#!BPY
-
"""
Name: 'VRM'
-Blender: 237
+Blender: 241
Group: 'Export'
-Tooltip: 'Vector Rendering Method Export Script'
+Tooltip: 'Vector Rendering Method Export Script 0.3'
"""
+# ---------------------------------------------------------------------
+# Copyright (c) 2006 Antonio Ospite
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software
+# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+#
+# ---------------------------------------------------------------------
+#
+# NOTE: I do not know who is the original author of 'vrm'.
+# The present code is almost entirely rewritten from scratch,
+# but if I have to give credits to anyone, please let me know,
+# so I can update the copyright.
+#
+# ---------------------------------------------------------------------
+#
+# Additional credits:
+# Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
+# Thanks to Anthony C. D'Agostino for the backface.py script
+#
+# ---------------------------------------------------------------------
import Blender
-from Blender import Scene, Object, Lamp, Camera
+from Blender import Scene, Object, NMesh, Lamp, Camera
+from Blender.Mathutils import *
from math import *
-from Blender.Window import *
-from Blender.Scene import Render
-
-def init():
- print "Init\n"
- renderDir = context.getRenderPath()
+# ---------------------------------------------------------------------
+#
+## Projections classes
+#
+# ---------------------------------------------------------------------
+
+class Projection:
+ def __init__(self):
+ print "New projection"
+
+class PerspectiveProjection(Projection):
+ def __init___(self):
+ Projection.__init__(self)
+ print "Perspective"
+
+ def doProjection():
+ print "do a perspective projection!!"
+
+def Perspective(fovy, aspect, near, far):
+ top = near * tan(fovy * pi / 360.0)
+ bottom = -top
+ left = bottom*aspect
+ right= top*aspect
+ x = (2.0 * near) / (right-left)
+ y = (2.0 * near) / (top-bottom)
+ a = (right+left) / (right-left)
+ b = (top+bottom) / (top - bottom)
+ c = - ((far+near) / (far-near))
+ d = - ((2*far*near)/(far-near))
+ return Matrix([x,0.0,a,0.0],[0.0,y,b,0.0],[0.0,0.0,c,d],[0.0,0.0,-1.0,0.0])
+
+def flatten_new(v, cameraObj, canvasSize, obMesh):
+
+ cam = cameraObj.getInverseMatrix()
+ cam.transpose()
+
+ # Changing the view mode
+ cmra = cameraObj.getData()
+
+ #if cmra.type:
+ # print "Ortho"
+ #m2 = Ortho(fovy,float(w*ax)/float(h*ay),cmra.clipStart, cmra.clipEnd,17) #cmra.scale)
+ #else:
+ # print "Perspective"
+
+ #Create Frustum
+ #frustum = _Frustum(cam,m2)
+
+ m1 = Matrix()
+ mP = Matrix()
+
+ fovy = atan(0.5/(float(canvasSize[0])/float(canvasSize[1]))/(cmra.lens/32))
+ fovy = fovy * 360/pi
+
+ m2 = Perspective(fovy,float(canvasSize[0])/float(canvasSize[1]),cmra.clipStart, cmra.clipEnd)
+
+ m1 = obMesh.matrixWorld #mat
+ m1.transpose()
+ mP = cam * m1
+ mP = m2 * mP
+
+ #Transform the vertices to global coordinates
+ p = mP*Vector([v.co[0],v.co[1],v.co[2],1.0])
+ #tf.append(p)
+ #p = m1*Vector([v.co[0],v.co[1],v.co[2],1.0])
+ #t2.append([p[0],p[1],p[2]])
+
+ mW = canvasSize[0]/2
+ mH = canvasSize[1]/2
+
+ if p[3]<=0:
+ p[0] = int(p[0]*mW)+mW
+ p[1] = int(p[1]*mH)+mH
+ else:
+ p[0] = int((p[0]/p[3])*mW)+mW
+ p[1] = int((p[1]/p[3])*mH)+mH
+
+ # Mirror and translate along y
+ p[1] *= -1
+ p[1] += canvasSize[1]
+ return p
+
+
# distance from camera Z'
def Distance(PX,PY,PZ):
dist = sqrt(PX*PX+PY*PY+PZ*PZ)
return dist
-def Dodaj(x,y,z):
-
- print ""
-
def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
NewPoint = []
NewPoint.append(NewZ)
return NewPoint
-def flatern(vertx, verty, vertz):
-
- cam = Camera.get() # Get the cameras in scene
- Lens = cam[0].getLens() # The First Blender camera lens
+def flatten(vertx, verty, vertz, cameraObj, canvasSize):
- camTyp = cam[0].getType()
+ camera = cameraObj.getData()
+ Lens = camera.getLens() # The Camera lens
- msize = (context.imageSizeX(), context.imageSizeY())
- xres = msize[0] # X res for output
- yres = msize[1] # Y res for output
+ xres = canvasSize[0] # X res for output
+ yres = canvasSize[1] # Y res for output
ratio = xres/yres
- screenxy=[0,0]
+ fov = atan(ratio * 16.0 / Lens) # Get fov stuff
+
+ dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane
+
+ screenxy=[0,0,vertz]
x=-vertx
y=verty
z=vertz
- fov = atan(ratio * 16.0 / Lens) # Get fov stuff
- dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane
-#----------------------------
-# calculate x'=dist*x/z & y'=dist*x/z
-#----------------------------
- screenxy[0]=int(xres/2+4*x*dist/z)
- screenxy[1]=int(yres/2+4*y*dist/z)
+ #----------------------------
+ # calculate x'=dist*x/z & y'=dist*x/z
+ #----------------------------
+ screenxy[0]=int(xres/2.0+4*x*dist/z)
+ screenxy[1]=int(yres/2.0+4*y*dist/z)
return screenxy
-def writesvg(ob):
+## Backface culling routine
+#
+
+def isFaceVisible(face, obj, cameraObj):
+ """
+ Determine if the face is visible from the current camera.
+ """
+ numvert = len(face)
+ # backface culling
+ a = []
+ a.append(face[0][0])
+ a.append(face[0][1])
+ a.append(face[0][2])
+ a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
+ a[0] += obj.LocX - cameraObj.LocX
+ a[1] += obj.LocY - cameraObj.LocY
+ a[2] += obj.LocZ - cameraObj.LocZ
+ b = []
+ b.append(face[1][0])
+ b.append(face[1][1])
+ b.append(face[1][2])
+ b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
+ b[0] += obj.LocX - cameraObj.LocX
+ b[1] += obj.LocY - cameraObj.LocY
+ b[2] += obj.LocZ - cameraObj.LocZ
+ c = []
+ c.append(face[numvert-1][0])
+ c.append(face[numvert-1][1])
+ c.append(face[numvert-1][2])
+ c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
+ c[0] += obj.LocX - cameraObj.LocX
+ c[1] += obj.LocY - cameraObj.LocY
+ c[2] += obj.LocZ - cameraObj.LocZ
+
+ norm = [0,0,0]
+ norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
+ norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
+ norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
+
+ d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
+ return (d<0)
+
+
+# ---------------------------------------------------------------------
+#
+## Mesh representation class
+#
+# ---------------------------------------------------------------------
+
+# TODO: a class to represent the needed properties of a 2D vector image
+
+
+# ---------------------------------------------------------------------
+#
+## Vector Drawing Classes
+#
+# ---------------------------------------------------------------------
+
+## A generic Writer
+
+class VectorWriter:
+ """
+ A class for printing output in a vectorial format.
+
+ Given a 2D representation of the 3D scene the class is responsible to
+ write it is a vector format.
+
+ Every subclasses of VectorWriter must have at last the following public
+ methods:
+ - printCanvas(mesh) --- where mesh is as specified before.
+ """
+
+ def __init__(self, fileName, canvasSize):
+ """Open the file named #fileName# and set the canvas size."""
+
+ self.file = open(fileName, "w")
+ print "Outputting to: ", fileName
+
+ self.canvasSize = canvasSize
+
+
+ # Public Methods
+ #
+
+ def printCanvas(mesh):
+ return
+
+
+ # Private Methods
+ #
+
+ def _printHeader():
+ return
- for i in range(0, ob[0]+1):
- print ob[i], "\n"
- print "WriteSVG\n"
+ def _printFooter():
+ return
-########
-# Main #
-########
-scena = Scene.GetCurrent()
-context = scena.getRenderingContext()
+## SVG Writer
-#print dir(context)
+class SVGVectorWriter(VectorWriter):
+ """A concrete class for writing SVG output.
-init()
+ The class does not support animations, yet.
+ Sorry.
+ """
-tacka = [0,0,0]
-lice = [3,tacka,tacka,tacka,tacka]
+ def __init__(self, file, canvasSize):
+ """Simply call the parent Contructor."""
+ VectorWriter.__init__(self, file, canvasSize)
-msize = (context.imageSizeX(), context.imageSizeY())
-print msize
-file=open("proba.svg","w")
+ # Public Methods
+ #
+
+ def printCanvas(self, mesh):
+ """Convert the mesh representation to SVG."""
-file.write("<svg width=\"" + `msize[0]` + "\" height=\"" + `msize[1]` + "\"\n")
-file.write("xmlns=\"http://www.w3.org/2000/svg\" version=\"1.2\" streamable=\"true\">\n")
-#file.write("<pageSet>\n")
+ self._printHeader()
+
+ for obj in mesh:
+ for face in obj:
+ self._printPolygon(face)
+
+ self._printFooter()
+
+
+ # Private Methods
+ #
+
+ def _printHeader(self):
+ """Print SVG header."""
-Objects = Blender.Object.Get()
-NUMobjects = len(Objects)
+ self.file.write("<?xml version=\"1.0\"?>\n")
+ self.file.write("<svg version=\"1.2\"\n")
+ self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
+ self.file.write("\twidth=\"%d\" height=\"%d\" streamable=\"true\">\n\n" %
+ self.canvasSize)
-startFrm = context.startFrame()
-endFrm = startFrm
-#endFrm = context.endFrame()
-camera = scena.getCurrentCamera() # Get the current camera
+ def _printFooter(self):
+ """Print the SVG footer."""
-for f in range(startFrm, endFrm+1):
- #scena.currentFrame(f)
- Blender.Set('curframe', f)
+ self.file.write("\n</svg>\n")
+ self.file.close()
- DrawProgressBar (f/(endFrm+1-startFrm),"Rendering ..." + str(context.currentFrame()))
+ def _printPolygon(self, face):
+ """Print our primitive, finally.
- print "Frame: ", f, "\n"
- if startFrm <> endFrm: file.write("<g id=\"Frame" + str(f) + "\" style=\"visibility:hidden\">\n")
- for o in range(NUMobjects):
+ There is no color Handling for now, *FIX!*
+ """
- if Objects[o].getType() == "Mesh":
+ intensity = 128
+ stroke_width=1
+
+ self.file.write("<polygon points=\"")
- obj = Objects[o] # Get the first selected object
- objname = obj.name # The object name
+ for v in face:
+ if face.index(v)!= 0:
+ self.file.write(", ")
+
+ self.file.write(`v[0]` + ", " + `v[1]`)
+ self.file.write("\"\n")
+ self.file.write("\tstyle=\"fill:rgb("+str(intensity)+","+str(intensity)+","+str(intensity)+");")
+ self.file.write(" stroke:rgb(0,0,0);")
+ self.file.write(" stroke-width:"+str(stroke_width)+"\"/>\n")
- OBJmesh = obj.getData() # Get the mesh data for the object
- numfaces=len(OBJmesh.faces) # The number of faces in the object
- numEachVert=len(OBJmesh.faces[0]) # The number of verts in each face
- #------------
- # Get the Material Colors
- #------------
-# MATinfo = OBJmesh.getMaterials()
-#
-# if len(MATinfo) > 0:
-# RGB=MATinfo[0].rgbCol
-# R=int(RGB[0]*255)
-# G=int(RGB[1]*255)
-# B=int(RGB[2]*255)
-# color=`R`+"."+`G`+"."+`B`
-# print color
-# else:
-# color="100.100.100"
+# ---------------------------------------------------------------------
+#
+## Rendering Classes
+#
+# ---------------------------------------------------------------------
- objekat = []
+class Renderer:
+ """Render a scene viewed from a given camera.
+
+ This class is responsible of the rendering process, hence transormation
+ and projection of the ojects in the scene are invoked by the renderer.
- objekat.append(0)
+ The user can optionally provide a specific camera for the rendering, see
+ the #doRendering# method for more informations.
+ """
- for face in range(numfaces):
- numvert = len(OBJmesh.faces[face])
- objekat.append(numvert)
- objekat[0] += 1
+ def __init__(self):
+ """Set the canvas size to a defaulr value.
-# backface cutting
- a = []
- a.append(OBJmesh.faces[face][0][0])
- a.append(OBJmesh.faces[face][0][1])
- a.append(OBJmesh.faces[face][0][2])
- a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
- a[0] += obj.LocX - camera.LocX
- a[1] += obj.LocY - camera.LocY
- a[2] += obj.LocZ - camera.LocZ
- b = []
- b.append(OBJmesh.faces[face][1][0])
- b.append(OBJmesh.faces[face][1][1])
- b.append(OBJmesh.faces[face][1][2])
- b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
- b[0] += obj.LocX - camera.LocX
- b[1] += obj.LocY - camera.LocY
- b[2] += obj.LocZ - camera.LocZ
- c = []
- c.append(OBJmesh.faces[face][numvert-1][0])
- c.append(OBJmesh.faces[face][numvert-1][1])
- c.append(OBJmesh.faces[face][numvert-1][2])
- c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
- c[0] += obj.LocX - camera.LocX
- c[1] += obj.LocY - camera.LocY
- c[2] += obj.LocZ - camera.LocZ
-
- norm = [0,0,0]
- norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
- norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
- norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
-
- d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
-
- if d < 0:
- file.write("<polygon points=\"")
- for vert in range(numvert):
-
- objekat[0] += 3
-
- vertxyz = []
-
- if vert != 0: file.write(", ")
-
- vertxyz.append(OBJmesh.faces[face][vert][0])
- vertxyz.append(OBJmesh.faces[face][vert][1])
- vertxyz.append(OBJmesh.faces[face][vert][2])
-
-# rotate object
-
- vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], obj.RotX, obj.RotY, obj.RotZ)
-
- vertxyz[0] += obj.LocX - camera.LocX
- vertxyz[1] += obj.LocY - camera.LocY
- vertxyz[2] += obj.LocZ - camera.LocZ
-
-# rotate camera
-
- vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], -camera.RotX, -camera.RotY, -camera.RotZ)
-
- objekat.append(Distance(vertxyz[0], vertxyz[1], vertxyz[2]))
-# dist = Distance(vertxyz[0], vertxyz[1], vertxyz[2])
- xy = flatern(vertxyz[0], vertxyz[1], vertxyz[2])
- px = int(xy[0])
- py = int(xy[1])
- objekat.append(px)
- objekat.append(py)
- # add/sorting in Z' direction
- #Dodaj(px,py,Distance(vertxyz[0], vertxyz[1], vertxyz[2]))
- file.write(`px` + ", " + `py`)
- ambient = -200
- svetlo = [1,1,-1]
- vektori = (norm[0]*svetlo[0]+norm[1]*svetlo[1]+norm[2]*svetlo[2])
- vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(svetlo[0],2)+pow(svetlo[1],2)+pow(svetlo[2],2)))
- intensity = floor(ambient + 255 * acos(vektori/vduzine))
- print vektori/vduzine
- if intensity < 0: intensity = 0
- file.write("\"\n style=\"fill:rgb("+str(intensity)+","+str(intensity)+","+str(intensity)+");stroke:rgb(0,0,0);stroke-width:1\"/>\n")
- if startFrm <> endFrm:
- file.write("<animate attributeName=\"visibility\" begin=\""+str(f*0.08)+"s\" dur=\"0.08s\" fill=\"remove\" to=\"visible\">\n")
- file.write("</animate>\n")
- file.write("</g>\n")
-
-#flatern()
-#writesvg(objekat)
-file.write("</svg>")
-file.close()
-print file
-DrawProgressBar (1.0,"Finished.")
-print "Finished\n"
+ The only instance attribute here is the canvas size, which can be
+ queryed to the renderer by other entities.
+ """
+ self.canvasSize = (0.0, 0.0)
+
+
+ # Public Methods
+ #
+
+ def getCanvasSize(self):
+ """Return the current canvas size read from Blender rendering context"""
+ return self.canvasSize
+
+ def doRendering(self, scene, cameraObj=None):
+ """Control the rendering process.
+
+ Here we control the entire rendering process invoking the operation
+ needed to transforma project the 3D scene in two dimensions.
+
+ Parameters:
+ scene --- the Blender Scene to render
+ cameraObj --- the camera object to use for the viewing processing
+ """
+
+ if cameraObj == None:
+ cameraObj = scene.getCurrentCamera()
+
+ # TODO: given the camera get the Wold-to-camera transform and the
+ # projection matrix
+
+ context = scene.getRenderingContext()
+ self.canvasSize = (context.imageSizeX(), context.imageSizeY())
+
+ Objects = scene.getChildren()
+
+ # A mesh to store the transformed geometrical structure
+ mesh = []
+
+ for obj in Objects:
+
+ if (obj.getType() != "Mesh"):
+ print "Type:", obj.getType(), "\tSorry, only mesh Object supported!"
+ continue
+
+ OBJmesh = obj.getData() # Get the mesh data for the object
+ meshfaces = OBJmesh.faces # The number of faces in the object
+
+ transformed_object = []
+
+ for face in meshfaces:
+
+ # TODO: per face color calculation
+ # TODO: add/sorting in Z' direction (per face??)
+
+ # if the face is visible flatten it on the "picture plane"
+ if isFaceVisible(face, obj, cameraObj):
+
+ # Store transformed face
+ transformed_face = []
+
+ for vert in face:
+
+ vertxyz = list(vert)
+
+ p1 = flatten_new(vert, cameraObj, self.canvasSize,
+ obj)
+ transformed_face.append(p1)
+ continue
+
+ # rotate camera
+ vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2],
+ cameraObj.RotX, cameraObj.RotY, cameraObj.RotZ)
+ #-cameraObj.RotX, -cameraObj.RotY, -cameraObj.RotZ)
+
+
+ # original setting for translate
+ vertxyz[0] -= (obj.LocX - cameraObj.LocX)
+ vertxyz[1] -= (obj.LocY - cameraObj.LocY)
+ vertxyz[2] -= (obj.LocZ - cameraObj.LocZ)
+
+
+ # rotate object
+ vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], obj.RotX, obj.RotY, obj.RotZ)
+
+
+
+ p1 = flatten(vertxyz[0], vertxyz[1], vertxyz[2],
+ cameraObj, self.canvasSize)
+
+ transformed_face.append(p1)
+
+ # just some fake lighting...
+
+ transformed_object.append(transformed_face)
+
+ # at the end of the loop on obj
+ mesh.append(transformed_object)
+ return mesh
+
+
+ # Private Methods
+ #
+
+ def _removehiddenFaces(obj):
+ return
+
+ def _testClipping(face):
+ return
+
+
+# ---------------------------------------------------------------------
+#
+## Main Program
+#
+# ---------------------------------------------------------------------
+
+
+scene = Scene.GetCurrent()
+renderer = Renderer()
+
+projectedMesh = renderer.doRendering(scene)
+canvasSize = renderer.getCanvasSize()
+
+# hackish sorting of faces according to the max z value of a vertex
+for o in projectedMesh:
+ o.sort(lambda f1, f2:
+ cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2)))
+ o.reverse()
+
+writer = SVGVectorWriter("proba.svg", canvasSize)
+writer.printCanvas(projectedMesh)