Big redesign for the 0.3 series
[vrm.git] / vrm.py
diff --git a/vrm.py b/vrm.py
index bbff105..bd61a58 100755 (executable)
--- a/vrm.py
+++ b/vrm.py
 #!BPY
-
 """
 Name: 'VRM'
-Blender: 237
+Blender: 241
 Group: 'Export'
-Tooltip: 'Vector Rendering Method Export Script'
+Tooltip: 'Vector Rendering Method Export Script 0.3'
 """
 
+# ---------------------------------------------------------------------
+#    Copyright (c) 2006 Antonio Ospite
+#
+#    This program is free software; you can redistribute it and/or modify
+#    it under the terms of the GNU General Public License as published by
+#    the Free Software Foundation; either version 2 of the License, or
+#    (at your option) any later version.
+#
+#    This program is distributed in the hope that it will be useful,
+#    but WITHOUT ANY WARRANTY; without even the implied warranty of
+#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#    GNU General Public License for more details.
+#
+#    You should have received a copy of the GNU General Public License
+#    along with this program; if not, write to the Free Software
+#    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+#
+# ---------------------------------------------------------------------
+#
+#    NOTE: I do not know who is the original author of 'vrm'.
+#    The present code is almost entirely rewritten from scratch,
+#    but if I have to give credits to anyone, please let me know,
+#    so I can update the copyright.
+#
+# ---------------------------------------------------------------------
+#
+# Additional credits:
+#   Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
+#   Thanks to Anthony C. D'Agostino for the backface.py script   
+#
+# ---------------------------------------------------------------------
 
 import Blender
-from Blender import Scene, Object, Lamp, Camera
+from Blender import Scene, Object, NMesh, Lamp, Camera
+from Blender.Mathutils import *
 from math import *
-from Blender.Window import *
-from Blender.Scene import Render
-   
-def init():
 
-    print "Init\n"
 
-    renderDir = context.getRenderPath()
+# ---------------------------------------------------------------------
+#
+## Projections classes
+#
+# ---------------------------------------------------------------------
+
+class Projection:
+    def __init__(self):
+        print "New projection"
+
+class PerspectiveProjection(Projection):
+    def __init___(self):
+        Projection.__init__(self)
+        print "Perspective"
+
+    def doProjection():
+        print "do a perspective projection!!"
+
+def Perspective(fovy, aspect, near, far):
+    top = near * tan(fovy * pi / 360.0)
+    bottom = -top
+    left = bottom*aspect
+    right= top*aspect
+    x = (2.0 * near) / (right-left)
+    y = (2.0 * near) / (top-bottom)
+    a = (right+left) / (right-left)
+    b = (top+bottom) / (top - bottom)
+    c = - ((far+near) / (far-near))
+    d = - ((2*far*near)/(far-near))
+    return Matrix([x,0.0,a,0.0],[0.0,y,b,0.0],[0.0,0.0,c,d],[0.0,0.0,-1.0,0.0])
+
+def flatten_new(v, cameraObj, canvasSize, obMesh):
+    
+    cam = cameraObj.getInverseMatrix()
+    cam.transpose() 
+
+    # Changing the view mode
+    cmra = cameraObj.getData()
+    #if cmra.type:
+    #    print "Ortho"
+        #m2 = Ortho(fovy,float(w*ax)/float(h*ay),cmra.clipStart, cmra.clipEnd,17) #cmra.scale) 
+    #else:
+    #    print "Perspective"
+    
+    #Create Frustum 
+    #frustum = _Frustum(cam,m2)
+    
+    m1 = Matrix()
+    mP = Matrix()
+    
+    fovy = atan(0.5/(float(canvasSize[0])/float(canvasSize[1]))/(cmra.lens/32))
+    fovy = fovy * 360/pi
+
+    m2 = Perspective(fovy,float(canvasSize[0])/float(canvasSize[1]),cmra.clipStart, cmra.clipEnd) 
+
+    m1 = obMesh.matrixWorld #mat
+    m1.transpose()
+    mP = cam * m1
+    mP = m2  * mP
+    
+    #Transform the vertices to global coordinates
+    p = mP*Vector([v.co[0],v.co[1],v.co[2],1.0])
+    #tf.append(p)
+    #p = m1*Vector([v.co[0],v.co[1],v.co[2],1.0])
+    #t2.append([p[0],p[1],p[2]])
+
+    mW = canvasSize[0]/2
+    mH = canvasSize[1]/2
+    
+    if p[3]<=0:
+        p[0] = int(p[0]*mW)+mW
+        p[1] = int(p[1]*mH)+mH
+    else:
+        p[0] = int((p[0]/p[3])*mW)+mW
+        p[1] = int((p[1]/p[3])*mH)+mH
+        
+    # Mirror and translate along y
+    p[1] *= -1
+    p[1] += canvasSize[1]
     
+    return p
+
+
 
 # distance from camera Z'
 def Distance(PX,PY,PZ):
@@ -27,10 +135,6 @@ def Distance(PX,PY,PZ):
     dist = sqrt(PX*PX+PY*PY+PZ*PZ)
     return dist
 
-def Dodaj(x,y,z):
-    
-    print ""
-
 def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
     
     NewPoint = []
@@ -52,199 +156,346 @@ def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
     NewPoint.append(NewZ)
     return NewPoint
 
-def flatern(vertx, verty, vertz):
-
-    cam = Camera.get()            # Get the cameras in scene
-    Lens = cam[0].getLens()       # The First Blender camera lens
+def flatten(vertx, verty, vertz, cameraObj, canvasSize):
 
-    camTyp = cam[0].getType()
+    camera = cameraObj.getData()
+    Lens = camera.getLens()       # The Camera lens
 
-    msize = (context.imageSizeX(), context.imageSizeY())
-    xres = msize[0]             # X res for output
-    yres = msize[1]                # Y res for output
+    xres = canvasSize[0]      # X res for output
+    yres = canvasSize[1]      # Y res for output
     ratio = xres/yres
 
-    screenxy=[0,0]
+    fov = atan(ratio * 16.0 / Lens)  # Get fov stuff
+    
+    dist = xres/2*tan(fov)         # Calculate dist from pinhole camera to image plane
+
+    screenxy=[0,0,vertz]
     x=-vertx
     y=verty
     z=vertz
 
-    fov = atan(ratio * 16.0 / Lens)  # Get fov stuff
-    dist = xres/2*tan(fov)         # Calculate dist from pinhole camera to image plane
-#----------------------------        
-# calculate x'=dist*x/z & y'=dist*x/z
-#----------------------------
-    screenxy[0]=int(xres/2+4*x*dist/z)
-    screenxy[1]=int(yres/2+4*y*dist/z)
+    #----------------------------        
+    # calculate x'=dist*x/z & y'=dist*x/z
+    #----------------------------
+    screenxy[0]=int(xres/2.0+4*x*dist/z)
+    screenxy[1]=int(yres/2.0+4*y*dist/z)
     return screenxy
 
-def writesvg(ob):
+## Backface culling routine
+#
+
+def isFaceVisible(face, obj, cameraObj):
+    """
+    Determine if the face is visible from the current camera.
+    """
+    numvert = len(face)
+    # backface culling
+    a = []
+    a.append(face[0][0])
+    a.append(face[0][1])
+    a.append(face[0][2])
+    a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
+    a[0] += obj.LocX - cameraObj.LocX
+    a[1] += obj.LocY - cameraObj.LocY
+    a[2] += obj.LocZ - cameraObj.LocZ
+    b = []
+    b.append(face[1][0])
+    b.append(face[1][1])
+    b.append(face[1][2])
+    b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
+    b[0] += obj.LocX - cameraObj.LocX
+    b[1] += obj.LocY - cameraObj.LocY
+    b[2] += obj.LocZ - cameraObj.LocZ
+    c = []
+    c.append(face[numvert-1][0])
+    c.append(face[numvert-1][1])
+    c.append(face[numvert-1][2])
+    c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
+    c[0] += obj.LocX - cameraObj.LocX
+    c[1] += obj.LocY - cameraObj.LocY
+    c[2] += obj.LocZ - cameraObj.LocZ
+
+    norm = [0,0,0]
+    norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
+    norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
+    norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
+
+    d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
+    return (d<0)
+
+
+# ---------------------------------------------------------------------
+#
+## Mesh representation class
+#
+# ---------------------------------------------------------------------
+
+# TODO: a class to represent the needed properties of a 2D vector image
+
+
+# ---------------------------------------------------------------------
+#
+## Vector Drawing Classes
+#
+# ---------------------------------------------------------------------
+
+## A generic Writer
+
+class VectorWriter:
+    """
+    A class for printing output in a vectorial format.
+
+    Given a 2D representation of the 3D scene the class is responsible to
+    write it is a vector format.
+
+    Every subclasses of VectorWriter must have at last the following public
+    methods:
+        - printCanvas(mesh) --- where mesh is as specified before.
+    """
+    
+    def __init__(self, fileName, canvasSize):
+        """Open the file named #fileName# and set the canvas size."""
+        
+        self.file = open(fileName, "w")
+        print "Outputting to: ", fileName
+
+        self.canvasSize = canvasSize
+    
+
+    # Public Methods
+    #
+    
+    def printCanvas(mesh):
+        return
+        
+    
+    # Private Methods
+    #
+    
+    def _printHeader():
+        return
 
-    for i in range(0, ob[0]+1):
-      print ob[i], "\n"
-    print "WriteSVG\n"
+    def _printFooter():
+        return
 
-########
-# Main #
-########
 
-scena = Scene.GetCurrent()
-context = scena.getRenderingContext()
+## SVG Writer
 
-#print dir(context)
+class SVGVectorWriter(VectorWriter):
+    """A concrete class for writing SVG output.
 
-init()
+    The class does not support animations, yet.
+    Sorry.
+    """
 
-tacka = [0,0,0]
-lice = [3,tacka,tacka,tacka,tacka]
+    def __init__(self, file, canvasSize):
+        """Simply call the parent Contructor."""
+        VectorWriter.__init__(self, file, canvasSize)
 
-msize = (context.imageSizeX(), context.imageSizeY())
-print msize
 
-file=open("proba.svg","w")
+    # Public Methods
+    #
+    
+    def printCanvas(self, mesh):
+        """Convert the mesh representation to SVG."""
 
-file.write("<svg width=\"" + `msize[0]` + "\" height=\"" + `msize[1]` + "\"\n")
-file.write("xmlns=\"http://www.w3.org/2000/svg\" version=\"1.2\" streamable=\"true\">\n")
-#file.write("<pageSet>\n")
+        self._printHeader()
+        
+        for obj in mesh:
+            for face in obj:
+                self._printPolygon(face)
+        
+        self._printFooter()
+    
+        
+    # Private Methods
+    #
+    
+    def _printHeader(self):
+        """Print SVG header."""
 
-Objects = Blender.Object.Get()
-NUMobjects = len(Objects)
+        self.file.write("<?xml version=\"1.0\"?>\n")
+        self.file.write("<svg version=\"1.2\"\n")
+        self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
+        self.file.write("\twidth=\"%d\" height=\"%d\" streamable=\"true\">\n\n" %
+                self.canvasSize)
 
-startFrm = context.startFrame()
-endFrm = startFrm
-#endFrm = context.endFrame()
-camera = scena.getCurrentCamera() # Get the current camera
+    def _printFooter(self):
+        """Print the SVG footer."""
 
-for f in range(startFrm, endFrm+1):
-  #scena.currentFrame(f)
-  Blender.Set('curframe', f)
+        self.file.write("\n</svg>\n")
+        self.file.close()
 
-  DrawProgressBar (f/(endFrm+1-startFrm),"Rendering ..." + str(context.currentFrame()))
+    def _printPolygon(self, face):
+        """Print our primitive, finally.
 
-  print "Frame: ", f, "\n"
-  if startFrm <> endFrm: file.write("<g id=\"Frame" + str(f) + "\" style=\"visibility:hidden\">\n")
-  for o in range(NUMobjects):
+        There is no color Handling for now, *FIX!*
+        """
 
-    if Objects[o].getType() == "Mesh":
+        intensity = 128
+        stroke_width=1
+        
+        self.file.write("<polygon points=\"")
 
-      obj = Objects[o]                  # Get the first selected object
-      objname = obj.name                # The object name
+        for v in face:
+            if face.index(v)!= 0:
+                self.file.write(", ")
+            
+            self.file.write(`v[0]` + ", " + `v[1]`)
 
+        self.file.write("\"\n")
+        self.file.write("\tstyle=\"fill:rgb("+str(intensity)+","+str(intensity)+","+str(intensity)+");")
+        self.file.write(" stroke:rgb(0,0,0);")
+        self.file.write(" stroke-width:"+str(stroke_width)+"\"/>\n")
 
-      OBJmesh = obj.getData()           # Get the mesh data for the object
-      numfaces=len(OBJmesh.faces)         # The number of faces in the object
-      numEachVert=len(OBJmesh.faces[0])    # The number of verts in each face
 
-      #------------
-      # Get the Material Colors
-      #------------
-#      MATinfo = OBJmesh.getMaterials()
-#    
-#      if len(MATinfo) > 0:
-#          RGB=MATinfo[0].rgbCol
-#          R=int(RGB[0]*255)
-#          G=int(RGB[1]*255)
-#          B=int(RGB[2]*255)
-#          color=`R`+"."+`G`+"."+`B`
-#          print color
-#      else:
-#          color="100.100.100"
+# ---------------------------------------------------------------------
+#
+## Rendering Classes
+#
+# ---------------------------------------------------------------------
 
-      objekat = []
+class Renderer:
+    """Render a scene viewed from a given camera.
+    
+    This class is responsible of the rendering process, hence transormation
+    and projection of the ojects in the scene are invoked by the renderer.
 
-      objekat.append(0)
+    The user can optionally provide a specific camera for the rendering, see
+    the #doRendering# method for more informations.
+    """
 
-      for face in range(numfaces):
-        numvert = len(OBJmesh.faces[face])
-        objekat.append(numvert)
-        objekat[0] += 1
+    def __init__(self):
+        """Set the canvas size to a defaulr value.
         
-# backface cutting
-        a = []
-        a.append(OBJmesh.faces[face][0][0])
-        a.append(OBJmesh.faces[face][0][1])
-        a.append(OBJmesh.faces[face][0][2])
-        a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
-        a[0] += obj.LocX - camera.LocX
-        a[1] += obj.LocY - camera.LocY
-        a[2] += obj.LocZ - camera.LocZ
-        b = []
-        b.append(OBJmesh.faces[face][1][0])
-        b.append(OBJmesh.faces[face][1][1])
-        b.append(OBJmesh.faces[face][1][2])
-        b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
-        b[0] += obj.LocX - camera.LocX
-        b[1] += obj.LocY - camera.LocY
-        b[2] += obj.LocZ - camera.LocZ
-        c = []
-        c.append(OBJmesh.faces[face][numvert-1][0])
-        c.append(OBJmesh.faces[face][numvert-1][1])
-        c.append(OBJmesh.faces[face][numvert-1][2])
-        c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
-        c[0] += obj.LocX - camera.LocX
-        c[1] += obj.LocY - camera.LocY
-        c[2] += obj.LocZ - camera.LocZ
-
-        norm = [0,0,0]
-        norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
-        norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
-        norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
-
-        d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
-
-        if d < 0:
-          file.write("<polygon points=\"")
-          for vert in range(numvert):
-
-            objekat[0] += 3
-
-            vertxyz = []
-
-            if vert != 0: file.write(", ")
-
-            vertxyz.append(OBJmesh.faces[face][vert][0])
-            vertxyz.append(OBJmesh.faces[face][vert][1])
-            vertxyz.append(OBJmesh.faces[face][vert][2])
-
-# rotate object
-
-            vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], obj.RotX, obj.RotY, obj.RotZ)
-
-            vertxyz[0] += obj.LocX - camera.LocX
-            vertxyz[1] += obj.LocY - camera.LocY
-            vertxyz[2] += obj.LocZ - camera.LocZ
-
-# rotate camera
-
-            vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], -camera.RotX, -camera.RotY, -camera.RotZ)
-
-            objekat.append(Distance(vertxyz[0], vertxyz[1], vertxyz[2]))
-#            dist = Distance(vertxyz[0], vertxyz[1], vertxyz[2])
-            xy = flatern(vertxyz[0], vertxyz[1], vertxyz[2])
-            px = int(xy[0])
-            py = int(xy[1])
-            objekat.append(px)
-            objekat.append(py)
-            # add/sorting in Z' direction
-            #Dodaj(px,py,Distance(vertxyz[0], vertxyz[1], vertxyz[2]))
-            file.write(`px` + ", " + `py`)
-          ambient = -200
-          svetlo = [1,1,-1]
-          vektori = (norm[0]*svetlo[0]+norm[1]*svetlo[1]+norm[2]*svetlo[2])
-          vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(svetlo[0],2)+pow(svetlo[1],2)+pow(svetlo[2],2)))
-          intensity = floor(ambient + 255 * acos(vektori/vduzine))
-          print vektori/vduzine
-          if intensity < 0: intensity = 0
-          file.write("\"\n style=\"fill:rgb("+str(intensity)+","+str(intensity)+","+str(intensity)+");stroke:rgb(0,0,0);stroke-width:1\"/>\n")
-  if startFrm <> endFrm:
-    file.write("<animate attributeName=\"visibility\" begin=\""+str(f*0.08)+"s\" dur=\"0.08s\" fill=\"remove\" to=\"visible\">\n")
-    file.write("</animate>\n")
-    file.write("</g>\n")
-
-#flatern()
-#writesvg(objekat)
-file.write("</svg>")
-file.close()
-print file
-DrawProgressBar (1.0,"Finished.")
-print "Finished\n"
+        The only instance attribute here is the canvas size, which can be
+        queryed to the renderer by other entities.
+        """
+        self.canvasSize = (0.0, 0.0)
+
+
+    # Public Methods
+    #
+
+    def getCanvasSize(self):
+        """Return the current canvas size read from Blender rendering context"""
+        return self.canvasSize
+        
+    def doRendering(self, scene, cameraObj=None):
+        """Control the rendering process.
+        
+        Here we control the entire rendering process invoking the operation
+        needed to transforma project the 3D scene in two dimensions.
+
+        Parameters:
+        scene --- the Blender Scene to render
+        cameraObj --- the camera object to use for the viewing processing
+        """
+
+        if cameraObj == None:
+            cameraObj = scene.getCurrentCamera()
+        
+        # TODO: given the camera get the Wold-to-camera transform and the
+        # projection matrix
+        
+        context = scene.getRenderingContext()
+        self.canvasSize = (context.imageSizeX(), context.imageSizeY())
+        
+        Objects = scene.getChildren()
+        
+        # A mesh to store the transformed geometrical structure
+        mesh = []
+        
+        for obj in Objects:
+            
+            if (obj.getType() != "Mesh"):
+                print "Type:", obj.getType(), "\tSorry, only mesh Object supported!"
+                continue
+
+            OBJmesh = obj.getData()           # Get the mesh data for the object
+            meshfaces = OBJmesh.faces        # The number of faces in the object
+
+            transformed_object = []
+
+            for face in meshfaces:
+
+                # TODO: per face color calculation
+                # TODO: add/sorting in Z' direction (per face??)
+
+                # if the face is visible flatten it on the "picture plane"
+                if isFaceVisible(face, obj, cameraObj):
+                    
+                    # Store transformed face
+                    transformed_face = []
+
+                    for vert in face:
+
+                        vertxyz = list(vert)
+                        
+                        p1 = flatten_new(vert, cameraObj, self.canvasSize,
+                                obj)
+                        transformed_face.append(p1)
+                        continue
+
+                        # rotate camera
+                        vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2],
+                                cameraObj.RotX, cameraObj.RotY, cameraObj.RotZ)
+                                #-cameraObj.RotX, -cameraObj.RotY, -cameraObj.RotZ)
+
+
+                        # original setting for translate
+                        vertxyz[0] -= (obj.LocX - cameraObj.LocX)
+                        vertxyz[1] -= (obj.LocY - cameraObj.LocY)
+                        vertxyz[2] -= (obj.LocZ - cameraObj.LocZ)
+
+
+                        # rotate object
+                        vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], obj.RotX, obj.RotY, obj.RotZ)
+
+
+
+                        p1 = flatten(vertxyz[0], vertxyz[1], vertxyz[2],
+                            cameraObj, self.canvasSize)
+
+                        transformed_face.append(p1)
+                    
+                    # just some fake lighting...
+
+                    transformed_object.append(transformed_face)
+
+            # at the end of the loop on obj
+            mesh.append(transformed_object)
+        return mesh
+
+
+    # Private Methods
+    #
+
+    def _removehiddenFaces(obj):
+        return
+
+    def _testClipping(face):
+        return
+
+
+# ---------------------------------------------------------------------
+#
+## Main Program
+#
+# ---------------------------------------------------------------------
+
+
+scene   = Scene.GetCurrent()
+renderer = Renderer()
+
+projectedMesh = renderer.doRendering(scene)
+canvasSize = renderer.getCanvasSize()
+
+# hackish sorting of faces according to the max z value of a vertex
+for o in projectedMesh:
+    o.sort(lambda f1, f2:
+            cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2)))
+    o.reverse()
+
+writer = SVGVectorWriter("proba.svg", canvasSize)
+writer.printCanvas(projectedMesh)