3 # A Diagram abstraction based on Cairo
5 # Copyright (C) 2015 Antonio Ospite <ao2@ao2.it>
7 # This program is free software: you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation, either version 3 of the License, or
10 # (at your option) any later version.
12 # This program is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
17 # You should have received a copy of the GNU General Public License
18 # along with this program. If not, see <http://www.gnu.org/licenses/>.
24 class Diagram(object):
26 def __init__(self, width, height, background=[1, 1, 1], font_size=20):
29 self.background = background
31 # TODO: use a RecordingSurface
32 self.surface = cairo.SVGSurface(None, width, height)
33 self.cr = cr = cairo.Context(self.surface)
35 # convert to left-bottom-origin cartesian coordinates
36 cr.translate(0, self.height)
39 cr.select_font_face("Georgia", cairo.FONT_SLANT_NORMAL,
40 cairo.FONT_WEIGHT_NORMAL)
41 cr.set_font_size(font_size)
43 # Adjust the font matrix to left-bottom origin
44 M = cr.get_font_matrix()
51 r, g, b, a = self.color_to_rgba(self.background)
52 cr.set_source_rgba(r, g, b, a)
55 def save_svg(self, filename):
56 surface = cairo.SVGSurface(filename + '.svg', self.width, self.height)
57 cr = cairo.Context(surface)
58 cr.set_source_surface(self.surface, 0, 0)
61 def save_png(self, filename):
62 surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, self.width, self.height)
63 cr = cairo.Context(surface)
64 cr.set_source_surface(self.surface, 0, 0)
66 surface.write_to_png(filename + '.png')
71 f = StringIO.StringIO()
72 surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, self.width, self.height)
73 cr = cairo.Context(surface)
74 cr.set_source_surface(self.surface, 0, 0)
76 surface.write_to_png(f)
81 def get_regular_polygon(self, x, y, sides, r, theta0=0.0):
82 theta = 2 * pi / sides
85 for i in range(0, sides):
86 px = x + r * sin(theta0 + i * theta)
87 py = y + r * cos(theta0 + i * theta)
88 verts.append((px, py))
92 def color_to_rgba(self, color):
94 return color[0], color[1], color[2], 1.0
96 return color[0], color[1], color[2], color[3]
100 def _draw_polygon(self, verts):
104 cr.move_to(v[0], v[1])
106 cr.line_to(v[0], v[1])
109 def draw_polygon_by_verts(self, verts, fill_color=None, stroke_color=[0, 0, 0]):
113 self._draw_polygon(verts)
114 r, g, b, a = self.color_to_rgba(fill_color)
115 cr.set_source_rgba(r, g, b, a)
119 self._draw_polygon(verts)
120 r, g, b, a = self.color_to_rgba(stroke_color)
121 cr.set_source_rgba(r, g, b, a)
124 def draw_polygon(self, cx, cy, sides, r, theta=0.0, fill_color=None, stroke_color=[0, 0, 0]):
125 verts = self.get_regular_polygon(cx, cy, sides, r, theta)
126 self.draw_polygon_by_verts(verts, fill_color, stroke_color)
128 def draw_star_by_verts(self, cx, cy, verts, stroke_color=[0, 0, 0]):
133 cr.line_to(v[0], v[1])
135 r, g, b, a = self.color_to_rgba(stroke_color)
136 cr.set_source_rgba(r, g, b, a)
139 def draw_star(self, cx, cy, sides, r, theta=0.0, stroke_color=[0, 0, 0]):
140 apothem = r * cos(pi / sides)
141 apothem_angle = theta + pi / sides
143 verts = self.get_regular_polygon(cx, cy, sides, apothem, apothem_angle)
144 self.draw_star_by_verts(cx, cy, verts, stroke_color)
146 def draw_circle(self, cx, cy, size=10.0, fill_color=[0, 0, 0, 0.5],
151 cr.arc(cx, cy, size, 0, 2 * pi)
154 r, g, b, a = self.color_to_rgba(fill_color)
155 cr.set_source_rgba(r, g, b, a)
159 r, g, b, a = self.color_to_rgba(stroke_color)
160 cr.set_source_rgba(r, g, b, a)
165 def normalized_angle_01(self, theta):
166 return fmod(theta, 2 * pi) / (2 * pi)
168 def draw_line(self, x1, y1, x2, y2, stroke_color=[0, 0, 0, 1]):
172 r, g, b, a = self.color_to_rgba(stroke_color)
173 cr.set_source_rgba(r, g, b, a)
176 def draw_rect_from_center(self, cx, cy, width, height, theta=0,
177 fill_color=[1, 1, 1, 0.8], stroke_color=None):
180 # the position of the center of a rectangle at (0,0)
184 # calculate the position of the bottom-left corner after rotating the
185 # rectangle around the center
186 rx = cx - (mx * cos(theta) - my * sin(theta))
187 ry = cy - (mx * sin(theta) + my * cos(theta))
189 self.draw_rect(rx, ry, width, height, theta, fill_color, stroke_color)
191 def draw_rect(self, x, y, width, height, theta=0,
192 fill_color=[1, 1, 1, 0.8], stroke_color=None):
200 cr.rectangle(0, 0, width, height)
201 r, g, b, a = self.color_to_rgba(fill_color)
202 cr.set_source_rgba(r, g, b, a)
206 cr.rectangle(0, 0, width, height)
207 r, g, b, a = self.color_to_rgba(stroke_color)
208 cr.set_source_rgba(r, g, b, a)
213 def draw_centered_text(self, cx, cy, text, theta=0,
215 align_baseline=False,
216 bb_fill_color=[1, 1, 1, 0.8],
217 bb_stroke_color=None):
220 x_bearing, y_bearing, width, height, x_advance = cr.text_extents(text)[:5]
221 ascent, descent = cr.font_extents()[:2]
223 # The offset of the lower-left corner of the text.
224 tx = width / 2.0 + x_bearing
227 # When aligning to the baseline it is convenient the make the
228 # bounding box depend on the font vertical extent and not from the
231 bb = [0, -descent, width, ascent]
233 ty = height / 2.0 + y_bearing
234 bb = [0, y_bearing, width, height]
236 # Angles are intended clockwise by the caller, but the trigonometric
237 # functions below consider angles counter-clockwise
240 # The coordinate of the lower-left corner of the rotated rectangle
241 rx = cx - tx * cos(theta) + ty * sin(theta)
242 ry = cy - tx * sin(theta) - ty * cos(theta)
248 if bb_fill_color or bb_stroke_color:
249 self.draw_rect(bb[0], bb[1], bb[2], bb[3], 0, bb_fill_color, bb_stroke_color)
251 r, g, b, a = self.color_to_rgba(color)
252 cr.set_source_rgba(r, g, b, a)
261 if __name__ == "__main__":
262 diagram = Diagram(400, 400)
273 advance = diagram.draw_centered_text(x_offset, y, "Ciao", theta, align_baseline=True, bb_stroke_color=[0, 0, 0, 0.5])
276 advance = diagram.draw_centered_text(x_offset, y, "____", theta + pi / 4, align_baseline=True, bb_stroke_color=[0, 0, 0, 0.5])
279 advance = diagram.draw_centered_text(x_offset, y, "jxpqdlf", theta + pi / 2, align_baseline=True, bb_stroke_color=[0, 0, 0, 0.5])
282 advance = diagram.draw_centered_text(x_offset, y, "pppp", theta + 3 * pi / 4, align_baseline=True, bb_stroke_color=[0, 0, 0, 0.5])
285 advance = diagram.draw_centered_text(x_offset, y, "dddd", theta + pi, align_baseline=True, bb_stroke_color=[0, 0, 0, 0.5])
288 advance = diagram.draw_centered_text(x_offset, y, "Jjjj", theta + 5 * pi / 4, align_baseline=True, bb_stroke_color=[0, 0, 0, 0.5])
291 advance = diagram.draw_centered_text(x_offset, y, "1369", theta + 3 * pi / 2, align_baseline=True, bb_stroke_color=[0, 0, 0, 0.5])
294 advance = diagram.draw_centered_text(x_offset, y, "qqqq", theta + 7 * pi / 4, align_baseline=True, bb_stroke_color=[0, 0, 0, 0.5])
297 diagram.draw_line(0, y, 400, y, [0, 0, 1, 0.2])
299 diagram.draw_rect(40, 40, 300, 100, stroke_color=[0, 0, 0, 0.8])
300 diagram.draw_rect(40, 40, 300, 100, pi / 30, stroke_color=[0, 0, 0, 0.8])
302 diagram.draw_rect(40, 250, 300, 100, stroke_color=[0, 0, 0, 0.8])
303 diagram.draw_rect_from_center(40 + 150, 250 + 50, 300, 100, theta=(pi / 40), stroke_color=[1, 0, 0], fill_color=None)