X-Git-Url: https://git.ao2.it/vrm.git/blobdiff_plain/cb334b8afdb1d2133db56e1c5f22e0d5b999f42a..d8063a0d4fb1d4448857006369dd02c3d30c8df6:/vrm.py diff --git a/vrm.py b/vrm.py index 726c83d..b3aac25 100755 --- a/vrm.py +++ b/vrm.py @@ -1,246 +1,1187 @@ #!BPY - """ Name: 'VRM' -Blender: 237 -Group: 'Export' -Tooltip: 'Vector Rendering Method Export Script' +Blender: 241 +Group: 'Render' +Tooltip: 'Vector Rendering Method script' +""" + +__author__ = "Antonio Ospite" +__url__ = ["http://vrm.projects.blender.org"] +__version__ = "0.3" + +__bpydoc__ = """\ + Render the scene and save the result in vector format. """ +# --------------------------------------------------------------------- +# Copyright (c) 2006 Antonio Ospite +# +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program; if not, write to the Free Software +# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +# +# --------------------------------------------------------------------- +# +# Additional credits: +# Thanks to Emilio Aguirre for S2flender from which I took inspirations :) +# Thanks to Nikola Radovanovic, the author of the original VRM script, +# the code you read here has been rewritten _almost_ entirely +# from scratch but Nikola gave me the idea, so I thank him publicly. +# +# --------------------------------------------------------------------- +# +# Things TODO for a next release: +# - Switch to the Mesh structure, should be considerably faster +# (partially done, but with Mesh we cannot sort faces, yet) +# - Use a better depth sorting algorithm +# - Review how selections are made (this script uses selection states of +# primitives to represent visibility infos) +# - Implement clipping of primitives and do handle object intersections. +# (for now only clipping for whole objects is supported). +# - Implement Edge Styles (silhouettes, contours, etc.) (partially done). +# - Implement Edge coloring +# - Use multiple lighting sources in color calculation +# - Implement Shading Styles? (for now we use Flat Shading). +# - Use a data structure other than Mesh to represent the 2D image? +# Think to a way to merge adjacent polygons that have the same color. +# Or a way to use paths for silhouettes and contours. +# - Add Vector Writers other that SVG. +# - Consider SMIL for animation handling instead of ECMA Script? +# +# --------------------------------------------------------------------- +# +# Changelog: +# +# vrm-0.3.py - 2006-05-19 +# * First release after code restucturing. +# Now the script offers a useful set of functionalities +# and it can render animations, too. +# +# --------------------------------------------------------------------- + import Blender -from Blender import Scene, Object, Lamp, Camera +from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera +from Blender.Mathutils import * from math import * -from Blender.Window import * -from Blender.Scene import Render -# distance from camera Z' -def Distance(PX,PY,PZ): +# Some global settings +PRINT_POLYGONS = True +POLYGON_EXPANSION_TRICK = True + +PRINT_EDGES = True +SHOW_HIDDEN_EDGES = False +#EDGE_STYLE = 'normal' +EDGE_STYLE = 'silhouette' +EDGES_WIDTH = 0.5 + +RENDER_ANIMATION = False + +OPTIMIZE_FOR_SPACE = True + +OUTPUT_FORMAT = 'SVG' + + +# --------------------------------------------------------------------- +# +## Utility Mesh class +# +# --------------------------------------------------------------------- +class MeshUtils: + def __init__(self): + return + + def getEdgeAdjacentFaces(self, edge, mesh): + """Get the faces adjacent to a given edge. + + There can be 0, 1 or more (usually 2) faces adjacent to an edge. + """ + adjface_list = [] + + for f in mesh.faces: + if (edge.v1 in f.v) and (edge.v2 in f.v): + adjface_list.append(f) + + return adjface_list + + def isVisibleEdge(self, e, mesh): + """Normal edge selection rule. + + An edge is visible if _any_ of its adjacent faces is selected. + Note: if the edge has no adjacent faces we want to show it as well, + useful for "edge only" portion of objects. + """ + + adjacent_faces = self.getEdgeAdjacentFaces(e, mesh) + + if len(adjacent_faces) == 0: + return True + + selected_faces = [f for f in adjacent_faces if f.sel] + + if len(selected_faces) != 0: + return True + else: + return False + + def isSilhouetteEdge(self, e, mesh): + """Silhuette selection rule. + + An edge is a silhuette edge if it is shared by two faces with + different selection status or if it is a boundary edge of a selected + face. + """ + + adjacent_faces = self.getEdgeAdjacentFaces(e, mesh) + + if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or + (len(adjacent_faces) == 2 and + adjacent_faces[0].sel != adjacent_faces[1].sel) + ): + return True + else: + return False + + + +# --------------------------------------------------------------------- +# +## Projections classes +# +# --------------------------------------------------------------------- + +class Projector: + """Calculate the projection of an object given the camera. - dist = sqrt(PX*PX+PY*PY+PZ*PZ) - return dist + A projector is useful to so some per-object transformation to obtain the + projection of an object given the camera. + + The main method is #doProjection# see the method description for the + parameter list. + """ + + def __init__(self, cameraObj, canvasRatio): + """Calculate the projection matrix. + + The projection matrix depends, in this case, on the camera settings. + TAKE CARE: This projector expects vertices in World Coordinates! + """ + + camera = cameraObj.getData() + + aspect = float(canvasRatio[0])/float(canvasRatio[1]) + near = camera.clipStart + far = camera.clipEnd + + scale = float(camera.scale) + + fovy = atan(0.5/aspect/(camera.lens/32)) + fovy = fovy * 360.0/pi + + # What projection do we want? + if camera.type: + #mP = self._calcOrthoMatrix(fovy, aspect, near, far, 17) #camera.scale) + mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale) + else: + mP = self._calcPerspectiveMatrix(fovy, aspect, near, far) + + # View transformation + cam = Matrix(cameraObj.getInverseMatrix()) + cam.transpose() + + mP = mP * cam + + self.projectionMatrix = mP -def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ): + ## + # Public methods + # + + def doProjection(self, v): + """Project the point on the view plane. + + Given a vertex calculate the projection using the current projection + matrix. + """ + + # Note that we have to work on the vertex using homogeneous coordinates + p = self.projectionMatrix * Vector(v).resize4D() + + if p[3]>0: + p[0] = p[0]/p[3] + p[1] = p[1]/p[3] + + # restore the size + p[3] = 1.0 + p.resize3D() + + return p + + ## + # Private methods + # - NewPoint = [] - # Rotate X - NewY = (PY * cos(AngleX))-(PZ * sin(AngleX)) - NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX)) - # Rotate Y - PZ = NewZ - PY = NewY - NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY)) - NewX = (PX * cos(AngleY))+(PZ * sin(AngleY)) - PX = NewX - PZ = NewZ - # Rotate Z - NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ)) - NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ)) - NewPoint.append(NewX) - NewPoint.append(NewY) - NewPoint.append(NewZ) - return NewPoint - -def vetmatmult(v, M): + def _calcPerspectiveMatrix(self, fovy, aspect, near, far): + """Return a perspective projection matrix. + """ + + top = near * tan(fovy * pi / 360.0) + bottom = -top + left = bottom*aspect + right= top*aspect + x = (2.0 * near) / (right-left) + y = (2.0 * near) / (top-bottom) + a = (right+left) / (right-left) + b = (top+bottom) / (top - bottom) + c = - ((far+near) / (far-near)) + d = - ((2*far*near)/(far-near)) + + m = Matrix( + [x, 0.0, a, 0.0], + [0.0, y, b, 0.0], + [0.0, 0.0, c, d], + [0.0, 0.0, -1.0, 0.0]) + + return m + + def _calcOrthoMatrix(self, fovy, aspect , near, far, scale): + """Return an orthogonal projection matrix. + """ + + # The 11 in the formula was found emiprically + top = near * tan(fovy * pi / 360.0) * (scale * 11) + bottom = -top + left = bottom * aspect + right= top * aspect + rl = right-left + tb = top-bottom + fn = near-far + tx = -((right+left)/rl) + ty = -((top+bottom)/tb) + tz = ((far+near)/fn) + + m = Matrix( + [2.0/rl, 0.0, 0.0, tx], + [0.0, 2.0/tb, 0.0, ty], + [0.0, 0.0, 2.0/fn, tz], + [0.0, 0.0, 0.0, 1.0]) + + return m + + + +# --------------------------------------------------------------------- +# +## 2D Object representation class +# +# --------------------------------------------------------------------- + +# TODO: a class to represent the needed properties of a 2D vector image +# For now just using a [N]Mesh structure. + + +# --------------------------------------------------------------------- +# +## Vector Drawing Classes +# +# --------------------------------------------------------------------- + +## A generic Writer + +class VectorWriter: + """ + A class for printing output in a vectorial format. + + Given a 2D representation of the 3D scene the class is responsible to + write it is a vector format. + + Every subclasses of VectorWriter must have at last the following public + methods: + - open(self) + - close(self) + - printCanvas(self, scene, + doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False): + """ - v2 = [0, 0, 0, 0] + def __init__(self, fileName): + """Set the output file name and other properties""" + + self.outputFileName = fileName + self.file = None + + context = Scene.GetCurrent().getRenderingContext() + self.canvasSize = ( context.imageSizeX(), context.imageSizeY() ) + + self.startFrame = 1 + self.endFrame = 1 + self.animation = False + + + ## + # Public Methods + # - for i in range(0, 3): - for j in range(0, 3): - v2[i] += (v[i]*M[i][j]) + def open(self, startFrame=1, endFrame=1): + if startFrame != endFrame: + self.startFrame = startFrame + self.endFrame = endFrame + self.animation = True + + self.file = open(self.outputFileName, "w") + print "Outputting to: ", self.outputFileName + + return + + def close(self): + self.file.close() + return + + def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, + showHiddenEdges=False): + """This is the interface for the needed printing routine. + """ + return + + +## SVG Writer + +class SVGVectorWriter(VectorWriter): + """A concrete class for writing SVG output. + """ + + def __init__(self, fileName): + """Simply call the parent Contructor. + """ + VectorWriter.__init__(self, fileName) + + + ## + # Public Methods + # + + def open(self, startFrame=1, endFrame=1): + """Do some initialization operations. + """ + VectorWriter.open(self, startFrame, endFrame) + self._printHeader() + + def close(self): + """Do some finalization operation. + """ + self._printFooter() + + # remember to call the close method of the parent + VectorWriter.close(self) + + + def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False, + showHiddenEdges=False): + """Convert the scene representation to SVG. + """ - return v2 + Objects = scene.getChildren() -def flatern(vertx, verty, vertz): + context = scene.getRenderingContext() + framenumber = context.currentFrame() - cam = Camera.get() # Get the cameras in scene - Lens = cam[0].getLens() # The First Blender camera lens + if self.animation: + framestyle = "display:none" + else: + framestyle = "display:block" + + # Assign an id to this group so we can set properties on it using DOM + self.file.write("\n" % + (framenumber, framestyle) ) - camTyp = cam[0].getType() + for obj in Objects: - msize = (context.imageSizeX(), context.imageSizeY()) - xres = msize[0] # X res for output - yres = msize[1] # Y res for output - ratio = xres/yres + if(obj.getType() != 'Mesh'): + continue - fov = atan(ratio * 16.0 / Lens) # Get fov stuff + self.file.write("\n" % obj.getName()) + + mesh = obj.getData(mesh=1) + + if doPrintPolygons: + self._printPolygons(mesh) + + if doPrintEdges: + self._printEdges(mesh, showHiddenEdges) + + self.file.write("\n") + + self.file.write("\n") + + + ## + # Private Methods + # - dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane + def _calcCanvasCoord(self, v): + """Convert vertex in scene coordinates to canvas coordinates. + """ + + pt = Vector([0, 0, 0]) + + mW = float(self.canvasSize[0])/2.0 + mH = float(self.canvasSize[1])/2.0 + + # rescale to canvas size + pt[0] = v.co[0]*mW + mW + pt[1] = v.co[1]*mH + mH + pt[2] = v.co[2] + + # For now we want (0,0) in the top-left corner of the canvas. + # Mirror and translate along y + pt[1] *= -1 + pt[1] += self.canvasSize[1] + + return pt + + def _printHeader(self): + """Print SVG header.""" + + self.file.write("\n") + self.file.write("\n") + self.file.write("\n\n" % + self.canvasSize) + + if self.animation: + + self.file.write("""\n\n + \n""" % (self.startFrame, self.endFrame, self.startFrame) ) + + def _printFooter(self): + """Print the SVG footer.""" + + self.file.write("\n\n") + + def _printPolygons(self, mesh): + """Print the selected (visible) polygons. + """ + + if len(mesh.faces) == 0: + return -######## -# Main # -######## + self.file.write("\n") -scena = Scene.GetCurrent() -context = scena.getRenderingContext() -renderDir = context.getRenderPath() + for face in mesh.faces: + if not face.sel: + continue -msize = (context.imageSizeX(), context.imageSizeY()) + self.file.write("\n") -file.write("\n") -#file.write("\n") + # use the stroke property to alleviate the "adjacent edges" problem, + # we simulate polygon expansion using borders, + # see http://www.antigrain.com/svg/index.html for more info + stroke_col = color + stroke_width = 0.5 -Objects = Blender.Object.Get() -NUMobjects = len(Objects) + # Convert the color to the #RRGGBB form + str_col = "#%02X%02X%02X" % (color[0], color[1], color[2]) -startFrm = context.startFrame() -endFrm = startFrm -#endFrm = context.endFrame() -frames = range(startFrm, endFrm+1) + # Handle transparent polygons + opacity_string = "" + if color[3] != 255: + opacity = float(color[3])/255.0 + opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity) -# are we rendering an animation ? -animation = (len(frames) > 1) + self.file.write("\tstyle=\"fill:" + str_col + ";") + self.file.write(opacity_string) + if POLYGON_EXPANSION_TRICK: + self.file.write(" stroke:" + str_col + ";") + self.file.write(" stroke-width:" + str(stroke_width) + ";\n") + self.file.write(" stroke-linecap:round;stroke-linejoin:round") + self.file.write("\"/>\n") -camera = scena.getCurrentCamera() # Get the current camera + self.file.write("\n") -for f in frames: - context.currentFrame(f) - Blender.Set('curframe', f) + def _printEdges(self, mesh, showHiddenEdges=False): + """Print the wireframe using mesh edges. + """ - DrawProgressBar (f/len(frames),"Rendering ..." + str(f)) + stroke_width=EDGES_WIDTH + stroke_col = [0, 0, 0] + + self.file.write("\n") - print "Frame: ", f, "\n" - if animation : - file.write("\n") + for e in mesh.edges: + + hidden_stroke_style = "" + + # We consider an edge visible if _both_ its vertices are selected, + # hence an edge is hidden if _any_ of its vertices is deselected. + if e.sel == 0: + if showHiddenEdges == False: + continue + else: + hidden_stroke_style = ";\n stroke-dasharray:3, 3" - for o in Objects: + p1 = self._calcCanvasCoord(e.v1) + p2 = self._calcCanvasCoord(e.v2) + + self.file.write("\n") + + self.file.write("\n") + + + +# --------------------------------------------------------------------- +# +## Rendering Classes +# +# --------------------------------------------------------------------- + +class Renderer: + """Render a scene viewed from a given camera. + + This class is responsible of the rendering process, transformation and + projection of the objects in the scene are invoked by the renderer. - if o.getType() == "Mesh": + The rendering is done using the active camera for the current scene. + """ - obj = o # Get the first selected object - objname = obj.name # The object name + def __init__(self): + """Make the rendering process only for the current scene by default. + We will work on a copy of the scene, be sure that the current scene do + not get modified in any way. + """ - OBJmesh = obj.getData() # Get the mesh data for the object - meshfaces = OBJmesh.faces # The number of faces in the object + # Render the current Scene, this should be a READ-ONLY property + self._SCENE = Scene.GetCurrent() + + # Use the aspect ratio of the scene rendering context + context = self._SCENE.getRenderingContext() - #------------ - # Get the Material Colors - #------------ + aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY()) + self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio, + float(context.aspectRatioY()) + ) + + # Render from the currently active camera + self.cameraObj = self._SCENE.getCurrentCamera() + + # Get the list of lighting sources + obj_lst = self._SCENE.getChildren() + self.lights = [ o for o in obj_lst if o.getType() == 'Lamp'] + + if len(self.lights) == 0: + l = Lamp.New('Lamp') + lobj = Object.New('Lamp') + lobj.link(l) + self.lights.append(lobj) + + + ## + # Public Methods + # + + def doRendering(self, outputWriter, animation=False): + """Render picture or animation and write it out. + + The parameters are: + - a Vector writer object that will be used to output the result. + - a flag to tell if we want to render an animation or only the + current frame. + """ + + context = self._SCENE.getRenderingContext() + currentFrame = context.currentFrame() + + # Handle the animation case + if not animation: + startFrame = currentFrame + endFrame = startFrame + outputWriter.open() + else: + startFrame = context.startFrame() + endFrame = context.endFrame() + outputWriter.open(startFrame, endFrame) + + # Do the rendering process frame by frame + print "Start Rendering!" + for f in range(startFrame, endFrame+1): + context.currentFrame(f) + + renderedScene = self.doRenderScene(self._SCENE) + outputWriter.printCanvas(renderedScene, + doPrintPolygons = PRINT_POLYGONS, + doPrintEdges = PRINT_EDGES, + showHiddenEdges = SHOW_HIDDEN_EDGES) - #MATinfo = OBJmesh.getMaterials() - # - #if len(MATinfo) > 0: - # RGB=MATinfo[0].rgbCol - # R=int(RGB[0]*255) - # G=int(RGB[1]*255) - # B=int(RGB[2]*255) - # color=`R`+"."+`G`+"."+`B` - # print color - #else: - # color="100.100.100" + # clear the rendered scene + self._SCENE.makeCurrent() + Scene.unlink(renderedScene) + del renderedScene + + outputWriter.close() + print "Done!" + context.currentFrame(currentFrame) + + + def doRenderScene(self, inputScene): + """Control the rendering process. + + Here we control the entire rendering process invoking the operation + needed to transform and project the 3D scene in two dimensions. + """ + + # Use some temporary workspace, a full copy of the scene + workScene = inputScene.copy(2) + + # Get a projector for this scene. + # NOTE: the projector wants object in world coordinates, + # so we should apply modelview transformations _before_ + # projection transformations + proj = Projector(self.cameraObj, self.canvasRatio) + + # global processing of the scene + + self._doConvertGeometricObjToMesh(workScene) + self._doSceneClipping(workScene) - for face in range(0, len(meshfaces)): - numvert = len(OBJmesh.faces[face]) + + # XXX: Joining objects does not work in batch mode!! + # Do not touch the following if, please :) + + global OPTIMIZE_FOR_SPACE + if Blender.mode == 'background': + print "\nWARNING! Joining objects not supported in background mode!\n" + OPTIMIZE_FOR_SPACE = False + + if OPTIMIZE_FOR_SPACE: + self._joinMeshObjectsInScene(workScene) + + + self._doSceneDepthSorting(workScene) + + # Per object activities + + Objects = workScene.getChildren() + for obj in Objects: + + if obj.getType() != 'Mesh': + print "Only Mesh supported! - Skipping type:", obj.getType() + continue + + print "Rendering: ", obj.getName() + + mesh = obj.getData() + + self._doModelToWorldCoordinates(mesh, obj.matrix) + + self._doObjectDepthSorting(mesh) + + # We use both Mesh and NMesh because for depth sorting we change + # face order and Mesh class don't let us to do that. + mesh.update() + mesh = obj.getData(mesh=1) + + self._doBackFaceCulling(mesh) + + self._doColorAndLighting(mesh) + + self._doEdgesStyle(mesh, edgeSelectionStyles[EDGE_STYLE]) + + self._doProjection(mesh, proj) + + # Update the object data, important! :) + mesh.update() + + return workScene + + + ## + # Private Methods + # + + # Utility methods + + def _getObjPosition(self, obj): + """Return the obj position in World coordinates. + """ + return obj.matrix.translationPart() + + def _cameraViewDirection(self): + """Get the View Direction form the camera matrix. + """ + return Vector(self.cameraObj.matrix[2]).resize3D() + + + # Faces methods + + def _isFaceVisible(self, face): + """Determine if a face of an object is visible from the current camera. + + The view vector is calculated from the camera location and one of the + vertices of the face (expressed in World coordinates, after applying + modelview transformations). + + After those transformations we determine if a face is visible by + computing the angle between the face normal and the view vector, this + angle has to be between -90 and 90 degrees for the face to be visible. + This corresponds somehow to the dot product between the two, if it + results > 0 then the face is visible. + + There is no need to normalize those vectors since we are only interested in + the sign of the cross product and not in the product value. + + NOTE: here we assume the face vertices are in WorldCoordinates, so + please transform the object _before_ doing the test. + """ + + normal = Vector(face.no) + camPos = self._getObjPosition(self.cameraObj) + view_vect = None + + # View Vector in orthographics projections is the view Direction of + # the camera + if self.cameraObj.data.getType() == 1: + view_vect = self._cameraViewDirection() + + # View vector in perspective projections can be considered as + # the difference between the camera position and one point of + # the face, we choose the farthest point from the camera. + if self.cameraObj.data.getType() == 0: + vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] ) + view_vect = vv[1] + + # if d > 0 the face is visible from the camera + d = view_vect * normal + + if d > 0: + return True + else: + return False + + + # Scene methods + + def _doConvertGeometricObjToMesh(self, scene): + """Convert all "geometric" objects to mesh ones. + """ + geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text'] + + Objects = scene.getChildren() + objList = [ o for o in Objects if o.getType() in geometricObjTypes ] + for obj in objList: + old_obj = obj + obj = self._convertToRawMeshObj(obj) + scene.link(obj) + scene.unlink(old_obj) + + + # XXX Workaround for Text and Curve which have some normals + # inverted when they are converted to Mesh, REMOVE that when + # blender will fix that!! + if old_obj.getType() in ['Curve', 'Text']: + me = obj.getData(mesh=1) + for f in me.faces: f.sel = 1; + for v in me.verts: v.sel = 1; + me.remDoubles(0) + me.triangleToQuad() + me.recalcNormals() + me.update() + + + def _doSceneClipping(self, scene): + """Clip objects against the View Frustum. + + For now clip away only objects according to their center position. + """ + + cpos = self._getObjPosition(self.cameraObj) + view_vect = self._cameraViewDirection() + + near = self.cameraObj.data.clipStart + far = self.cameraObj.data.clipEnd + + aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1]) + fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32)) + fovy = fovy * 360.0/pi + + Objects = scene.getChildren() + for o in Objects: + if o.getType() != 'Mesh': continue; + + obj_vect = Vector(cpos) - self._getObjPosition(o) + + d = obj_vect*view_vect + theta = AngleBetweenVecs(obj_vect, view_vect) + + # if the object is outside the view frustum, clip it away + if (d < near) or (d > far) or (theta > fovy): + scene.unlink(o) + + def _doSceneDepthSorting(self, scene): + """Sort objects in the scene. + + The object sorting is done accordingly to the object centers. + """ + + c = self._getObjPosition(self.cameraObj) + + by_center_pos = (lambda o1, o2: + (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and + cmp((self._getObjPosition(o1) - Vector(c)).length, + (self._getObjPosition(o2) - Vector(c)).length) + ) + + # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb, + # then ob1 goes farther than obj2, useful when obj2 has holes + by_bbox = None + + Objects = scene.getChildren() + Objects.sort(by_center_pos) + + # update the scene + for o in Objects: + scene.unlink(o) + scene.link(o) + + def _joinMeshObjectsInScene(self, scene): + """Merge all the Mesh Objects in a scene into a single Mesh Object. + """ + mesh = Mesh.New() + bigObj = Object.New('Mesh', 'BigOne') + bigObj.link(mesh) + + oList = [o for o in scene.getChildren() if o.getType()=='Mesh'] + bigObj.join(oList) + scene.link(bigObj) + for o in oList: + scene.unlink(o) + + scene.update() + + + # Per object methods + + def _convertToRawMeshObj(self, object): + """Convert geometry based object to a mesh object. + """ + me = Mesh.New('RawMesh_'+object.name) + me.getFromObject(object.name) + + newObject = Object.New('Mesh', 'RawMesh_'+object.name) + newObject.link(me) + + # If the object has no materials set a default material + if not me.materials: + me.materials = [Material.New()] + #for f in me.faces: f.mat = 0 + + newObject.setMatrix(object.getMatrix()) + + return newObject + + def _doModelToWorldCoordinates(self, mesh, matrix): + """Transform object coordinates to world coordinates. + + This step is done simply applying to the object its tranformation + matrix and recalculating its normals. + """ + mesh.transform(matrix, True) + + def _doObjectDepthSorting(self, mesh): + """Sort faces in an object. + + The faces in the object are sorted following the distance of the + vertices from the camera position. + """ + c = self._getObjPosition(self.cameraObj) + + # hackish sorting of faces + + # Sort faces according to the max distance from the camera + by_max_vert_dist = (lambda f1, f2: + cmp(max([(Vector(v.co)-Vector(c)).length for v in f1]), + max([(Vector(v.co)-Vector(c)).length for v in f2]))) + + # Sort faces according to the min distance from the camera + by_min_vert_dist = (lambda f1, f2: + cmp(min([(Vector(v.co)-Vector(c)).length for v in f1]), + min([(Vector(v.co)-Vector(c)).length for v in f2]))) + + # Sort faces according to the avg distance from the camera + by_avg_vert_dist = (lambda f1, f2: + cmp(sum([(Vector(v.co)-Vector(c)).length for v in f1])/len(f1), + sum([(Vector(v.co)-Vector(c)).length for v in f2])/len(f2))) + + mesh.faces.sort(by_max_vert_dist) + mesh.faces.reverse() + + def _doBackFaceCulling(self, mesh): + """Simple Backface Culling routine. + + At this level we simply do a visibility test face by face and then + select the vertices belonging to visible faces. + """ + + # Select all vertices, so edges can be displayed even if there are no + # faces + for v in mesh.verts: + v.sel = 1 + + Mesh.Mode(Mesh.SelectModes['FACE']) + # Loop on faces + for f in mesh.faces: + f.sel = 0 + if self._isFaceVisible(f): + f.sel = 1 + + # Is this the correct way to propagate the face selection info to the + # vertices belonging to a face ?? + # TODO: Using the Mesh module this should come for free. Right? + #Mesh.Mode(Mesh.SelectModes['VERTEX']) + #for f in mesh.faces: + # if not f.sel: + # for v in f: v.sel = 0; + + #for f in mesh.faces: + # if f.sel: + # for v in f: v.sel = 1; + + def _doColorAndLighting(self, mesh): + """Apply an Illumination model to the object. + + The Illumination model used is the Phong one, it may be inefficient, + but I'm just learning about rendering and starting from Phong seemed + the most natural way. + """ + + # If the mesh has vertex colors already, use them, + # otherwise turn them on and do some calculations + if mesh.vertexColors: + return + mesh.vertexColors = 1 + + materials = mesh.materials + + # TODO: use multiple lighting sources + light_obj = self.lights[0] + light_pos = self._getObjPosition(light_obj) + light = light_obj.data + + camPos = self._getObjPosition(self.cameraObj) + + # We do per-face color calculation (FLAT Shading), we can easily turn + # to a per-vertex calculation if we want to implement some shading + # technique. For an example see: + # http://www.miralab.unige.ch/papers/368.pdf + for f in mesh.faces: + if not f.sel: + continue + + mat = None + if materials: + mat = materials[f.mat] + + # A new default material + if mat == None: + mat = Material.New('defMat') + + L = Vector(light_pos).normalize() + + V = (Vector(camPos) - Vector(f.v[0].co)).normalize() + + N = Vector(f.no).normalize() + + R = 2 * (N*L) * N - L + + # TODO: Attenuation factor (not used for now) + a0 = 1; a1 = 0.0; a2 = 0.0 + d = (Vector(f.v[0].co) - Vector(light_pos)).length + fd = min(1, 1.0/(a0 + a1*d + a2*d*d)) + + # Ambient component + Ia = 1.0 + ka = mat.getAmb() * Vector([0.1, 0.1, 0.1]) + Iamb = Ia * ka + + # Diffuse component (add light.col for kd) + kd = mat.getRef() * Vector(mat.getRGBCol()) + Ip = light.getEnergy() + Idiff = Ip * kd * (N*L) + + # Specular component + ks = mat.getSpec() * Vector(mat.getSpecCol()) + ns = mat.getHardness() + Ispec = Ip * ks * pow((V * R), ns) + + # Emissive component + ki = Vector([mat.getEmit()]*3) + + I = ki + Iamb + Idiff + Ispec + + # Set Alpha component + I = list(I) + I.append(mat.getAlpha()) + + # Clamp I values between 0 and 1 + I = [ min(c, 1) for c in I] + I = [ max(0, c) for c in I] + tmp_col = [ int(c * 255.0) for c in I] + + for c in f.col: + c.r = tmp_col[0] + c.g = tmp_col[1] + c.b = tmp_col[2] + c.a = tmp_col[3] + + def _doEdgesStyle(self, mesh, edgestyleSelect): + """Process Mesh Edges accroding to a given selection style. + + Examples of algorithms: + + Contours: + given an edge if its adjacent faces have the same normal (that is + they are complanar), than deselect it. + + Silhouettes: + given an edge if one its adjacent faces is frontfacing and the + other is backfacing, than select it, else deselect. + """ + + Mesh.Mode(Mesh.SelectModes['EDGE']) + + for e in mesh.edges: + + if edgestyleSelect(e, mesh): + e.sel = 1 + else: + e.sel = 0 - #if (isVisible(face)): - # print "face visible" - - # backface culling - a = [] - a.append(OBJmesh.faces[face][0][0]) - a.append(OBJmesh.faces[face][0][1]) - a.append(OBJmesh.faces[face][0][2]) - a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ) - a[0] += obj.LocX - camera.LocX - a[1] += obj.LocY - camera.LocY - a[2] += obj.LocZ - camera.LocZ - b = [] - b.append(OBJmesh.faces[face][1][0]) - b.append(OBJmesh.faces[face][1][1]) - b.append(OBJmesh.faces[face][1][2]) - b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ) - b[0] += obj.LocX - camera.LocX - b[1] += obj.LocY - camera.LocY - b[2] += obj.LocZ - camera.LocZ - c = [] - c.append(OBJmesh.faces[face][numvert-1][0]) - c.append(OBJmesh.faces[face][numvert-1][1]) - c.append(OBJmesh.faces[face][numvert-1][2]) - c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ) - c[0] += obj.LocX - camera.LocX - c[1] += obj.LocY - camera.LocY - c[2] += obj.LocZ - camera.LocZ - - norm = [0,0,0] - norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2]) - norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2])) - norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1]) - - d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2] - - # if the face is visible flatten it on the "picture plane" - if d < 0: - file.write("\n") - if animation: - file.write("\n") - file.write("\n") - file.write("\n") - -file.write("") -file.close() -DrawProgressBar (1.0,"Finished.") -print "Finished\n" + def _doProjection(self, mesh, projector): + """Calculate the Projection for the object. + """ + # TODO: maybe using the object.transform() can be faster? + + for v in mesh.verts: + p = projector.doProjection(v.co) + v.co[0] = p[0] + v.co[1] = p[1] + v.co[2] = p[2] + + + +# --------------------------------------------------------------------- +# +## Main Program +# +# --------------------------------------------------------------------- + +# A dictionary to collect all the different edge styles and their edge +# selection criteria +edgeSelectionStyles = { + 'normal': MeshUtils().isVisibleEdge, + 'silhouette': MeshUtils().isSilhouetteEdge + } + +# A dictionary to collect the supported output formats +outputWriters = { + 'SVG': SVGVectorWriter, + } + + +# A wrapper function for the vectorizing process +def vectorize(filename): + """The vectorizing process is as follows: + + - Instanciate the writer and the renderer + - Render! + """ + from Blender import Window + editmode = Window.EditMode() + if editmode: Window.EditMode(0) + + writer = outputWriters[OUTPUT_FORMAT](filename) + + renderer = Renderer() + renderer.doRendering(writer, RENDER_ANIMATION) + + if editmode: Window.EditMode(1) + + +# Here the main +if __name__ == "__main__": + + basename = Blender.sys.basename(Blender.Get('filename')) + outputfile = Blender.sys.splitext(basename)[0]+".svg" + + if Blender.mode == 'background': + vectorize(outputfile) + else: + label = "Save %s" % OUTPUT_FORMAT + Blender.Window.FileSelector(vectorize, label, outputfile) + Blender.Redraw()