6 Tooltip: 'Vector Rendering Method script'
9 __author__ = "Antonio Ospite"
10 __url__ = ["http://vrm.ao2.it"]
14 Render the scene and save the result in vector format.
17 # ---------------------------------------------------------------------
18 # Copyright (c) 2006, 2007, 2008, 2009, 2012 Antonio Ospite
20 # This program is free software; you can redistribute it and/or modify
21 # it under the terms of the GNU General Public License as published by
22 # the Free Software Foundation; either version 2 of the License, or
23 # (at your option) any later version.
25 # This program is distributed in the hope that it will be useful,
26 # but WITHOUT ANY WARRANTY; without even the implied warranty of
27 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 # GNU General Public License for more details.
30 # You should have received a copy of the GNU General Public License
31 # along with this program; if not, write to the Free Software
32 # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
34 # ---------------------------------------------------------------------
37 # Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
38 # Thanks to Nikola Radovanovic, the author of the original VRM script,
39 # the code you read here has been rewritten _almost_ entirely
40 # from scratch but Nikola gave me the idea, so I thank him publicly.
42 # ---------------------------------------------------------------------
44 # Things TODO for a next release:
46 # - FIX the issue with negative scales in object tranformations!
47 # - Use a better depth sorting algorithm
48 # - Review how selections are made (this script uses selection states of
49 # primitives to represent visibility infos)
50 # - Use a data structure other than Mesh to represent the 2D image?
51 # Think to a way to merge (adjacent) polygons that have the same color.
52 # Or a way to use paths for silhouettes and contours.
53 # - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
54 # not support SMIL for animations)
55 # - Switch to the Mesh structure, should be considerably faster
56 # (partially done, but with Mesh we cannot sort faces, yet)
57 # - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
58 # - Implement Shading Styles? (partially done, to make more flexible).
59 # - Add Vector Writers other than SVG.
60 # - set the background color!
61 # - Check memory use!!
63 # ---------------------------------------------------------------------
66 from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
67 from Blender.Mathutils import *
75 from sets import Set as set
80 return [tmpdict.setdefault(e, e) for e in alist if e not in tmpdict]
81 # in python > 2.4 we ca use the following
82 #return [ u for u in alist if u not in locals()['_[1]'] ]
88 # We use a global progress Indicator Object
92 # Config class for global settings
96 polygons['SHOW'] = True
97 polygons['SHADING'] = 'FLAT' # FLAT or TOON
98 polygons['HSR'] = 'PAINTER' # PAINTER or NEWELL
99 # Hidden to the user for now
100 polygons['EXPANSION_TRICK'] = True
102 polygons['TOON_LEVELS'] = 2
105 edges['SHOW'] = False
106 edges['SHOW_HIDDEN'] = False
107 edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
109 edges['COLOR'] = [0, 0, 0]
112 output['FORMAT'] = 'SVG'
113 output['ANIMATION'] = False
114 output['JOIN_OBJECTS'] = True
116 def saveToRegistry():
119 for k, v in config.__dict__.iteritems():
121 # config class store settings in dictionaries
122 if v.__class__ == dict().__class__:
124 regkey_prefix = k.upper() + "_"
126 for opt_k, opt_v in v.iteritems():
127 regkey = regkey_prefix + opt_k
129 registry[regkey] = opt_v
131 Blender.Registry.SetKey('VRM', registry, True)
133 saveToRegistry = staticmethod(saveToRegistry)
135 def loadFromRegistry():
136 registry = Blender.Registry.GetKey('VRM', True)
140 for k, v in registry.iteritems():
142 conf_attr = k_tmp[0].lower()
143 conf_key = str.join("_", k_tmp[1:])
146 if conf_attr in config.__dict__:
147 config.__dict__[conf_attr][conf_key] = conf_val
149 loadFromRegistry = staticmethod(loadFromRegistry)
156 def dumpfaces(flist, filename):
157 """Dump a single face to a file.
168 writerobj = SVGVectorWriter(filename)
171 writerobj._printPolygons(m)
178 sys.stderr.write(msg)
182 return (abs(v1[0] - v2[0]) < EPS and
183 abs(v1[1] - v2[1]) < EPS)
184 by_furthest_z = (lambda f1, f2:
185 cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
201 # ---------------------------------------------------------------------
205 # ---------------------------------------------------------------------
212 """A utility class for HSR processing.
215 def is_nonplanar_quad(face):
216 """Determine if a quad is non-planar.
218 From: http://mathworld.wolfram.com/Coplanar.html
220 Geometric objects lying in a common plane are said to be coplanar.
221 Three noncollinear points determine a plane and so are trivially
222 coplanar. Four points are coplanar iff the volume of the tetrahedron
223 defined by them is 0,
228 | x_4 y_4 z_4 1 | == 0
230 Coplanarity is equivalent to the statement that the pair of lines
231 determined by the four points are not skew, and can be equivalently
232 stated in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
234 An arbitrary number of n points x_1, ..., x_n can be tested for
235 coplanarity by finding the point-plane distances of the points
236 x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
237 and checking if they are all zero.
238 If so, the points are all coplanar.
240 We here check only for 4-point complanarity.
246 print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
250 # three points must be complanar
253 x1 = Vector(face[0].co)
254 x2 = Vector(face[1].co)
255 x3 = Vector(face[2].co)
256 x4 = Vector(face[3].co)
258 v = (x3 - x1) * CrossVecs((x2 - x1), (x4 - x3))
264 is_nonplanar_quad = staticmethod(is_nonplanar_quad)
266 def pointInPolygon(poly, v):
269 pointInPolygon = staticmethod(pointInPolygon)
271 def edgeIntersection(s1, s2, do_perturbate=False):
273 (x1, y1) = s1[0].co[0], s1[0].co[1]
274 (x2, y2) = s1[1].co[0], s1[1].co[1]
276 (x3, y3) = s2[0].co[0], s2[0].co[1]
277 (x4, y4) = s2[1].co[0], s2[1].co[1]
284 # calculate delta values (vector components)
293 C = dy2 * dx1 - dx2 * dy1 # cross product
294 if C == 0: # parallel
297 dx3 = x1 - x3 # combined origin offset vector
300 a1 = (dy3 * dx2 - dx3 * dy2) / C
301 a2 = (dy3 * dx1 - dx3 * dy1) / C
303 # check for degeneracies
305 #print_debug(str(a1)+"\n")
306 #print_debug(str(a2)+"\n\n")
308 if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
309 # Intersection on boundaries, we consider the point external?
312 elif (a1 > 0.0 and a1 < 1.0 and a2 > 0.0 and a2 < 1.0): # lines cross
318 return (NMesh.Vert(x, y, z), a1, a2)
321 # lines have intersections but not those segments
324 edgeIntersection = staticmethod(edgeIntersection)
326 def isVertInside(self, v):
330 # Create point at infinity
331 point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
333 for i in range(len(self.v)):
334 s1 = (point_at_infinity, v)
335 s2 = (self.v[i - 1], self.v[i])
337 if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
340 if HSR.edgeIntersection(s1, s2, do_perturbate=False):
344 if (winding_number % 2) == 0:
351 isVertInside = staticmethod(isVertInside)
354 return ((b[0] - a[0]) * (c[1] - a[1]) -
355 (b[1] - a[1]) * (c[0] - a[0]))
357 det = staticmethod(det)
359 def pointInPolygon(q, P):
362 point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
366 for i in range(len(P.v)):
369 if (det(q.co, point_at_infinity.co, p0.co) < 0) != (det(q.co, point_at_infinity.co, p1.co) < 0):
370 if det(p0.co, p1.co, q.co) == 0:
373 elif (det(p0.co, p1.co, q.co) < 0) != (det(p0.co, p1.co, point_at_infinity.co) < 0):
378 pointInPolygon = staticmethod(pointInPolygon)
380 def projectionsOverlap(f1, f2):
381 """ If you have nonconvex, but still simple polygons, an acceptable method
382 is to iterate over all vertices and perform the Point-in-polygon test[1].
383 The advantage of this method is that you can compute the exact
384 intersection point and collision normal that you will need to simulate
385 collision. When you have the point that lies inside the other polygon, you
386 just iterate over all edges of the second polygon again and look for edge
387 intersections. Note that this method detects collsion when it already
388 happens. This algorithm is fast enough to perform it hundreds of times per
391 for i in range(len(f1.v)):
393 # If a point of f1 in inside f2, there is an overlap!
395 #if HSR.isVertInside(f2, v1):
396 if HSR.pointInPolygon(v1, f2):
399 # If not the polygon can be ovelap as well, so we check for
400 # intersection between an edge of f1 and all the edges of f2
404 for j in range(len(f2.v)):
411 intrs = HSR.edgeIntersection(e1, e2)
413 #print_debug(str(v0.co) + " " + str(v1.co) + " " +
414 # str(v2.co) + " " + str(v3.co) )
415 #print_debug("\nIntersection\n")
421 projectionsOverlap = staticmethod(projectionsOverlap)
423 def midpoint(p1, p2):
424 """Return the midpoint of two vertices.
426 m = MidpointVecs(Vector(p1), Vector(p2))
427 mv = NMesh.Vert(m[0], m[1], m[2])
431 midpoint = staticmethod(midpoint)
433 def facesplit(P, Q, facelist, nmesh):
434 """Split P or Q according to the strategy illustrated in the Newell's
438 by_furthest_z = (lambda f1, f2:
439 cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
442 # Choose if split P on Q plane or vice-versa
446 d = HSR.Distance(Vector(Pi), Q)
449 pIntersectQ = (n != len(P))
453 d = HSR.Distance(Vector(Qi), P)
456 qIntersectP = (n != len(Q))
460 # 1. If parts of P lie in both half-spaces of Q
461 # then splice P in two with the plane of Q
467 newfaces = HSR.splitOn(plane, f)
469 # 2. Else if parts of Q lie in both half-space of P
470 # then splice Q in two with the plane of P
471 if qIntersectP and newfaces == None:
476 newfaces = HSR.splitOn(plane, f)
479 # 3. Else slice P in half through the mid-point of
480 # the longest pair of opposite sides
483 print "We ignore P..."
490 # v1 = midpoint(f[0], f[1])
491 # v2 = midpoint(f[1], f[2])
493 # v1 = midpoint(f[0], f[1])
494 # v2 = midpoint(f[2], f[3])
495 #vec3 = (Vector(v2)+10*Vector(f.normal))
497 #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
499 #plane = NMesh.Face([v1, v2, v3])
501 #newfaces = splitOn(plane, f)
504 print "Big FAT problem, we weren't able to split POLYGONS!"
510 # if v not in plane and v in nmesh.verts:
511 # nmesh.verts.remove(v)
516 nf.col = [f.col[0]] * len(nf.v)
521 nmesh.verts.append(v)
522 # insert pieces in the list
527 # and resort the faces
528 facelist.sort(by_furthest_z)
529 facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
532 #print [ f.smooth for f in facelist ]
536 facesplit = staticmethod(facesplit)
538 def isOnSegment(v1, v2, p, extremes_internal=False):
539 """Check if point p is in segment v1v2.
545 # Should we consider extreme points as internal ?
547 # if p == v1 or p == v2:
548 if l1 < EPS or l2 < EPS:
549 return extremes_internal
553 # if the sum of l1 and l2 is circa l, then the point is on segment,
554 if abs(l - (l1 + l2)) < EPS:
559 isOnSegment = staticmethod(isOnSegment)
561 def Distance(point, face):
562 """ Calculate the distance between a point and a face.
564 An alternative but more expensive method can be:
566 ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
567 Vector(face.no), Vector(point), 0)
569 d = Vector(ip - point).length
571 See: http://mathworld.wolfram.com/Point-PlaneDistance.html
575 plNormal = Vector(face.no)
576 plVert0 = Vector(face.v[0])
578 d = (plVert0 * plNormal) - (p * plNormal)
580 #d = plNormal * (plVert0 - p)
582 #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
586 Distance = staticmethod(Distance)
590 # make one or two new faces based on a list of vertex-indices
619 makeFaces = staticmethod(makeFaces)
621 def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
622 """Split P using the plane of Q.
623 Logic taken from the knife.py python script
626 # Check if P and Q are parallel
627 u = CrossVecs(Vector(Q.no), Vector(P.no))
632 if (ax + ay + az) < EPS:
633 print "PARALLEL planes!!"
636 # The final aim is to find the intersection line between P
637 # and the plane of Q, and split P along this line
641 # Calculate point-plane Distance between vertices of P and plane Q
643 for i in range(0, nP):
644 d.append(HSR.Distance(P.v[i], Q))
657 #print "d0:", d0, "d1:", d1
659 # if the vertex lies in the cutplane
661 #print "d1 On cutplane"
662 posVertList.append(V1)
663 negVertList.append(V1)
665 # if the previous vertex lies in cutplane
667 #print "d0 on Cutplane"
669 #print "d1 on positive Halfspace"
670 posVertList.append(V1)
672 #print "d1 on negative Halfspace"
673 negVertList.append(V1)
675 # if they are on the same side of the plane
677 #print "On the same half-space"
679 #print "d1 on positive Halfspace"
680 posVertList.append(V1)
682 #print "d1 on negative Halfspace"
683 negVertList.append(V1)
685 # the vertices are not on the same side of the plane, so we have an intersection
687 #print "Intersection"
689 e = Vector(V0), Vector(V1)
690 tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
692 inters = Intersect(tri[0], tri[1], tri[2], e[1] - e[0], e[0], 0)
697 #print "Intersection", inters
699 nv = NMesh.Vert(inters[0], inters[1], inters[2])
700 newVertList.append(nv)
702 posVertList.append(nv)
703 negVertList.append(nv)
706 posVertList.append(V1)
708 negVertList.append(V1)
710 # uniq for python > 2.4
711 #posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
712 #negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
714 # a more portable way
715 posVertList = uniq(posVertList)
716 negVertList = uniq(negVertList)
718 # If vertex are all on the same half-space, return
719 #if len(posVertList) < 3:
720 # print "Problem, we created a face with less that 3 vertices??"
722 #if len(negVertList) < 3:
723 # print "Problem, we created a face with less that 3 vertices??"
726 if len(posVertList) < 3 or len(negVertList) < 3:
727 #print "RETURN NONE, SURE???"
730 if not return_positive_faces:
732 if not return_negative_faces:
735 newfaces = HSR.addNewFaces(posVertList, negVertList)
739 splitOn = staticmethod(splitOn)
741 def addNewFaces(posVertList, negVertList):
742 # Create new faces resulting from the split
744 if len(posVertList) or len(negVertList):
746 #newfaces = [posVertList] + [negVertList]
747 newfaces = ([[NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
748 [[NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]])
751 if nf and len(nf) > 2:
752 outfaces += HSR.makeFaces(nf)
756 addNewFaces = staticmethod(addNewFaces)
759 # ---------------------------------------------------------------------
761 ## Mesh Utility class
763 # ---------------------------------------------------------------------
767 def buildEdgeFaceUsersCache(me):
769 Takes a mesh and returns a list aligned with the meshes edges.
770 Each item is a list of the faces that use the edge
771 would be the equiv for having ed.face_users as a property
773 Taken from .blender/scripts/bpymodules/BPyMesh.py,
774 thanks to ideasman_42.
777 def sorted_edge_indicies(ed):
784 face_edges_dict = dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
786 fvi = [v.index for v in f.v] # face vert idx's
787 for i in xrange(len(f)):
794 face_edges_dict[i1, i2][1].append(f)
796 face_edges = [None] * len(me.edges)
797 for ed_index, ed_faces in face_edges_dict.itervalues():
798 face_edges[ed_index] = ed_faces
802 def isMeshEdge(adjacent_faces):
805 A mesh edge is visible if _at_least_one_ of its adjacent faces is selected.
806 Note: if the edge has no adjacent faces we want to show it as well,
807 useful for "edge only" portion of objects.
810 if len(adjacent_faces) == 0:
813 selected_faces = [f for f in adjacent_faces if f.sel]
815 if len(selected_faces) != 0:
820 def isSilhouetteEdge(adjacent_faces):
821 """Silhuette selection rule.
823 An edge is a silhuette edge if it is shared by two faces with
824 different selection status or if it is a boundary edge of a selected
828 if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or
829 (len(adjacent_faces) == 2 and
830 adjacent_faces[0].sel != adjacent_faces[1].sel)
836 buildEdgeFaceUsersCache = staticmethod(buildEdgeFaceUsersCache)
837 isMeshEdge = staticmethod(isMeshEdge)
838 isSilhouetteEdge = staticmethod(isSilhouetteEdge)
841 # ---------------------------------------------------------------------
843 ## Shading Utility class
845 # ---------------------------------------------------------------------
851 def toonShadingMapSetup():
852 levels = config.polygons['TOON_LEVELS']
854 texels = 2 * levels - 1
855 tmp_shademap = [0.0] + [(i) / float(texels - 1) for i in xrange(1, texels - 1)] + [1.0]
861 shademap = ShadingUtils.shademap
864 shademap = ShadingUtils.toonShadingMapSetup()
867 for i in xrange(0, len(shademap) - 1):
868 pivot = (shademap[i] + shademap[i + 1]) / 2.0
873 if v < shademap[i + 1]:
878 toonShadingMapSetup = staticmethod(toonShadingMapSetup)
879 toonShading = staticmethod(toonShading)
882 # ---------------------------------------------------------------------
884 ## Projections classes
886 # ---------------------------------------------------------------------
889 """Calculate the projection of an object given the camera.
891 A projector is useful to so some per-object transformation to obtain the
892 projection of an object given the camera.
894 The main method is #doProjection# see the method description for the
898 def __init__(self, cameraObj, canvasRatio):
899 """Calculate the projection matrix.
901 The projection matrix depends, in this case, on the camera settings.
902 TAKE CARE: This projector expects vertices in World Coordinates!
905 camera = cameraObj.getData()
907 aspect = float(canvasRatio[0]) / float(canvasRatio[1])
908 near = camera.clipStart
911 scale = float(camera.scale)
913 fovy = atan(0.5 / aspect / (camera.lens / 32))
914 fovy = fovy * 360.0 / pi
916 if Blender.Get('version') < 243:
923 # What projection do we want?
924 if camera.type == camPersp:
925 mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
926 elif camera.type == camOrtho:
927 mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
929 # View transformation
930 cam = Matrix(cameraObj.getInverseMatrix())
935 self.projectionMatrix = mP
941 def doProjection(self, v):
942 """Project the point on the view plane.
944 Given a vertex calculate the projection using the current projection
948 # Note that we have to work on the vertex using homogeneous coordinates
949 # From blender 2.42+ we don't need to resize the vector to be 4d
950 # when applying a 4x4 matrix, but we do that anyway since we need the
951 # 4th coordinate later
952 p = self.projectionMatrix * Vector(v).resize4D()
954 # Perspective division
970 def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
971 """Return a perspective projection matrix.
974 top = near * tan(fovy * pi / 360.0)
976 left = bottom * aspect
978 x = (2.0 * near) / (right - left)
979 y = (2.0 * near) / (top - bottom)
980 a = (right + left) / (right - left)
981 b = (top + bottom) / (top - bottom)
982 c = - ((far + near) / (far - near))
983 d = - ((2 * far * near) / (far - near))
989 [0.0, 0.0, -1.0, 0.0])
993 def _calcOrthoMatrix(self, fovy, aspect, near, far, scale):
994 """Return an orthogonal projection matrix.
997 # The 11 in the formula was found emiprically
998 top = near * tan(fovy * pi / 360.0) * (scale * 11)
1000 left = bottom * aspect
1001 right = top * aspect
1005 tx = -((right + left) / rl)
1006 ty = -((top + bottom) / tb)
1007 tz = ((far + near) / fn)
1010 [2.0 / rl, 0.0, 0.0, tx],
1011 [0.0, 2.0 / tb, 0.0, ty],
1012 [0.0, 0.0, 2.0 / fn, tz],
1013 [0.0, 0.0, 0.0, 1.0])
1018 # ---------------------------------------------------------------------
1020 ## Progress Indicator
1022 # ---------------------------------------------------------------------
1025 """A model for a progress indicator.
1027 Do the progress calculation calculation and
1028 the view independent stuff of a progress indicator.
1030 def __init__(self, steps=0):
1036 def setSteps(self, steps):
1037 """Set the number of steps of the activity wich we want to track.
1044 def setName(self, name):
1045 """Set the name of the activity wich we want to track.
1052 def getProgress(self):
1053 return self.progress
1060 """Update the model, call this method when one step is completed.
1062 if self.progress == 100:
1066 self.progress = (float(self.completed) / float(self.steps)) * 100
1067 self.progress = int(self.progress)
1072 class ProgressIndicator:
1073 """An abstraction of a View for the Progress Model
1077 # Use a refresh rate so we do not show the progress at
1078 # every update, but every 'self.refresh_rate' times.
1079 self.refresh_rate = 10
1080 self.shows_counter = 0
1084 self.progressModel = None
1086 def setQuiet(self, value):
1089 def setActivity(self, name, steps):
1090 """Initialize the Model.
1092 In a future version (with subactivities-progress support) this method
1093 could only set the current activity.
1095 self.progressModel = Progress()
1096 self.progressModel.setName(name)
1097 self.progressModel.setSteps(steps)
1099 def getActivity(self):
1100 return self.progressModel
1103 """Update the model and show the actual progress.
1105 assert(self.progressModel)
1107 if self.progressModel.update():
1111 self.show(self.progressModel.getProgress(),
1112 self.progressModel.getName())
1114 # We return always True here so we can call the update() method also
1115 # from lambda funcs (putting the call in logical AND with other ops)
1118 def show(self, progress, name=""):
1119 self.shows_counter = (self.shows_counter + 1) % self.refresh_rate
1120 if self.shows_counter != 0:
1124 self.shows_counter = -1
1127 class ConsoleProgressIndicator(ProgressIndicator):
1128 """Show a progress bar on stderr, a la wget.
1131 ProgressIndicator.__init__(self)
1133 self.swirl_chars = ["-", "\\", "|", "/"]
1134 self.swirl_count = -1
1136 def show(self, progress, name):
1137 ProgressIndicator.show(self, progress, name)
1140 bar_progress = int((progress / 100.0) * bar_length)
1141 bar = ("=" * bar_progress).ljust(bar_length)
1143 self.swirl_count = (self.swirl_count + 1) % len(self.swirl_chars)
1144 swirl_char = self.swirl_chars[self.swirl_count]
1146 progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress)
1148 sys.stderr.write(progress_bar + "\r")
1150 sys.stderr.write("\n")
1153 class GraphicalProgressIndicator(ProgressIndicator):
1154 """Interface to the Blender.Window.DrawProgressBar() method.
1157 ProgressIndicator.__init__(self)
1159 #self.swirl_chars = ["-", "\\", "|", "/"]
1160 # We have to use letters with the same width, for now!
1161 # Blender progress bar considers the font widths when
1162 # calculating the progress bar width.
1163 self.swirl_chars = ["\\", "/"]
1164 self.swirl_count = -1
1166 def show(self, progress, name):
1167 ProgressIndicator.show(self, progress)
1169 self.swirl_count = (self.swirl_count + 1) % len(self.swirl_chars)
1170 swirl_char = self.swirl_chars[self.swirl_count]
1172 progress_text = "%s - %c %3d%%" % (name, swirl_char, progress)
1174 # Finally draw the Progress Bar
1175 Window.WaitCursor(1) # Maybe we can move that call in the constructor?
1176 Window.DrawProgressBar(progress / 100.0, progress_text)
1179 Window.DrawProgressBar(1, progress_text)
1180 Window.WaitCursor(0)
1182 # ---------------------------------------------------------------------
1184 ## 2D Object representation class
1186 # ---------------------------------------------------------------------
1188 # TODO: a class to represent the needed properties of a 2D vector image
1189 # For now just using a [N]Mesh structure.
1192 # ---------------------------------------------------------------------
1194 ## Vector Drawing Classes
1196 # ---------------------------------------------------------------------
1202 A class for printing output in a vectorial format.
1204 Given a 2D representation of the 3D scene the class is responsible to
1205 write it is a vector format.
1207 Every subclasses of VectorWriter must have at last the following public
1211 - printCanvas(self, scene,
1212 doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
1215 def __init__(self, fileName):
1216 """Set the output file name and other properties"""
1221 config.writer = dict()
1222 config.writer['SETTING'] = True
1224 self.outputFileName = fileName
1226 context = Scene.GetCurrent().getRenderingContext()
1227 self.canvasSize = (context.imageSizeX(), context.imageSizeY())
1229 self.fps = context.fps
1233 self.animation = False
1239 def open(self, startFrame=1, endFrame=1):
1240 if startFrame != endFrame:
1241 self.startFrame = startFrame
1242 self.endFrame = endFrame
1243 self.animation = True
1245 print "Outputting to: ", self.outputFileName
1252 def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
1253 showHiddenEdges=False):
1254 """This is the interface for the needed printing routine.
1261 class SVGVectorWriter(VectorWriter):
1262 """A concrete class for writing SVG output.
1265 def __init__(self, fileName):
1266 """Simply call the parent Contructor.
1268 VectorWriter.__init__(self, fileName)
1276 def open(self, startFrame=1, endFrame=1):
1277 """Do some initialization operations.
1279 VectorWriter.open(self, startFrame, endFrame)
1281 self.file = open(self.outputFileName, "w")
1286 """Do some finalization operation.
1293 # remember to call the close method of the parent as last
1294 VectorWriter.close(self)
1296 def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
1297 showHiddenEdges=False):
1298 """Convert the scene representation to SVG.
1301 Objects = scene.objects
1303 context = scene.getRenderingContext()
1304 framenumber = context.currentFrame()
1307 framestyle = "display:none"
1309 framestyle = "display:block"
1311 # Assign an id to this group so we can set properties on it using DOM
1312 self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
1313 (framenumber, framestyle))
1317 if obj.getType() != 'Mesh':
1320 self.file.write("<g id=\"%s\">\n" % obj.getName())
1322 mesh = obj.getData(mesh=1)
1325 self._printPolygons(mesh)
1328 self._printEdges(mesh, showHiddenEdges)
1330 self.file.write("</g>\n")
1332 self.file.write("</g>\n")
1338 def _calcCanvasCoord(self, v):
1339 """Convert vertex in scene coordinates to canvas coordinates.
1342 pt = Vector([0, 0, 0])
1344 mW = float(self.canvasSize[0]) / 2.0
1345 mH = float(self.canvasSize[1]) / 2.0
1347 # rescale to canvas size
1348 pt[0] = v.co[0] * mW + mW
1349 pt[1] = v.co[1] * mH + mH
1352 # For now we want (0,0) in the top-left corner of the canvas.
1353 # Mirror and translate along y
1355 pt[1] += self.canvasSize[1]
1359 def _printHeader(self):
1360 """Print SVG header."""
1362 self.file.write("<?xml version=\"1.0\"?>\n")
1363 self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\"\n")
1364 self.file.write("\t\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n")
1365 self.file.write("<svg version=\"1.0\"\n")
1366 self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
1367 self.file.write("\twidth=\"%d\" height=\"%d\">\n\n" %
1371 delay = 1000 / self.fps
1373 self.file.write("""\n<script type="text/javascript"><![CDATA[
1374 globalStartFrame=%d;
1377 timerID = setInterval("NextFrame()", %d);
1378 globalFrameCounter=%d;
1379 \n""" % (self.startFrame, self.endFrame, delay, self.startFrame))
1381 self.file.write("""\n
1382 function NextFrame()
1384 currentElement = document.getElementById('frame'+globalFrameCounter)
1385 previousElement = document.getElementById('frame'+(globalFrameCounter-1))
1387 if (!currentElement)
1392 if (globalFrameCounter > globalEndFrame)
1394 clearInterval(timerID)
1400 previousElement.style.display="none";
1402 currentElement.style.display="block";
1403 globalFrameCounter++;
1409 def _printFooter(self):
1410 """Print the SVG footer."""
1412 self.file.write("\n</svg>\n")
1414 def _printPolygons(self, mesh):
1415 """Print the selected (visible) polygons.
1418 if len(mesh.faces) == 0:
1421 self.file.write("<g>\n")
1423 for face in mesh.faces:
1427 self.file.write("<path d=\"")
1429 #p = self._calcCanvasCoord(face.verts[0])
1430 p = self._calcCanvasCoord(face.v[0])
1431 self.file.write("M %g,%g L " % (p[0], p[1]))
1433 for v in face.v[1:]:
1434 p = self._calcCanvasCoord(v)
1435 self.file.write("%g,%g " % (p[0], p[1]))
1437 # get rid of the last blank space, just cosmetics here.
1438 self.file.seek(-1, 1)
1439 self.file.write(" z\"\n")
1441 # take as face color the first vertex color
1444 color = [fcol.r, fcol.g, fcol.b, fcol.a]
1446 color = [255, 255, 255, 255]
1448 # Convert the color to the #RRGGBB form
1449 str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
1451 # Handle transparent polygons
1454 opacity = float(color[3]) / 255.0
1455 opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
1456 #opacity_string = "opacity: %g;" % (opacity)
1458 self.file.write("\tstyle=\"fill:" + str_col + ";")
1459 self.file.write(opacity_string)
1461 # use the stroke property to alleviate the "adjacent edges" problem,
1462 # we simulate polygon expansion using borders,
1463 # see http://www.antigrain.com/svg/index.html for more info
1466 # EXPANSION TRICK is not that useful where there is transparency
1467 if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
1468 # str_col = "#000000" # For debug
1469 self.file.write(" stroke:%s;\n" % str_col)
1470 self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
1471 self.file.write(" stroke-linecap:round;stroke-linejoin:round")
1473 self.file.write("\"/>\n")
1475 self.file.write("</g>\n")
1477 def _printEdges(self, mesh, showHiddenEdges=False):
1478 """Print the wireframe using mesh edges.
1481 stroke_width = config.edges['WIDTH']
1482 stroke_col = config.edges['COLOR']
1484 self.file.write("<g>\n")
1486 for e in mesh.edges:
1488 hidden_stroke_style = ""
1491 if showHiddenEdges == False:
1494 hidden_stroke_style = ";\n stroke-dasharray:3, 3"
1496 p1 = self._calcCanvasCoord(e.v1)
1497 p2 = self._calcCanvasCoord(e.v2)
1499 self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
1500 % (p1[0], p1[1], p2[0], p2[1]))
1501 self.file.write(" style=\"stroke:rgb(" + str(stroke_col[0]) + "," + str(stroke_col[1]) + "," + str(stroke_col[2]) + ");")
1502 self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
1503 self.file.write(" stroke-linecap:round;stroke-linejoin:round")
1504 self.file.write(hidden_stroke_style)
1505 self.file.write("\"/>\n")
1507 self.file.write("</g>\n")
1516 SWFSupported = False
1519 class SWFVectorWriter(VectorWriter):
1520 """A concrete class for writing SWF output.
1523 def __init__(self, fileName):
1524 """Simply call the parent Contructor.
1526 VectorWriter.__init__(self, fileName)
1535 def open(self, startFrame=1, endFrame=1):
1536 """Do some initialization operations.
1538 VectorWriter.open(self, startFrame, endFrame)
1539 self.movie = SWFMovie()
1540 self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
1542 self.movie.setRate(self.fps)
1543 numframes = endFrame - startFrame + 1
1544 self.movie.setFrames(numframes)
1547 """Do some finalization operation.
1549 self.movie.save(self.outputFileName)
1551 # remember to call the close method of the parent
1552 VectorWriter.close(self)
1554 def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
1555 showHiddenEdges=False):
1556 """Convert the scene representation to SVG.
1558 context = scene.getRenderingContext()
1559 framenumber = context.currentFrame()
1561 Objects = scene.objects
1564 self.movie.remove(self.sprite)
1566 sprite = SWFSprite()
1570 if(obj.getType() != 'Mesh'):
1573 mesh = obj.getData(mesh=1)
1576 self._printPolygons(mesh, sprite)
1579 self._printEdges(mesh, sprite, showHiddenEdges)
1582 i = self.movie.add(sprite)
1583 # Remove the instance the next time
1586 self.movie.nextFrame()
1592 def _calcCanvasCoord(self, v):
1593 """Convert vertex in scene coordinates to canvas coordinates.
1596 pt = Vector([0, 0, 0])
1598 mW = float(self.canvasSize[0]) / 2.0
1599 mH = float(self.canvasSize[1]) / 2.0
1601 # rescale to canvas size
1602 pt[0] = v.co[0] * mW + mW
1603 pt[1] = v.co[1] * mH + mH
1606 # For now we want (0,0) in the top-left corner of the canvas.
1607 # Mirror and translate along y
1609 pt[1] += self.canvasSize[1]
1613 def _printPolygons(self, mesh, sprite):
1614 """Print the selected (visible) polygons.
1617 if len(mesh.faces) == 0:
1620 for face in mesh.faces:
1626 color = [fcol.r, fcol.g, fcol.b, fcol.a]
1628 color = [255, 255, 255, 255]
1631 f = s.addFill(color[0], color[1], color[2], color[3])
1634 # The starting point of the shape
1635 p0 = self._calcCanvasCoord(face.verts[0])
1636 s.movePenTo(p0[0], p0[1])
1638 for v in face.verts[1:]:
1639 p = self._calcCanvasCoord(v)
1640 s.drawLineTo(p[0], p[1])
1643 s.drawLineTo(p0[0], p0[1])
1648 def _printEdges(self, mesh, sprite, showHiddenEdges=False):
1649 """Print the wireframe using mesh edges.
1652 stroke_width = config.edges['WIDTH']
1653 stroke_col = config.edges['COLOR']
1657 for e in mesh.edges:
1659 # Next, we set the line width and color for our shape.
1660 s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
1664 if showHiddenEdges == False:
1667 # SWF does not support dashed lines natively, so -for now-
1668 # draw hidden lines thinner and half-trasparent
1669 s.setLine(stroke_width / 2, stroke_col[0], stroke_col[1],
1672 p1 = self._calcCanvasCoord(e.v1)
1673 p2 = self._calcCanvasCoord(e.v2)
1675 s.movePenTo(p1[0], p1[1])
1676 s.drawLineTo(p2[0], p2[1])
1685 from reportlab.pdfgen import canvas
1688 PDFSupported = False
1691 class PDFVectorWriter(VectorWriter):
1692 """A concrete class for writing PDF output.
1695 def __init__(self, fileName):
1696 """Simply call the parent Contructor.
1698 VectorWriter.__init__(self, fileName)
1706 def open(self, startFrame=1, endFrame=1):
1707 """Do some initialization operations.
1709 VectorWriter.open(self, startFrame, endFrame)
1710 size = (self.canvasSize[0], self.canvasSize[1])
1711 self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
1714 """Do some finalization operation.
1718 # remember to call the close method of the parent
1719 VectorWriter.close(self)
1721 def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
1722 showHiddenEdges=False):
1723 """Convert the scene representation to SVG.
1725 context = scene.getRenderingContext()
1726 framenumber = context.currentFrame()
1728 Objects = scene.objects
1732 if(obj.getType() != 'Mesh'):
1735 mesh = obj.getData(mesh=1)
1738 self._printPolygons(mesh)
1741 self._printEdges(mesh, showHiddenEdges)
1743 self.canvas.showPage()
1749 def _calcCanvasCoord(self, v):
1750 """Convert vertex in scene coordinates to canvas coordinates.
1753 pt = Vector([0, 0, 0])
1755 mW = float(self.canvasSize[0]) / 2.0
1756 mH = float(self.canvasSize[1]) / 2.0
1758 # rescale to canvas size
1759 pt[0] = v.co[0] * mW + mW
1760 pt[1] = v.co[1] * mH + mH
1763 # For now we want (0,0) in the top-left corner of the canvas.
1764 # Mirror and translate along y
1766 pt[1] += self.canvasSize[1]
1770 def _printPolygons(self, mesh):
1771 """Print the selected (visible) polygons.
1774 if len(mesh.faces) == 0:
1777 for face in mesh.faces:
1783 color = [fcol.r / 255.0, fcol.g / 255.0, fcol.b / 255.0,
1786 color = [1, 1, 1, 1]
1788 self.canvas.setFillColorRGB(color[0], color[1], color[2])
1790 self.canvas.setStrokeColorRGB(0, 0, 0)
1792 path = self.canvas.beginPath()
1794 # The starting point of the path
1795 p0 = self._calcCanvasCoord(face.verts[0])
1796 path.moveTo(p0[0], p0[1])
1798 for v in face.verts[1:]:
1799 p = self._calcCanvasCoord(v)
1800 path.lineTo(p[0], p[1])
1805 self.canvas.drawPath(path, stroke=0, fill=1)
1807 def _printEdges(self, mesh, showHiddenEdges=False):
1808 """Print the wireframe using mesh edges.
1811 stroke_width = config.edges['WIDTH']
1812 stroke_col = config.edges['COLOR']
1814 self.canvas.setLineCap(1)
1815 self.canvas.setLineJoin(1)
1816 self.canvas.setLineWidth(stroke_width)
1817 self.canvas.setStrokeColorRGB(stroke_col[0] / 255.0, stroke_col[1] / 255.0,
1818 stroke_col[2] / 255)
1820 for e in mesh.edges:
1822 self.canvas.setLineWidth(stroke_width)
1825 if showHiddenEdges == False:
1828 # PDF does not support dashed lines natively, so -for now-
1829 # draw hidden lines thinner
1830 self.canvas.setLineWidth(stroke_width / 2.0)
1832 p1 = self._calcCanvasCoord(e.v1)
1833 p2 = self._calcCanvasCoord(e.v2)
1835 self.canvas.line(p1[0], p1[1], p2[0], p2[1])
1837 # ---------------------------------------------------------------------
1839 ## Rendering Classes
1841 # ---------------------------------------------------------------------
1843 # A dictionary to collect different shading style methods
1844 shadingStyles = dict()
1845 shadingStyles['FLAT'] = None
1846 shadingStyles['TOON'] = None
1848 # A dictionary to collect different edge style methods
1850 edgeStyles['MESH'] = MeshUtils.isMeshEdge
1851 edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
1853 # A dictionary to collect the supported output formats
1854 outputWriters = dict()
1855 outputWriters['SVG'] = SVGVectorWriter
1857 outputWriters['SWF'] = SWFVectorWriter
1859 outputWriters['PDF'] = PDFVectorWriter
1863 """Render a scene viewed from the active camera.
1865 This class is responsible of the rendering process, transformation and
1866 projection of the objects in the scene are invoked by the renderer.
1868 The rendering is done using the active camera for the current scene.
1872 """Make the rendering process only for the current scene by default.
1874 We will work on a copy of the scene, to be sure that the current scene do
1875 not get modified in any way.
1878 # Render the current Scene, this should be a READ-ONLY property
1879 self._SCENE = Scene.GetCurrent()
1881 # Use the aspect ratio of the scene rendering context
1882 context = self._SCENE.getRenderingContext()
1884 aspect_ratio = float(context.imageSizeX()) / float(context.imageSizeY())
1885 self.canvasRatio = (float(context.aspectRatioX()) * aspect_ratio,
1886 float(context.aspectRatioY())
1889 # Render from the currently active camera
1890 #self.cameraObj = self._SCENE.objects.camera
1898 def doRendering(self, outputWriter, animation=False):
1899 """Render picture or animation and write it out.
1902 - a Vector writer object that will be used to output the result.
1903 - a flag to tell if we want to render an animation or only the
1907 context = self._SCENE.getRenderingContext()
1908 origCurrentFrame = context.currentFrame()
1910 # Handle the animation case
1912 startFrame = origCurrentFrame
1913 endFrame = startFrame
1916 startFrame = context.startFrame()
1917 endFrame = context.endFrame()
1918 outputWriter.open(startFrame, endFrame)
1920 # Do the rendering process frame by frame
1921 print "Start Rendering of %d frames" % (endFrame - startFrame + 1)
1922 for f in xrange(startFrame, endFrame + 1):
1923 print "\n\nFrame: %d" % f
1925 # FIXME To get the correct camera position we have to use +1 here.
1926 # Is there a bug somewhere in the Scene module?
1927 context.currentFrame(f + 1)
1928 self.cameraObj = self._SCENE.objects.camera
1930 # Use some temporary workspace, a full copy of the scene
1931 inputScene = self._SCENE.copy(2)
1933 # To get the objects at this frame remove the +1 ...
1934 ctx = inputScene.getRenderingContext()
1937 # Get a projector for this camera.
1938 # NOTE: the projector wants object in world coordinates,
1939 # so we should remember to apply modelview transformations
1940 # _before_ we do projection transformations.
1941 self.proj = Projector(self.cameraObj, self.canvasRatio)
1944 renderedScene = self.doRenderScene(inputScene)
1946 print "There was an error! Aborting."
1948 print traceback.print_exc()
1950 self._SCENE.makeCurrent()
1951 Scene.Unlink(inputScene)
1955 outputWriter.printCanvas(renderedScene,
1956 doPrintPolygons=config.polygons['SHOW'],
1957 doPrintEdges=config.edges['SHOW'],
1958 showHiddenEdges=config.edges['SHOW_HIDDEN'])
1960 # delete the rendered scene
1961 self._SCENE.makeCurrent()
1962 Scene.Unlink(renderedScene)
1965 outputWriter.close()
1967 context.currentFrame(origCurrentFrame)
1969 def doRenderScene(self, workScene):
1970 """Control the rendering process.
1972 Here we control the entire rendering process invoking the operation
1973 needed to transform and project the 3D scene in two dimensions.
1976 # global processing of the scene
1978 self._filterHiddenObjects(workScene)
1980 self._buildLightSetup(workScene)
1982 self._doSceneClipping(workScene)
1984 self._doConvertGeometricObjsToMesh(workScene)
1986 if config.output['JOIN_OBJECTS']:
1987 self._joinMeshObjectsInScene(workScene)
1989 self._doSceneDepthSorting(workScene)
1991 # Per object activities
1993 Objects = workScene.objects
1995 print "Total Objects: %d" % len(Objects)
1996 for i, obj in enumerate(Objects):
1998 print "Rendering Object: %d" % i
2000 if obj.getType() != 'Mesh':
2001 print "Only Mesh supported! - Skipping type:", obj.getType()
2004 print "Rendering: ", obj.getName()
2006 mesh = obj.getData(mesh=1)
2008 self._doModelingTransformation(mesh, obj.matrix)
2010 self._doBackFaceCulling(mesh)
2012 # When doing HSR with NEWELL we may want to flip all normals
2014 if config.polygons['HSR'] == "NEWELL":
2015 for f in mesh.faces:
2018 for f in mesh.faces:
2021 self._doLighting(mesh)
2023 # Do "projection" now so we perform further processing
2024 # in Normalized View Coordinates
2025 self._doProjection(mesh, self.proj)
2027 self._doViewFrustumClipping(mesh)
2029 self._doHiddenSurfaceRemoval(mesh)
2031 self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
2033 # Update the object data, important! :)
2044 def _getObjPosition(self, obj):
2045 """Return the obj position in World coordinates.
2047 return obj.matrix.translationPart()
2049 def _cameraViewVector(self):
2050 """Get the View Direction form the camera matrix.
2052 return Vector(self.cameraObj.matrix[2]).resize3D()
2056 def _isFaceVisible(self, face):
2057 """Determine if a face of an object is visible from the current camera.
2059 The view vector is calculated from the camera location and one of the
2060 vertices of the face (expressed in World coordinates, after applying
2061 modelview transformations).
2063 After those transformations we determine if a face is visible by
2064 computing the angle between the face normal and the view vector, this
2065 angle has to be between -90 and 90 degrees for the face to be visible.
2066 This corresponds somehow to the dot product between the two, if it
2067 results > 0 then the face is visible.
2069 There is no need to normalize those vectors since we are only interested in
2070 the sign of the cross product and not in the product value.
2072 NOTE: here we assume the face vertices are in WorldCoordinates, so
2073 please transform the object _before_ doing the test.
2076 normal = Vector(face.no)
2077 camPos = self._getObjPosition(self.cameraObj)
2080 # View Vector in orthographics projections is the view Direction of
2082 if self.cameraObj.data.getType() == 1:
2083 view_vect = self._cameraViewVector()
2085 # View vector in perspective projections can be considered as
2086 # the difference between the camera position and one point of
2087 # the face, we choose the farthest point from the camera.
2088 if self.cameraObj.data.getType() == 0:
2089 vv = max([((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face])
2092 # if d > 0 the face is visible from the camera
2093 d = view_vect * normal
2102 def _filterHiddenObjects(self, scene):
2103 """Discard object that are on hidden layers in the scene.
2106 Objects = scene.objects
2108 visible_obj_list = [obj for obj in Objects if
2109 set(obj.layers).intersection(set(scene.getLayers()))]
2112 if o not in visible_obj_list:
2113 scene.objects.unlink(o)
2117 def _buildLightSetup(self, scene):
2118 # Get the list of lighting sources
2119 obj_lst = scene.objects
2120 self.lights = [o for o in obj_lst if o.getType() == 'Lamp']
2122 # When there are no lights we use a default lighting source
2123 # that have the same position of the camera
2124 if len(self.lights) == 0:
2125 l = Lamp.New('Lamp')
2126 lobj = Object.New('Lamp')
2127 lobj.loc = self.cameraObj.loc
2129 self.lights.append(lobj)
2131 def _doSceneClipping(self, scene):
2132 """Clip whole objects against the View Frustum.
2134 For now clip away only objects according to their center position.
2137 cam_pos = self._getObjPosition(self.cameraObj)
2138 view_vect = self._cameraViewVector()
2140 near = self.cameraObj.data.clipStart
2141 far = self.cameraObj.data.clipEnd
2143 aspect = float(self.canvasRatio[0]) / float(self.canvasRatio[1])
2144 fovy = atan(0.5 / aspect / (self.cameraObj.data.lens / 32))
2145 fovy = fovy * 360.0 / pi
2147 Objects = scene.objects
2150 if o.getType() != 'Mesh':
2154 obj_vect = Vector(cam_pos) - self._getObjPosition(o)
2156 d = obj_vect*view_vect
2157 theta = AngleBetweenVecs(obj_vect, view_vect)
2159 # if the object is outside the view frustum, clip it away
2160 if (d < near) or (d > far) or (theta > fovy):
2161 scene.objects.unlink(o)
2164 # Use the object bounding box
2165 # (whose points are already in WorldSpace Coordinate)
2167 bb = o.getBoundBox()
2171 p_vect = Vector(cam_pos) - Vector(p)
2173 d = p_vect * view_vect
2174 theta = AngleBetweenVecs(p_vect, view_vect)
2176 # Is this point outside the view frustum?
2177 if (d < near) or (d > far) or (theta > fovy):
2180 # If the bb is all outside the view frustum we clip the whole
2182 if points_outside == len(bb):
2183 scene.objects.unlink(o)
2185 def _doConvertGeometricObjsToMesh(self, scene):
2186 """Convert all "geometric" objects to mesh ones.
2188 geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
2189 #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
2191 Objects = scene.objects
2193 objList = [o for o in Objects if o.getType() in geometricObjTypes]
2196 obj = self._convertToRawMeshObj(obj)
2197 scene.objects.link(obj)
2198 scene.objects.unlink(old_obj)
2200 # XXX Workaround for Text and Curve which have some normals
2201 # inverted when they are converted to Mesh, REMOVE that when
2202 # blender will fix that!!
2203 if old_obj.getType() in ['Curve', 'Text']:
2204 me = obj.getData(mesh=1)
2216 def _doSceneDepthSorting(self, scene):
2217 """Sort objects in the scene.
2219 The object sorting is done accordingly to the object centers.
2222 c = self._getObjPosition(self.cameraObj)
2224 by_obj_center_pos = (lambda o1, o2:
2225 (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
2226 cmp((self._getObjPosition(o1) - Vector(c)).length,
2227 (self._getObjPosition(o2) - Vector(c)).length)
2230 # Implement sorting by bounding box, the object with the bb
2231 # nearest to the camera should be drawn as last.
2232 by_nearest_bbox_point = (lambda o1, o2:
2233 (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
2234 cmp(min([(Vector(p) - Vector(c)).length for p in o1.getBoundBox()]),
2235 min([(Vector(p) - Vector(c)).length for p in o2.getBoundBox()])
2239 Objects = list(scene.objects)
2241 #Objects.sort(by_obj_center_pos)
2242 Objects.sort(by_nearest_bbox_point)
2246 scene.objects.unlink(o)
2247 scene.objects.link(o)
2249 def _joinMeshObjectsInScene(self, scene):
2250 """Merge all the Mesh Objects in a scene into a single Mesh Object.
2253 oList = [o for o in scene.objects if o.getType() == 'Mesh']
2255 # FIXME: Object.join() do not work if the list contains 1 object
2259 mesh = Mesh.New('BigOne')
2260 bigObj = Object.New('Mesh', 'BigOne')
2263 scene.objects.link(bigObj)
2267 except RuntimeError:
2268 print "\nWarning! - Can't Join Objects\n"
2269 scene.objects.unlink(bigObj)
2272 print "Objects Type error?"
2275 scene.objects.unlink(o)
2279 # Per object/mesh methods
2281 def _convertToRawMeshObj(self, object):
2282 """Convert geometry based object to a mesh object.
2284 me = Mesh.New('RawMesh_' + object.name)
2285 me.getFromObject(object.name)
2287 newObject = Object.New('Mesh', 'RawMesh_' + object.name)
2290 # If the object has no materials set a default material
2291 if not me.materials:
2292 me.materials = [Material.New()]
2293 #for f in me.faces: f.mat = 0
2295 newObject.setMatrix(object.getMatrix())
2299 def _doModelingTransformation(self, mesh, matrix):
2300 """Transform object coordinates to world coordinates.
2302 This step is done simply applying to the object its tranformation
2303 matrix and recalculating its normals.
2305 # XXX FIXME: blender do not transform normals in the right way when
2306 # there are negative scale values
2307 if matrix[0][0] < 0 or matrix[1][1] < 0 or matrix[2][2] < 0:
2308 print "WARNING: Negative scales, expect incorrect results!"
2310 mesh.transform(matrix, True)
2312 def _doBackFaceCulling(self, mesh):
2313 """Simple Backface Culling routine.
2315 At this level we simply do a visibility test face by face and then
2316 select the vertices belonging to visible faces.
2319 # Select all vertices, so edges can be displayed even if there are no
2321 for v in mesh.verts:
2324 Mesh.Mode(Mesh.SelectModes['FACE'])
2326 for f in mesh.faces:
2328 if self._isFaceVisible(f):
2331 def _doLighting(self, mesh):
2332 """Apply an Illumination and shading model to the object.
2334 The model used is the Phong one, it may be inefficient,
2335 but I'm just learning about rendering and starting from Phong seemed
2336 the most natural way.
2339 # If the mesh has vertex colors already, use them,
2340 # otherwise turn them on and do some calculations
2341 if mesh.vertexColors:
2343 mesh.vertexColors = 1
2345 materials = mesh.materials
2347 camPos = self._getObjPosition(self.cameraObj)
2349 # We do per-face color calculation (FLAT Shading), we can easily turn
2350 # to a per-vertex calculation if we want to implement some shading
2351 # technique. For an example see:
2352 # http://www.miralab.unige.ch/papers/368.pdf
2353 for f in mesh.faces:
2359 mat = materials[f.mat]
2361 # A new default material
2363 mat = Material.New('defMat')
2365 # Check if it is a shadeless material
2366 elif mat.getMode() & Material.Modes['SHADELESS']:
2368 # Convert to a value between 0 and 255
2369 tmp_col = [int(c * 255.0) for c in I]
2379 # do vertex color calculation
2381 TotDiffSpec = Vector([0.0, 0.0, 0.0])
2383 for l in self.lights:
2385 light_pos = self._getObjPosition(l)
2386 light = light_obj.getData()
2388 L = Vector(light_pos).normalize()
2390 V = (Vector(camPos) - Vector(f.cent)).normalize()
2392 N = Vector(f.no).normalize()
2394 if config.polygons['SHADING'] == 'TOON':
2395 NL = ShadingUtils.toonShading(N * L)
2399 # Should we use NL instead of (N*L) here?
2400 R = 2 * (N * L) * N - L
2402 Ip = light.getEnergy()
2404 # Diffuse co-efficient
2405 kd = mat.getRef() * Vector(mat.getRGBCol())
2407 kd[i] *= light.col[i]
2409 Idiff = Ip * kd * max(0, NL)
2411 # Specular component
2412 ks = mat.getSpec() * Vector(mat.getSpecCol())
2413 ns = mat.getHardness()
2414 Ispec = Ip * ks * pow(max(0, (V * R)), ns)
2416 TotDiffSpec += (Idiff + Ispec)
2419 Iamb = Vector(Blender.World.Get()[0].getAmb())
2422 # Emissive component (convert to a triplet)
2423 ki = Vector([mat.getEmit()] * 3)
2425 #I = ki + Iamb + (Idiff + Ispec)
2426 I = ki + (ka * Iamb) + TotDiffSpec
2428 # Set Alpha component
2430 I.append(mat.getAlpha())
2432 # Clamp I values between 0 and 1
2433 I = [min(c, 1) for c in I]
2434 I = [max(0, c) for c in I]
2436 # Convert to a value between 0 and 255
2437 tmp_col = [int(c * 255.0) for c in I]
2445 def _doProjection(self, mesh, projector):
2446 """Apply Viewing and Projection tranformations.
2449 for v in mesh.verts:
2450 p = projector.doProjection(v.co[:])
2455 #mesh.recalcNormals()
2458 # We could reeset Camera matrix, since now
2459 # we are in Normalized Viewing Coordinates,
2460 # but doung that would affect World Coordinate
2461 # processing for other objects
2463 #self.cameraObj.data.type = 1
2464 #self.cameraObj.data.scale = 2.0
2465 #m = Matrix().identity()
2466 #self.cameraObj.setMatrix(m)
2468 def _doViewFrustumClipping(self, mesh):
2469 """Clip faces against the View Frustum.
2472 # The Canonical View Volume, 8 vertices, and 6 faces,
2473 # We consider its face normals pointing outside
2475 v1 = NMesh.Vert(1, 1, -1)
2476 v2 = NMesh.Vert(1, -1, -1)
2477 v3 = NMesh.Vert(-1, -1, -1)
2478 v4 = NMesh.Vert(-1, 1, -1)
2479 v5 = NMesh.Vert(1, 1, 1)
2480 v6 = NMesh.Vert(1, -1, 1)
2481 v7 = NMesh.Vert(-1, -1, 1)
2482 v8 = NMesh.Vert(-1, 1, 1)
2485 f1 = NMesh.Face([v1, v4, v3, v2])
2487 f2 = NMesh.Face([v5, v6, v7, v8])
2489 f3 = NMesh.Face([v1, v2, v6, v5])
2491 f4 = NMesh.Face([v2, v3, v7, v6])
2493 f5 = NMesh.Face([v3, v4, v8, v7])
2495 f6 = NMesh.Face([v4, v1, v5, v8])
2498 nmesh = NMesh.GetRaw(mesh.name)
2499 clippedfaces = nmesh.faces[:]
2500 facelist = clippedfaces[:]
2502 for clipface in cvv:
2508 #newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
2512 # Check if the face is all outside the view frustum
2513 # TODO: Do this test before, it is more efficient
2516 if abs(v[0]) > (1 - EPS) or abs(v[1]) > (1 - EPS) or abs(v[2]) > (1 - EPS):
2519 if points_outside != len(f):
2520 clippedfaces.append(f)
2524 nmesh.verts.append(v)
2528 nf.col = [f.col[0]] * len(nf.v)
2530 clippedfaces.append(nf)
2531 facelist = clippedfaces[:]
2533 nmesh.faces = facelist
2537 def __simpleDepthSort(self, mesh):
2538 """Sort faces by the furthest vertex.
2540 This simple mesthod is known also as the painter algorithm, and it
2541 solves HSR correctly only for convex meshes.
2546 # The sorting requires circa n*log(n) steps
2548 progress.setActivity("HSR: Painter", n * log(n))
2550 by_furthest_z = (lambda f1, f2: progress.update() and
2551 cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
2554 # FIXME: using NMesh to sort faces. We should avoid that!
2555 nmesh = NMesh.GetRaw(mesh.name)
2557 # remember that _higher_ z values mean further points
2558 nmesh.faces.sort(by_furthest_z)
2559 nmesh.faces.reverse()
2563 def __newellDepthSort(self, mesh):
2564 """Newell's depth sorting.
2570 # Find non planar quads and convert them to triangle
2571 #for f in mesh.faces:
2573 # if is_nonplanar_quad(f.v):
2574 # print "NON QUAD??"
2577 # Now reselect all faces
2578 for f in mesh.faces:
2580 mesh.quadToTriangle()
2582 # FIXME: using NMesh to sort faces. We should avoid that!
2583 nmesh = NMesh.GetRaw(mesh.name)
2585 # remember that _higher_ z values mean further points
2586 nmesh.faces.sort(by_furthest_z)
2587 nmesh.faces.reverse()
2589 # Begin depth sort tests
2591 # use the smooth flag to set marked faces
2592 for f in nmesh.faces:
2595 facelist = nmesh.faces[:]
2598 # The steps are _at_least_ equal to len(facelist), we do not count the
2599 # feces coming out from splitting!!
2600 progress.setActivity("HSR: Newell", len(facelist))
2601 #progress.setQuiet(True)
2603 while len(facelist):
2604 debug("\n----------------------\n")
2605 debug("len(facelits): %d\n" % len(facelist))
2608 pSign = sign(P.normal[2])
2610 # We can discard faces parallel to the view vector
2611 #if P.normal[2] == 0:
2612 # facelist.remove(P)
2618 for Q in facelist[1:]:
2620 debug("P.smooth: " + str(P.smooth) + "\n")
2621 debug("Q.smooth: " + str(Q.smooth) + "\n")
2624 qSign = sign(Q.normal[2])
2625 # TODO: check also if Q is parallel??
2627 # Test 0: We need to test only those Qs whose furthest vertex
2628 # is closer to the observer than the closest vertex of P.
2630 zP = [v.co[2] for v in P.v]
2631 zQ = [v.co[2] for v in Q.v]
2632 notZOverlap = min(zP) > max(zQ) + EPS
2636 debug("NOT Z OVERLAP!\n")
2638 # If Q is not marked then we can safely print P
2641 debug("met a marked face\n")
2644 # Test 1: X extent overlapping
2645 xP = [v.co[0] for v in P.v]
2646 xQ = [v.co[0] for v in Q.v]
2647 #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
2648 notXOverlap = min(xQ) >= (max(xP) - EPS) or min(xP) >= (max(xQ) - EPS)
2652 debug("NOT X OVERLAP!\n")
2655 # Test 2: Y extent Overlapping
2656 yP = [v.co[1] for v in P.v]
2657 yQ = [v.co[1] for v in Q.v]
2658 #notYOverlap = max(yP) <= min(yQ) or max(yQ) <= min(yP)
2659 notYOverlap = min(yQ) >= (max(yP) - EPS) or min(yP) >= (max(yQ) - EPS)
2663 debug("NOT Y OVERLAP!\n")
2666 # Test 3: P vertices are all behind the plane of Q
2669 d = qSign * HSR.Distance(Vector(Pi), Q)
2672 pVerticesBehindPlaneQ = (n == len(P))
2674 if pVerticesBehindPlaneQ:
2676 debug("P BEHIND Q!\n")
2679 # Test 4: Q vertices in front of the plane of P
2682 d = pSign * HSR.Distance(Vector(Qi), P)
2685 qVerticesInFrontPlaneP = (n == len(Q))
2687 if qVerticesInFrontPlaneP:
2689 debug("Q IN FRONT OF P!\n")
2692 # Test 5: Check if projections of polygons effectively overlap,
2693 # in previous tests we checked only bounding boxes.
2695 #if not projectionsOverlap(P, Q):
2696 if not (HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
2698 debug("Projections do not overlap!\n")
2701 # We still can't say if P obscures Q.
2703 # But if Q is marked we do a face-split trying to resolve a
2704 # difficulty (maybe a visibility cycle).
2707 debug("Possibly a cycle detected!\n")
2708 debug("Split here!!\n")
2710 facelist = HSR.facesplit(P, Q, facelist, nmesh)
2714 # The question now is: Does Q obscure P?
2716 # Test 3bis: Q vertices are all behind the plane of P
2719 d = pSign * HSR.Distance(Vector(Qi), P)
2722 qVerticesBehindPlaneP = (n == len(Q))
2724 if qVerticesBehindPlaneP:
2725 debug("\nTest 3bis\n")
2726 debug("Q BEHIND P!\n")
2728 # Test 4bis: P vertices in front of the plane of Q
2731 d = qSign * HSR.Distance(Vector(Pi), Q)
2734 pVerticesInFrontPlaneQ = (n == len(P))
2736 if pVerticesInFrontPlaneQ:
2737 debug("\nTest 4bis\n")
2738 debug("P IN FRONT OF Q!\n")
2740 # We don't even know if Q does obscure P, so they should
2741 # intersect each other, split one of them in two parts.
2742 if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
2743 debug("\nSimple Intersection?\n")
2744 debug("Test 3bis or 4bis failed\n")
2745 debug("Split here!!2\n")
2747 facelist = HSR.facesplit(P, Q, facelist, nmesh)
2752 facelist.insert(0, Q)
2755 debug("Q marked!\n")
2759 if split_done == 0 and face_marked == 0:
2762 dumpfaces(maplist, "dump" + str(len(maplist)).zfill(4) + ".svg")
2766 if len(facelist) == 870:
2767 dumpfaces([P, Q], "loopdebug.svg")
2769 #if facelist == None:
2771 # print [v.co for v in P]
2772 # print [v.co for v in Q]
2775 # end of while len(facelist)
2777 nmesh.faces = maplist
2778 #for f in nmesh.faces:
2783 def _doHiddenSurfaceRemoval(self, mesh):
2784 """Do HSR for the given mesh.
2786 if len(mesh.faces) == 0:
2789 if config.polygons['HSR'] == 'PAINTER':
2790 print "\nUsing the Painter algorithm for HSR."
2791 self.__simpleDepthSort(mesh)
2793 elif config.polygons['HSR'] == 'NEWELL':
2794 print "\nUsing the Newell's algorithm for HSR."
2795 self.__newellDepthSort(mesh)
2797 def _doEdgesStyle(self, mesh, edgestyleSelect):
2798 """Process Mesh Edges accroding to a given selection style.
2800 Examples of algorithms:
2803 given an edge if its adjacent faces have the same normal (that is
2804 they are complanar), than deselect it.
2807 given an edge if one its adjacent faces is frontfacing and the
2808 other is backfacing, than select it, else deselect.
2811 Mesh.Mode(Mesh.SelectModes['EDGE'])
2813 edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
2815 for i, edge_faces in enumerate(edge_cache):
2816 mesh.edges[i].sel = 0
2817 if edgestyleSelect(edge_faces):
2818 mesh.edges[i].sel = 1
2821 for e in mesh.edges:
2824 if edgestyleSelect(e, mesh):
2830 # ---------------------------------------------------------------------
2832 ## GUI Class and Main Program
2834 # ---------------------------------------------------------------------
2836 from Blender import BGL, Draw
2837 from Blender.BGL import *
2844 # Output Format menu
2845 output_format = config.output['FORMAT']
2846 default_value = outputWriters.keys().index(output_format) + 1
2847 GUI.outFormatMenu = Draw.Create(default_value)
2848 GUI.evtOutFormatMenu = 0
2850 # Animation toggle button
2851 GUI.animToggle = Draw.Create(config.output['ANIMATION'])
2852 GUI.evtAnimToggle = 1
2854 # Join Objects toggle button
2855 GUI.joinObjsToggle = Draw.Create(config.output['JOIN_OBJECTS'])
2856 GUI.evtJoinObjsToggle = 2
2858 # Render filled polygons
2859 GUI.polygonsToggle = Draw.Create(config.polygons['SHOW'])
2861 # Shading Style menu
2862 shading_style = config.polygons['SHADING']
2863 default_value = shadingStyles.keys().index(shading_style) + 1
2864 GUI.shadingStyleMenu = Draw.Create(default_value)
2865 GUI.evtShadingStyleMenu = 21
2867 GUI.evtPolygonsToggle = 3
2868 # We hide the config.polygons['EXPANSION_TRICK'], for now
2870 # Render polygon edges
2871 GUI.showEdgesToggle = Draw.Create(config.edges['SHOW'])
2872 GUI.evtShowEdgesToggle = 4
2874 # Render hidden edges
2875 GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN'])
2876 GUI.evtShowHiddenEdgesToggle = 5
2879 edge_style = config.edges['STYLE']
2880 default_value = edgeStyles.keys().index(edge_style) + 1
2881 GUI.edgeStyleMenu = Draw.Create(default_value)
2882 GUI.evtEdgeStyleMenu = 6
2885 GUI.edgeWidthSlider = Draw.Create(config.edges['WIDTH'])
2886 GUI.evtEdgeWidthSlider = 7
2889 c = config.edges['COLOR']
2890 GUI.edgeColorPicker = Draw.Create(c[0] / 255.0, c[1] / 255.0, c[2] / 255.0)
2891 GUI.evtEdgeColorPicker = 71
2894 GUI.evtRenderButton = 8
2897 GUI.evtExitButton = 9
2899 # Save default button
2900 GUI.evtSaveDefaultButton = 99
2904 # initialize static members
2907 glClear(GL_COLOR_BUFFER_BIT)
2908 glColor3f(0.0, 0.0, 0.0)
2909 glRasterPos2i(10, 380)
2910 Draw.Text("VRM: Vector Rendering Method script. Version %s." %
2912 glRasterPos2i(10, 365)
2913 Draw.Text("%s (c) 2012" % __author__)
2915 glRasterPos2i(10, 335)
2916 Draw.Text("Press Q or ESC to quit.")
2918 # Build the output format menu
2919 glRasterPos2i(10, 310)
2920 Draw.Text("Select the output Format:")
2921 outMenuStruct = "Output Format %t"
2922 for t in outputWriters.keys():
2923 outMenuStruct = outMenuStruct + "|%s" % t
2924 GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu,
2925 10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
2928 GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle,
2929 10, 260, 160, 18, GUI.animToggle.val,
2930 "Toggle rendering of animations")
2932 # Join Objects toggle
2933 GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle,
2934 10, 235, 160, 18, GUI.joinObjsToggle.val,
2935 "Join objects in the rendered file")
2938 Draw.Button("Render", GUI.evtRenderButton, 10, 210 - 25, 75, 25 + 18,
2940 Draw.Button("Exit", GUI.evtExitButton, 95, 210 - 25, 75, 25 + 18, "Exit!")
2942 Draw.Button("Save settings as default", GUI.evtSaveDefaultButton, 10, 210 - 50, 160, 18,
2943 "Save settings as default")
2946 glRasterPos2i(200, 310)
2947 Draw.Text("Rendering Style:")
2950 GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle,
2951 200, 285, 160, 18, GUI.polygonsToggle.val,
2952 "Render filled polygons")
2954 if GUI.polygonsToggle.val == 1:
2956 # Polygon Shading Style
2957 shadingStyleMenuStruct = "Shading Style %t"
2958 for t in shadingStyles.keys():
2959 shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower()
2960 GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu,
2961 200, 260, 160, 18, GUI.shadingStyleMenu.val,
2962 "Choose the shading style")
2965 GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle,
2966 200, 235, 160, 18, GUI.showEdgesToggle.val,
2967 "Render polygon edges")
2969 if GUI.showEdgesToggle.val == 1:
2972 edgeStyleMenuStruct = "Edge Style %t"
2973 for t in edgeStyles.keys():
2974 edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower()
2975 GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu,
2976 200, 210, 160, 18, GUI.edgeStyleMenu.val,
2977 "Choose the edge style")
2980 GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider,
2981 200, 185, 140, 18, GUI.edgeWidthSlider.val,
2982 0.0, 10.0, 0, "Change Edge Width")
2985 GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker,
2986 342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
2989 GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges",
2990 GUI.evtShowHiddenEdgesToggle,
2991 200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
2992 "Render hidden edges as dashed lines")
2994 def event(evt, val):
2996 if evt == Draw.ESCKEY or evt == Draw.QKEY:
3003 def button_event(evt):
3005 if evt == GUI.evtExitButton:
3008 elif evt == GUI.evtOutFormatMenu:
3009 i = GUI.outFormatMenu.val - 1
3010 config.output['FORMAT'] = outputWriters.keys()[i]
3011 # Set the new output file
3013 outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
3015 elif evt == GUI.evtAnimToggle:
3016 config.output['ANIMATION'] = bool(GUI.animToggle.val)
3018 elif evt == GUI.evtJoinObjsToggle:
3019 config.output['JOIN_OBJECTS'] = bool(GUI.joinObjsToggle.val)
3021 elif evt == GUI.evtPolygonsToggle:
3022 config.polygons['SHOW'] = bool(GUI.polygonsToggle.val)
3024 elif evt == GUI.evtShadingStyleMenu:
3025 i = GUI.shadingStyleMenu.val - 1
3026 config.polygons['SHADING'] = shadingStyles.keys()[i]
3028 elif evt == GUI.evtShowEdgesToggle:
3029 config.edges['SHOW'] = bool(GUI.showEdgesToggle.val)
3031 elif evt == GUI.evtShowHiddenEdgesToggle:
3032 config.edges['SHOW_HIDDEN'] = bool(GUI.showHiddenEdgesToggle.val)
3034 elif evt == GUI.evtEdgeStyleMenu:
3035 i = GUI.edgeStyleMenu.val - 1
3036 config.edges['STYLE'] = edgeStyles.keys()[i]
3038 elif evt == GUI.evtEdgeWidthSlider:
3039 config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val)
3041 elif evt == GUI.evtEdgeColorPicker:
3042 config.edges['COLOR'] = [int(c * 255.0) for c in GUI.edgeColorPicker.val]
3044 elif evt == GUI.evtRenderButton:
3045 label = "Save %s" % config.output['FORMAT']
3046 # Show the File Selector
3048 Blender.Window.FileSelector(vectorize, label, outputfile)
3050 elif evt == GUI.evtSaveDefaultButton:
3051 config.saveToRegistry()
3054 print "Event: %d not handled!" % evt
3061 from pprint import pprint
3063 pprint(config.output)
3064 pprint(config.polygons)
3065 pprint(config.edges)
3067 _init = staticmethod(_init)
3068 draw = staticmethod(draw)
3069 event = staticmethod(event)
3070 button_event = staticmethod(button_event)
3071 conf_debug = staticmethod(conf_debug)
3074 # A wrapper function for the vectorizing process
3075 def vectorize(filename):
3076 """The vectorizing process is as follows:
3078 - Instanciate the writer and the renderer
3083 print "\nERROR: invalid file name!"
3086 from Blender import Window
3087 editmode = Window.EditMode()
3091 actualWriter = outputWriters[config.output['FORMAT']]
3092 writer = actualWriter(filename)
3094 renderer = Renderer()
3095 renderer.doRendering(writer, config.output['ANIMATION'])
3102 if __name__ == "__main__":
3106 config.loadFromRegistry()
3108 # initialize writer setting also here to configure writer specific
3109 # settings on startup
3110 actualWriter = outputWriters[config.output['FORMAT']]
3111 writer = actualWriter("")
3114 basename = Blender.sys.basename(Blender.Get('filename'))
3116 outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
3118 if Blender.mode == 'background':
3119 progress = ConsoleProgressIndicator()
3120 vectorize(outputfile)
3122 progress = GraphicalProgressIndicator()
3123 Draw.Register(GUI.draw, GUI.event, GUI.button_event)