis: Q vertices are all behind the plane of P
+ n = 0
+ for Qi in Q:
+ d = pSign * HSR.Distance(Vector(Qi), P)
+ if d <= EPS:
+ n += 1
+ qVerticesBehindPlaneP = (n == len(Q))
+
+ if qVerticesBehindPlaneP:
+ debug("\nTest 3bis\n")
+ debug("Q BEHIND P!\n")
+
+
+ # Test 4bis: P vertices in front of the plane of Q
+ n = 0
+ for Pi in P:
+ d = qSign * HSR.Distance(Vector(Pi), Q)
+ if d >= -EPS:
+ n += 1
+ pVerticesInFrontPlaneQ = (n == len(P))
+
+ if pVerticesInFrontPlaneQ:
+ debug("\nTest 4bis\n")
+ debug("P IN FRONT OF Q!\n")
+
+
+ # We don't even know if Q does obscure P, so they should
+ # intersect each other, split one of them in two parts.
+ if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
+ debug("\nSimple Intersection?\n")
+ debug("Test 3bis or 4bis failed\n")
+ debug("Split here!!2\n")
+
+ facelist = HSR.facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
+
+ facelist.remove(Q)
+ facelist.insert(0, Q)
+ Q.smooth = 1
+ face_marked = 1
+ debug("Q marked!\n")
+ break
+
+ # Write P!
+ if split_done == 0 and face_marked == 0:
+ facelist.remove(P)
+ maplist.append(P)
+ dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg")
+
+ progress.update()
+
+ if len(facelist) == 870:
+ dumpfaces([P, Q], "loopdebug.svg")
+
+
+ #if facelist == None:
+ # maplist = [P, Q]
+ # print [v.co for v in P]
+ # print [v.co for v in Q]
+ # break
+
+ # end of while len(facelist)
+
+
+ nmesh.faces = maplist
+ #for f in nmesh.faces:
+ # f.sel = 1
+
+ nmesh.update()
+
+
+ def _doHiddenSurfaceRemoval(self, mesh):
+ """Do HSR for the given mesh.
+ """
+ if len(mesh.faces) == 0:
+ return
+
+ if config.polygons['HSR'] == 'PAINTER':
+ print "\nUsing the Painter algorithm for HSR."
+ self.__simpleDepthSort(mesh)
+
+ elif config.polygons['HSR'] == 'NEWELL':
+ print "\nUsing the Newell's algorithm for HSR."
+ self.__newellDepthSort(mesh)
+
+
+ def _doEdgesStyle(self, mesh, edgestyleSelect):
+ """Process Mesh Edges accroding to a given selection style.
+
+ Examples of algorithms:
+
+ Contours:
+ given an edge if its adjacent faces have the same normal (that is
+ they are complanar), than deselect it.
+
+ Silhouettes:
+ given an edge if one its adjacent faces is frontfacing and the
+ other is backfacing, than select it, else deselect.
+ """
+
+ Mesh.Mode(Mesh.SelectModes['EDGE'])
+
+ edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
+
+ for i,edge_faces in enumerate(edge_cache):
+ mesh.edges[i].sel = 0
+ if edgestyleSelect(edge_faces):
+ mesh.edges[i].sel = 1
+
+ """
+ for e in mesh.edges:
+
+ e.sel = 0
+ if edgestyleSelect(e, mesh):
+ e.sel = 1
+ """
+ #
+
+
+# ---------------------------------------------------------------------
+#
+## GUI Class and Main Program
+#
+# ---------------------------------------------------------------------
+
+
+from Blender import BGL, Draw
+from Blender.BGL import *
+
+class GUI:
+
+ def _init():
+
+ # Output Format menu
+ output_format = config.output['FORMAT']
+ default_value = outputWriters.keys().index(output_format)+1
+ GUI.outFormatMenu = Draw.Create(default_value)
+ GUI.evtOutFormatMenu = 0
+
+ # Animation toggle button
+ GUI.animToggle = Draw.Create(config.output['ANIMATION'])
+ GUI.evtAnimToggle = 1
+
+ # Join Objects toggle button
+ GUI.joinObjsToggle = Draw.Create(config.output['JOIN_OBJECTS'])
+ GUI.evtJoinObjsToggle = 2
+
+ # Render filled polygons
+ GUI.polygonsToggle = Draw.Create(config.polygons['SHOW'])
+
+ # Shading Style menu
+ shading_style = config.polygons['SHADING']
+ default_value = shadingStyles.keys().index(shading_style)+1
+ GUI.shadingStyleMenu = Draw.Create(default_value)
+ GUI.evtShadingStyleMenu = 21
+
+ GUI.evtPolygonsToggle = 3
+ # We hide the config.polygons['EXPANSION_TRICK'], for now
+
+ # Render polygon edges
+ GUI.showEdgesToggle = Draw.Create(config.edges['SHOW'])
+ GUI.evtShowEdgesToggle = 4
+
+ # Render hidden edges
+ GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN'])
+ GUI.evtShowHiddenEdgesToggle = 5
+
+ # Edge Style menu
+ edge_style = config.edges['STYLE']
+ default_value = edgeStyles.keys().index(edge_style)+1
+ GUI.edgeStyleMenu = Draw.Create(default_value)
+ GUI.evtEdgeStyleMenu = 6
+
+ # Edge Width slider
+ GUI.edgeWidthSlider = Draw.Create(config.edges['WIDTH'])
+ GUI.evtEdgeWidthSlider = 7
+
+ # Edge Color Picker
+ c = config.edges['COLOR']
+ GUI.edgeColorPicker = Draw.Create(c[0]/255.0, c[1]/255.0, c[2]/255.0)
+ GUI.evtEdgeColorPicker = 71
+
+ # Render Button
+ GUI.evtRenderButton = 8
+
+ # Exit Button
+ GUI.evtExitButton = 9
+
+ def draw():
+
+ # initialize static members
+ GUI._init()
+
+ glClear(GL_COLOR_BUFFER_BIT)
+ glColor3f(0.0, 0.0, 0.0)
+ glRasterPos2i(10, 350)
+ Draw.Text("VRM: Vector Rendering Method script. Version %s." %
+ __version__)
+ glRasterPos2i(10, 335)
+ Draw.Text("Press Q or ESC to quit.")
+
+ # Build the output format menu
+ glRasterPos2i(10, 310)
+ Draw.Text("Select the output Format:")
+ outMenuStruct = "Output Format %t"
+ for t in outputWriters.keys():
+ outMenuStruct = outMenuStruct + "|%s" % t
+ GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu,
+ 10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
+
+ # Animation toggle
+ GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle,
+ 10, 260, 160, 18, GUI.animToggle.val,
+ "Toggle rendering of animations")
+
+ # Join Objects toggle
+ GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle,
+ 10, 235, 160, 18, GUI.joinObjsToggle.val,
+ "Join objects in the rendered file")
+
+ # Render Button
+ Draw.Button("Render", GUI.evtRenderButton, 10, 210-25, 75, 25+18,
+ "Start Rendering")
+ Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!")
+
+ # Rendering Styles
+ glRasterPos2i(200, 310)
+ Draw.Text("Rendering Style:")
+
+ # Render Polygons
+ GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle,
+ 200, 285, 160, 18, GUI.polygonsToggle.val,
+ "Render filled polygons")
+
+ if GUI.polygonsToggle.val == 1:
+
+ # Polygon Shading Style
+ shadingStyleMenuStruct = "Shading Style %t"
+ for t in shadingStyles.keys():
+ shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower()
+ GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu,
+ 200, 260, 160, 18, GUI.shadingStyleMenu.val,
+ "Choose the shading style")
+
+
+ # Render Edges
+ GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle,
+ 200, 235, 160, 18, GUI.showEdgesToggle.val,
+ "Render polygon edges")
+
+ if GUI.showEdgesToggle.val == 1:
+
+ # Edge Style
+ edgeStyleMenuStruct = "Edge Style %t"
+ for t in edgeStyles.keys():
+ edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower()
+ GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu,
+ 200, 210, 160, 18, GUI.edgeStyleMenu.val,
+ "Choose the edge style")
+
+ # Edge size
+ GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider,
+ 200, 185, 140, 18, GUI.edgeWidthSlider.val,
+ 0.0, 10.0, 0, "Change Edge Width")
+
+ # Edge Color
+ GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker,
+ 342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
+
+ # Show Hidden Edges
+ GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges",
+ GUI.evtShowHiddenEdgesToggle,
+ 200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
+ "Render hidden edges as dashed lines")
+
+ glRasterPos2i(10, 160)
+ Draw.Text("%s (c) 2006" % __author__)
+
+ def event(evt, val):
+
+ if evt == Draw.ESCKEY or evt == Draw.QKEY:
+ Draw.Exit()
+ else:
+ return
+
+ Draw.Redraw(1)
+
+ def button_event(evt):
+
+ if evt == GUI.evtExitButton:
+ Draw.Exit()
+
+ elif evt == GUI.evtOutFormatMenu:
+ i = GUI.outFormatMenu.val - 1
+ config.output['FORMAT']= outputWriters.keys()[i]
+ # Set the new output file
+ global outputfile
+ outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
+
+ elif evt == GUI.evtAnimToggle:
+ config.output['ANIMATION'] = bool(GUI.animToggle.val)
+
+ elif evt == GUI.evtJoinObjsToggle:
+ config.output['JOIN_OBJECTS'] = bool(GUI.joinObjsToggle.val)
+
+ elif evt == GUI.evtPolygonsToggle:
+ config.polygons['SHOW'] = bool(GUI.polygonsToggle.val)
+
+ elif evt == GUI.evtShadingStyleMenu:
+ i = GUI.shadingStyleMenu.val - 1
+ config.polygons['SHADING'] = shadingStyles.keys()[i]
+
+ elif evt == GUI.evtShowEdgesToggle:
+ config.edges['SHOW'] = bool(GUI.showEdgesToggle.val)
+
+ elif evt == GUI.evtShowHiddenEdgesToggle:
+ config.edges['SHOW_HIDDEN'] = bool(GUI.showHiddenEdgesToggle.val)
+
+ elif evt == GUI.evtEdgeStyleMenu:
+ i = GUI.edgeStyleMenu.val - 1
+ config.edges['STYLE'] = edgeStyles.keys()[i]
+
+ elif evt == GUI.evtEdgeWidthSlider:
+ config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val)
+
+ elif evt == GUI.evtEdgeColorPicker:
+ config.edges['COLOR'] = [int(c*255.0) for c in GUI.edgeColorPicker.val]
+
+ elif evt == GUI.evtRenderButton:
+ label = "Save %s" % config.output['FORMAT']
+ # Show the File Selector
+ global outputfile
+ Blender.Window.FileSelector(vectorize, label, outputfile)
+
+ else:
+ print "Event: %d not handled!" % evt
+
+ if evt:
+ Draw.Redraw(1)
+ #GUI.conf_debug()
+
+ def conf_debug():
+ from pprint import pprint
+ print "\nConfig"
+ pprint(config.output)
+ pprint(config.polygons)
+ pprint(config.edges)
+
+ _init = staticmethod(_init)
+ draw = staticmethod(draw)
+ event = staticmethod(event)
+ button_event = staticmethod(button_event)
+ conf_debug = staticmethod(conf_debug)
+
+# A wrapper function for the vectorizing process
+def vectorize(filename):
+ """The vectorizing process is as follows:
+
+ - Instanciate the writer and the renderer
+ - Render!
+ """
+
+ if filename == "":
+ print "\nERROR: invalid file name!"
+ return
+
+ from Blender import Window
+ editmode = Window.EditMode()
+ if editmode: Window.EditMode(0)
+
+ actualWriter = outputWriters[config.output['FORMAT']]
+ writer = actualWriter(filename)
+
+ renderer = Renderer()
+ renderer.doRendering(writer, config.output['ANIMATION'])
+
+ if editmode: Window.EditMode(1)
+
+
+
+# Here the main
+if __name__ == "__main__":
+
+ global progress
+
+ outputfile = ""
+ basename = Blender.sys.basename(Blender.Get('filename'))
+ if basename != "":
+ outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
+
+ if Blender.mode == 'background':
+ progress = ConsoleProgressIndicator()
+ vectorize(outputfile)
+ else:
+ progress = GraphicalProgressIndicator()
+ Draw.Register(GUI.draw, GUI.event, GUI.button_event)