+#!/usr/bin/env python
+#
+# An class to draw tetraflexagons
+#
+# Copyright (C) 2018 Antonio Ospite <ao2@ao2.it>
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+from math import sin, cos
+from .tritetraflexagon import TriTetraflexagon
+
+
+class TetraflexagonDiagram(object):
+ def __init__(self, x_border, backend=None):
+ self.x_border = x_border
+ self.backend = backend
+
+ self.tetraflexagon = TriTetraflexagon()
+
+ num_squares = len(self.tetraflexagon.squares)
+ self.square_side = (self.backend.height - (x_border * 3)) / (num_squares)
+ self.square_radius = self.square_side / 2
+ self.tile_side = self.square_radius
+ self.tile_radius = self.tile_side / 2
+
+ self._init_centers()
+
+ # draw the plan centered wrt. the squares
+ self.plan_origin = ((self.backend.width - self.tile_side * 5) / 2,
+ self.x_border)
+
+ self.squares_color_map = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
+
+ def _init_centers(self):
+ # Preallocate the lists to be able to access them by indices in the
+ # loops below.
+ self.squares_centers = [None for h in self.tetraflexagon.squares]
+ self.tiles_centers = [[None for t in h.tiles] for h in self.tetraflexagon.squares]
+
+ cy = self.backend.height - (self.square_radius + self.x_border)
+ for square in self.tetraflexagon.squares:
+ cx = self.x_border + (2 * self.square_radius + self.x_border) * (square.index + 1)
+ self.squares_centers[square.index] = (cx, cy)
+
+ for tile in square.tiles:
+ # offset by 1 or -1 times the tile radius
+ tile_cx = cx + self.tile_radius * ((tile.index % 2) * 2 - 1)
+ tile_cy = cy + self.tile_radius * ((tile.index > 1) * 2 - 1)
+ self.tiles_centers[square.index][tile.index] = (tile_cx, tile_cy)
+
+ def get_square_center(self, square):
+ return self.squares_centers[square.index]
+
+ def get_tile_center(self, tile):
+ return self.tiles_centers[tile.square.index][tile.index]
+
+ def get_tile_center_in_plan(self, tile):
+ x0, y0 = self.plan_origin
+ i, j = self.tetraflexagon.get_tile_plan_position(tile)
+ x, y = tile.calc_plan_coordinates(self.tile_side, i, j)
+ return x0 + x, y0 + y
+
+ def get_tile_transform(self, tile):
+ """Calculate the transformation matrix from a tile in an square to
+ the correspondent tile in the plan.
+
+ Return the matrix as a list of values sorted in row-major order."""
+
+ src_x, src_y = self.get_tile_center(tile)
+ dest_x, dest_y = self.get_tile_center_in_plan(tile)
+
+ i, j = self.tetraflexagon.get_tile_plan_position(tile)
+ theta = tile.get_angle_in_plan(i, j)
+
+ # The transformation from a tile in the square to the correspondent
+ # tile in the plan is composed by these steps:
+ #
+ # 1. rotate by 'theta' around (src_x, src_y);
+ # 2. move to (dest_x, dest_y).
+ #
+ # Step 1 can be expressed by these sub-steps:
+ #
+ # 1a. translate by (-src_x, -src_y)
+ # 1b. rotate by 'theta'
+ # 1c. translate by (src_x, src_y)
+ #
+ # Step 2. can be expressed by a translation like:
+ #
+ # 2a. translate by (dest_x - src_x, dest_y - src_y)
+ #
+ # The consecutive translations 1c and 2a can be easily combined, so
+ # the final steps are:
+ #
+ # T1 -> translate by (-src_x, -src_y)
+ # R -> rotate by 'theta'
+ # T2 -> translate by (dest_x, dest_y)
+ #
+ # Using affine transformations these are expressed as:
+ #
+ # | 1 0 -src_x |
+ # T1 = | 0 1 -src_y |
+ # | 0 0 1 |
+ #
+ # | cos(theta) -sin(theta) 0 |
+ # R = | sin(theta) con(theta) 0 |
+ # | 0 0 1 |
+ #
+ # | 1 0 dest_x |
+ # T2 = | 0 1 dest_y |
+ # | 0 0 1 |
+ #
+ # Composing these transformations into one is achieved by multiplying
+ # the matrices from right to left:
+ #
+ # T = T2 * R * T1
+ #
+ # NOTE: To remember this think about composing functions: T2(R(T1())),
+ # the inner one is performed first.
+ #
+ # The resulting T matrix is the one below.
+ matrix = [
+ cos(theta), -sin(theta), -src_x * cos(theta) + src_y * sin(theta) + dest_x,
+ sin(theta), cos(theta), -src_x * sin(theta) - src_y * cos(theta) + dest_y,
+ 0, 0, 1
+ ]
+
+ return matrix
+
+ def draw_square_template(self, square):
+ for tile in square.tiles:
+ cx, cy = self.get_tile_center(tile)
+ self.draw_tile_template(tile, cx, cy, 0)
+
+ def draw_tile_template(self, tile, cx, cy, theta):
+ side = self.tile_side
+ color = self.squares_color_map[tile.square.index]
+
+ self.backend.draw_rect_from_center(cx, cy, side, side, theta, color)
+
+ corners_labels = "ABC"
+ corner_text = corners_labels[tile.square.index] + str(tile.index + 1)
+ self.backend.draw_centered_text(cx, cy, corner_text, 0, color)
+
+ def draw_plan_template(self):
+ x0, y0 = self.plan_origin
+ for square in self.tetraflexagon.squares:
+ for tile in square.tiles:
+ i, j = self.tetraflexagon.get_tile_plan_position(tile)
+ x, y = tile.calc_plan_coordinates(self.tile_radius, i, j)
+ theta = tile.get_angle_in_plan(i, j)
+ self.draw_tile_template(tile, x0 + x, y0 + y, theta)
+
+ def draw_template(self):
+ for square in self.tetraflexagon.squares:
+ self.draw_square_template(square)
+
+ self.draw_plan_template()