from math import *
import sys, time
+# Constants
+EPS = 10e-5
+
# Some global settings
class config:
polygons = dict()
polygons['SHOW'] = True
- polygons['SHADING'] = 'FLAT'
- polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
+ polygons['SHADING'] = 'TOON'
+ #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
polygons['HSR'] = 'NEWELL'
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
- edges['STYLE'] = 'MESH'
+ edges['STYLE'] = 'MESH' # or SILHOUETTE
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
-# Debug utility function
-print_debug = True
-def debug(msg):
- if print_debug:
- sys.stderr.write(msg)
+# Utility functions
+def sign(x):
+
+ if x < 0:
+ return -1
+ elif x > 0:
+ return 1
+ #else:
+ # return 0
# ---------------------------------------------------------------------
if color[3] != 255:
opacity = float(color[3])/255.0
opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+ #opacity_string = "opacity: %g;" % (opacity)
self.file.write("\tstyle=\"fill:" + str_col + ";")
self.file.write(opacity_string)
# see http://www.antigrain.com/svg/index.html for more info
stroke_width = 1.0
- if config.polygons['EXPANSION_TRICK']:
- str_col = "#000000" # For debug
+ # EXPANSION TRICK is not that useful where there is transparency
+ if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+ # str_col = "#000000" # For debug
self.file.write(" stroke:%s;\n" % str_col)
self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
mesh = obj.getData(mesh=1)
+ # Triangolarize the mesh??
+ for f in mesh.faces: f.sel = 1
+ mesh.quadToTriangle()
+
self._doModelingTransformation(mesh, obj.matrix)
self._doBackFaceCulling(mesh)
+ # When doing HSR with NEWELL we may want to flip all normals
+ # toward the viewer
+ if config.polygons['HSR'] == "NEWELL":
+ for f in mesh.faces:
+ f.sel = 1-f.sel
+ mesh.flipNormals()
+ for f in mesh.faces:
+ f.sel = 1
+
self._doLighting(mesh)
+
# Do "projection" now so we perform further processing
# in Normalized View Coordinates
self._doProjection(mesh, self.proj)
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
"""
- #geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
- geometricObjTypes = ['Mesh', 'Surf', 'Curve']
+ geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
+ #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
Objects = scene.getChildren()
objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
for l in self.lights:
light_obj = l
light_pos = self._getObjPosition(l)
- light = light_obj.data
+ light = light_obj.getData()
L = Vector(light_pos).normalize()
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
progress.setActivity("HSR: Painter", n*log(n))
-
by_furthest_z = (lambda f1, f2: progress.update() and
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
)
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh.update()
- def __topologicalDepthSort(self, mesh):
- """Occlusion based on topological occlusion.
-
- Build the occlusion graph of the mesh,
- and then do topological sort on that graph
- """
- return
-
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
"""
- by_furthest_z = (lambda f1, f2:
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]))
- )
-
-
- def isOnSegment(v1, v2, p):
-
- # when p is at extreme points
- if p == v1 or p == v2:
- return False
+ from hsrtk import *
- EPS = 10e-7
+ # Find non planar quads and convert them to triangle
+ #for f in mesh.faces:
+ # f.sel = 0
+ # if is_nonplanar_quad(f.v):
+ # print "NON QUAD??"
+ # f.sel = 1
- l1 = (v1-p).length
- l2 = (v2-p).length
- l = (v1-v2).length
-
- print "l: ", l, " l1: ", l1, " l2: ", l2, "diff: %.9f" % (l - (l1+l2) )
-
- if abs(l - (l1+l2)) < EPS:
- return True
- else:
- return False
-
-
-
- def Distance(point, face):
- """ Calculate the distance between a point and a face.
-
- An alternative but more expensive method can be:
-
- ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
- Vector(face.no), Vector(point), 0)
-
- d = Vector(ip - point).length
- """
-
- plNormal = Vector(face.no)
- plVert0 = Vector(face[0])
-
- #d = abs( (point * plNormal ) - (plVert0 * plNormal) )
- d = (point * plNormal ) - (plVert0 * plNormal)
- debug("d: %.10f - sel: %d, %s\n" % (d, face.sel, str(point)) )
-
- return d
+ # Now reselect all faces
+ for f in mesh.faces:
+ f.sel = 1
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
facelist = nmesh.faces[:]
maplist = []
- #EPS = 10e-7
- EPS = 0
+ # The steps are _at_least_ equal to len(facelist), we do not count the
+ # feces coming out from splitting!!
global progress
progress.setActivity("HSR: Newell", len(facelist))
- progress.setQuiet(True)
+ #progress.setQuiet(True)
- #while len(facelist)-1:
+
while len(facelist):
+ debug("\n----------------------\n")
+ debug("len(facelits): %d\n" % len(facelist))
P = facelist[0]
- pSign = 1
- if P.sel == 0:
- pSign = -1
+ pSign = sign(P.normal[2])
+
+ # We can discard faces parallel to the view vector
+ if P.normal[2] == 0:
+ facelist.remove(P)
+ continue
+
+ split_done = 0
+ face_marked = 0
- #while False:
for Q in facelist[1:]:
debug("P.smooth: " + str(P.smooth) + "\n")
debug("Q.smooth: " + str(Q.smooth) + "\n")
debug("\n")
- qSign = 1
- if Q.sel == 0:
- qSign = -1
+ qSign = sign(Q.normal[2])
+ # TODO: check also if Q is parallel??
- # We need to test only those Qs whose furthest vertex
+ # Test 0: We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
zP = [v.co[2] for v in P.v]
zQ = [v.co[2] for v in Q.v]
- ZOverlap = min(zP) < max(zQ)
+ notZOverlap = min(zP) > max(zQ)+EPS
- if not ZOverlap:
+ if notZOverlap:
debug("\nTest 0\n")
debug("NOT Z OVERLAP!\n")
- if not Q.smooth:
- # We can safely print P
+ if Q.smooth == 0:
+ # If Q is not marked then we can safely print P
break
else:
+ debug("met a marked face\n")
continue
+
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
- notXOverlap = (max(xP) < min(xQ)) or (max(xQ) < min(xP))
+ #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
+ notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
if notXOverlap:
debug("\nTest 1\n")
debug("NOT X OVERLAP!\n")
continue
+
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
- notYOverlap = (max(yP) < min(yQ)) or (max(yQ) < min(yP))
+ #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
+ notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
if notYOverlap:
debug("\nTest 2\n")
# Test 3: P vertices are all behind the plane of Q
n = 0
for Pi in P:
- print P.col[0]
d = qSign * Distance(Vector(Pi), Q)
- if d > EPS:
+ if d <= EPS:
n += 1
pVerticesBehindPlaneQ = (n == len(P))
# Test 4: Q vertices in front of the plane of P
n = 0
for Qi in Q:
- print Q.col[0]
d = pSign * Distance(Vector(Qi), P)
- if d <= EPS:
+ if d >= -EPS:
n += 1
qVerticesInFrontPlaneP = (n == len(Q))
debug("Q IN FRONT OF P!\n")
continue
- # Test 5: Line Intersections... TODO
- # Check if polygons effectively overlap each other, not only
- # boundig boxes as dome before.
- # Since we We are working in normalized projection coordinates
- # we kust check if polygons intersect.
-
- def projectionsOverlap(P, Q):
-
- for i in range(0, len(P.v)):
-
- v1 = Vector(P.v[i-1])
- v1[2] = 0
- v2 = Vector(P.v[i])
- v2[2] = 0
-
- for j in range(0, len(Q.v)):
- v3 = Vector(Q.v[j-1])
- v3[2] = 0
- v4 = Vector(Q.v[j])
- v4[2] = 0
-
- ret = LineIntersect(v1, v2, v3, v4)
- # if line v1-v2 and v3-v4 intersect both return
- # values are the same.
- if ret and ret[0] == ret[1] and isOnSegment(v1, v2,
- ret[0]) and isOnSegment(v3, v4, ret[1]):
- debug("Projections OVERLAP!!\n")
- debug("line1:"+
- " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
- " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
- "\n")
- debug("return: "+ str(ret)+"\n")
- return True
-
- return False
+
+ # Test 5: Check if projections of polygons effectively overlap,
+ # in previous tests we checked only bounding boxes.
if not projectionsOverlap(P, Q):
debug("\nTest 5\n")
debug("Projections do not overlap!\n")
continue
+ # We still can't say if P obscures Q.
- # We do not know if P obscures Q.
+ # But if Q is marked we do a face-split trying to resolve a
+ # difficulty (maybe a visibility cycle).
if Q.smooth == 1:
- # Split P or Q, TODO
- debug("Cycle detected!\n")
+ # Split P or Q
+ debug("Possibly a cycle detected!\n")
debug("Split here!!\n")
- continue
+ facelist = facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
# The question now is: Does Q obscure P?
+
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
- print Q.col[0]
d = pSign * Distance(Vector(Qi), P)
- if d > EPS:
+ if d <= EPS:
n += 1
qVerticesBehindPlaneP = (n == len(Q))
# Test 4bis: P vertices in front of the plane of Q
n = 0
for Pi in P:
- print P.col[0]
d = qSign * Distance(Vector(Pi), Q)
- if d <= EPS:
+ if d >= -EPS:
n += 1
pVerticesInFrontPlaneQ = (n == len(P))
debug("\nTest 4bis\n")
debug("P IN FRONT OF Q!\n")
-
- import intersection
-
+
+ # We don't even know if Q does obscure P, so they should
+ # intersect each other, split one of them in two parts.
if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
debug("\nSimple Intersection?\n")
- # Split P or Q, TODO
- print "Test 3bis or 4bis failed"
- print "Split here!!2\n"
-
- """newfaces = intersection.splitOn(P, Q, 0)
- print newfaces
- facelist.remove(Q)
- for nf in newfaces:
- if nf:
- nf.col = Q.col
- facelist.append(nf)
- """
-
- break
-
- # We do not know
- if Q.smooth:
- # split P or Q
- print "Split here!!\n"
- """
- newfaces = intersection.splitOn(P, Q, 0)
- facelist.remove(Q)
- for nf in newfaces:
- if nf:
- nf.col = Q.col
- facelist.append(nf)
-
- """
- break
+ debug("Test 3bis or 4bis failed\n")
+ debug("Split here!!2\n")
- Q.smooth = 1
+ facelist = facesplit(P, Q, facelist, nmesh)
+ split_done = 1
+ break
+
facelist.remove(Q)
facelist.insert(0, Q)
+ Q.smooth = 1
+ face_marked = 1
+ debug("Q marked!\n")
+ break
# Write P!
- P = facelist[0]
- facelist.remove(P)
- maplist.append(P)
+ if split_done == 0 and face_marked == 0:
+ facelist.remove(P)
+ maplist.append(P)
- progress .update()
+ progress.update()
+
+ if facelist == None:
+ maplist = [P, Q]
+ print [v.co for v in P]
+ print [v.co for v in Q]
+ break
+
+ # end of while len(facelist)
+
-
nmesh.faces = maplist
- for f in nmesh.faces:
- f.sel = 1
nmesh.update()
+
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.
"""