Fix camera type selection for blender > 2.43
[vrm.git] / vrm.py
diff --git a/vrm.py b/vrm.py
index 7cf79bc..7324efc 100755 (executable)
--- a/vrm.py
+++ b/vrm.py
@@ -44,8 +44,6 @@ __bpydoc__ = """\
 # Things TODO for a next release:
 #   - FIX the issue with negative scales in object tranformations!
 #   - Use a better depth sorting algorithm
-#   - Implement clipping of primitives and do handle object intersections.
-#     (for now only clipping away whole objects is supported).
 #   - Review how selections are made (this script uses selection states of
 #     primitives to represent visibility infos)
 #   - Use a data structure other than Mesh to represent the 2D image? 
@@ -58,9 +56,8 @@ __bpydoc__ = """\
 #   - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
 #   - Implement Shading Styles? (partially done, to make more flexible).
 #   - Add Vector Writers other than SVG.
+#   - set the background color!
 #   - Check memory use!!
-#   - Support Indexed palettes!! (Useful for ILDA FILES, for example,
-#     see http://www.linux-laser.org/download/autotrace/ilda-output.patch)
 #
 # ---------------------------------------------------------------------
 #
@@ -76,6 +73,17 @@ __bpydoc__ = """\
 #     * The SVG output is now SVG 1.0 valid.
 #       Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
 #     * Progress indicator during HSR.
+#     * Initial SWF output support (using ming)
+#     * Fixed a bug in the animation code, now the projection matrix is
+#       recalculated at each frame!
+#     * PDF output (using reportlab)
+#     * Fixed another problem in the animation code the current frame was off
+#       by one in the case of camera movement.
+#     * Use fps as specified in blender when VectorWriter handles animation
+#     * Remove the real file opening in the abstract VectorWriter
+#     * View frustum clipping
+#     * Scene clipping done using bounding box instead of object center
+#     * Fix camera type selection for blender>2.43 (Thanks to Thomas Lachmann)
 #
 # ---------------------------------------------------------------------
 
@@ -85,15 +93,20 @@ from Blender.Mathutils import *
 from math import *
 import sys, time
 
+# Constants
+EPS = 10e-5
+
+# We use a global progress Indicator Object
+progress = None
+
 
 # Some global settings
 
 class config:
     polygons = dict()
     polygons['SHOW'] = True
-    polygons['SHADING'] = 'FLAT'
-    #polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
-    polygons['HSR'] = 'NEWELL'
+    polygons['SHADING'] = 'FLAT' # FLAT or TOON
+    polygons['HSR'] = 'NEWELL' # PAINTER or NEWELL
     # Hidden to the user for now
     polygons['EXPANSION_TRICK'] = True
 
@@ -102,7 +115,7 @@ class config:
     edges = dict()
     edges['SHOW'] = False
     edges['SHOW_HIDDEN'] = False
-    edges['STYLE'] = 'MESH'
+    edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
     edges['WIDTH'] = 2
     edges['COLOR'] = [0, 0, 0]
 
@@ -112,19 +125,46 @@ class config:
     output['JOIN_OBJECTS'] = True
 
 
-
 # Utility functions
 print_debug = False
+
+def dumpfaces(flist, filename):
+    """Dump a single face to a file.
+    """
+    if not print_debug:
+        return
+
+    class tmpmesh:
+        pass
+
+    m = tmpmesh()
+    m.faces = flist
+
+    writerobj = SVGVectorWriter(filename)
+
+    writerobj.open()
+    writerobj._printPolygons(m)
+
+    writerobj.close()
+
 def debug(msg):
     if print_debug:
         sys.stderr.write(msg)
 
-EPS = 10e-5
+def EQ(v1, v2):
+    return (abs(v1[0]-v2[0]) < EPS and 
+            abs(v1[1]-v2[1]) < EPS )
+by_furthest_z = (lambda f1, f2:
+    cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+    )
 
 def sign(x):
+
     if x < -EPS:
+    #if x < 0:
         return -1
     elif x > EPS:
+    #elif x > 0:
         return 1
     else:
         return 0
@@ -132,9 +172,571 @@ def sign(x):
 
 # ---------------------------------------------------------------------
 #
+## HSR Utility class
+#
+# ---------------------------------------------------------------------
+
+EPS = 10e-5
+INF = 10e5
+
+class HSR:
+    """A utility class for HSR processing.
+    """
+
+    def is_nonplanar_quad(face):
+        """Determine if a quad is non-planar.
+
+        From: http://mathworld.wolfram.com/Coplanar.html
+
+        Geometric objects lying in a common plane are said to be coplanar.
+        Three noncollinear points determine a plane and so are trivially coplanar.
+        Four points are coplanar iff the volume of the tetrahedron defined by them is
+        0, 
+        
+            | x_1 y_1 z_1 1 |
+            | x_2 y_2 z_2 1 |
+            | x_3 y_3 z_3 1 |
+            | x_4 y_4 z_4 1 | == 0
+
+        Coplanarity is equivalent to the statement that the pair of lines
+        determined by the four points are not skew, and can be equivalently stated
+        in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
+
+        An arbitrary number of n points x_1, ..., x_n can be tested for
+        coplanarity by finding the point-plane distances of the points
+        x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
+        and checking if they are all zero.
+        If so, the points are all coplanar.
+
+        We here check only for 4-point complanarity.
+        """
+        n = len(face)
+
+        # assert(n>4)
+        if n < 3 or n > 4:
+            print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
+            raise AssertionError
+
+        elif n == 3:
+            # three points must be complanar
+            return False
+        else: # n == 4
+            x1 = Vector(face[0].co)
+            x2 = Vector(face[1].co)
+            x3 = Vector(face[2].co)
+            x4 = Vector(face[3].co)
+
+            v = (x3-x1) * CrossVecs((x2-x1), (x4-x3))
+            if v != 0:
+                return True
+
+        return False
+
+    is_nonplanar_quad = staticmethod(is_nonplanar_quad)
+
+    def pointInPolygon(poly, v):
+        return False
+
+    pointInPolygon = staticmethod(pointInPolygon)
+
+    def edgeIntersection(s1, s2, do_perturbate=False):
+
+        (x1, y1) = s1[0].co[0], s1[0].co[1]
+        (x2, y2) = s1[1].co[0], s1[1].co[1]
+
+        (x3, y3) = s2[0].co[0], s2[0].co[1]
+        (x4, y4) = s2[1].co[0], s2[1].co[1]
+
+        #z1 = s1[0].co[2]
+        #z2 = s1[1].co[2]
+        #z3 = s2[0].co[2]
+        #z4 = s2[1].co[2]
+
+
+        # calculate delta values (vector components)
+        dx1 = x2 - x1;
+        dx2 = x4 - x3;
+        dy1 = y2 - y1;
+        dy2 = y4 - y3;
+
+        #dz1 = z2 - z1;
+        #dz2 = z4 - z3;
+
+        C = dy2 * dx1 - dx2 * dy1 #  /* cross product */
+        if C == 0:  #/* parallel */
+            return None
+
+        dx3 = x1 - x3 # /* combined origin offset vector */
+        dy3 = y1 - y3
+
+        a1 = (dy3 * dx2 - dx3 * dy2) / C;
+        a2 = (dy3 * dx1 - dx3 * dy1) / C;
+
+        # check for degeneracies
+        #print_debug("\n")
+        #print_debug(str(a1)+"\n")
+        #print_debug(str(a2)+"\n\n")
+
+        if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
+            # Intersection on boundaries, we consider the point external?
+            return None
+
+        elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): #  /* lines cross */
+            x = x1 + a1*dx1
+            y = y1 + a1*dy1
+
+            #z = z1 + a1*dz1
+            z = 0
+            return (NMesh.Vert(x, y, z), a1, a2)
+
+        else:
+            # lines have intersections but not those segments
+            return None
+
+    edgeIntersection = staticmethod(edgeIntersection)
+
+    def isVertInside(self, v):
+        winding_number = 0
+        coincidence = False
+
+        # Create point at infinity
+        point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
+
+        for i in range(len(self.v)):
+            s1 = (point_at_infinity, v)
+            s2 = (self.v[i-1], self.v[i])
+
+            if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
+                coincidence = True
+
+            if HSR.edgeIntersection(s1, s2, do_perturbate=False):
+                winding_number += 1
+
+        # Check even or odd
+        if winding_number % 2 == 0 :
+            return False
+        else:
+            if coincidence:
+                return False
+            return True
+
+    isVertInside = staticmethod(isVertInside)
+
+
+    def det(a, b, c):
+        return ((b[0] - a[0]) * (c[1] - a[1]) -
+                (b[1] - a[1]) * (c[0] - a[0]) )
+    
+    det = staticmethod(det)
+
+    def pointInPolygon(q, P):
+        is_in = False
+
+        point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
+
+        det = HSR.det
+
+        for i in range(len(P.v)):
+            p0 = P.v[i-1]
+            p1 = P.v[i]
+            if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0):
+                if det(p0.co, p1.co, q.co) == 0 :
+                    #print "On Boundary"
+                    return False
+                elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0):
+                    is_in = not is_in
+
+        return is_in
+
+    pointInPolygon = staticmethod(pointInPolygon)
+
+    def projectionsOverlap(f1, f2):
+        """ If you have nonconvex, but still simple polygons, an acceptable method
+        is to iterate over all vertices and perform the Point-in-polygon test[1].
+        The advantage of this method is that you can compute the exact
+        intersection point and collision normal that you will need to simulate
+        collision. When you have the point that lies inside the other polygon, you
+        just iterate over all edges of the second polygon again and look for edge
+        intersections. Note that this method detects collsion when it already
+        happens. This algorithm is fast enough to perform it hundreds of times per
+        sec.  """
+
+        for i in range(len(f1.v)):
+
+
+            # If a point of f1 in inside f2, there is an overlap!
+            v1 = f1.v[i]
+            #if HSR.isVertInside(f2, v1):
+            if HSR.pointInPolygon(v1, f2):
+                return True
+
+            # If not the polygon can be ovelap as well, so we check for
+            # intersection between an edge of f1 and all the edges of f2
+
+            v0 = f1.v[i-1]
+
+            for j in range(len(f2.v)):
+                v2 = f2.v[j-1]
+                v3 = f2.v[j]
+
+                e1 = v0, v1
+                e2 = v2, v3
+
+                intrs = HSR.edgeIntersection(e1, e2)
+                if intrs:
+                    #print_debug(str(v0.co) + " " + str(v1.co) + " " +
+                    #        str(v2.co) + " " + str(v3.co) )
+                    #print_debug("\nIntersection\n")
+
+                    return True
+
+        return False
+
+    projectionsOverlap = staticmethod(projectionsOverlap)
+
+    def midpoint(p1, p2):
+        """Return the midpoint of two vertices.
+        """
+        m = MidpointVecs(Vector(p1), Vector(p2))
+        mv = NMesh.Vert(m[0], m[1], m[2])
+
+        return mv
+
+    midpoint = staticmethod(midpoint)
+
+    def facesplit(P, Q, facelist, nmesh):
+        """Split P or Q according to the strategy illustrated in the Newell's
+        paper.
+        """
+
+        by_furthest_z = (lambda f1, f2:
+                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+                )
+
+        # Choose if split P on Q plane or vice-versa
+
+        n = 0
+        for Pi in P:
+            d = HSR.Distance(Vector(Pi), Q)
+            if d <= EPS:
+                n += 1
+        pIntersectQ = (n != len(P))
+
+        n = 0
+        for Qi in Q:
+            d = HSR.Distance(Vector(Qi), P)
+            if d >= -EPS:
+                n += 1
+        qIntersectP = (n != len(Q))
+
+        newfaces = []
+
+        # 1. If parts of P lie in both half-spaces of Q
+        # then splice P in two with the plane of Q
+        if pIntersectQ:
+            #print "We split P"
+            f = P
+            plane = Q
+
+            newfaces = HSR.splitOn(plane, f)
+
+        # 2. Else if parts of Q lie in both half-space of P
+        # then splice Q in two with the plane of P
+        if qIntersectP and newfaces == None:
+            #print "We split Q"
+            f = Q
+            plane = P
+
+            newfaces = HSR.splitOn(plane, f)
+            #print "After"
+
+        # 3. Else slice P in half through the mid-point of
+        # the longest pair of opposite sides
+        if newfaces == None:
+
+            print "We ignore P..."
+            facelist.remove(P)
+            return facelist
+
+            #f = P
+
+            #if len(P)==3:
+            #    v1 = midpoint(f[0], f[1])
+            #    v2 = midpoint(f[1], f[2])
+            #if len(P)==4:
+            #    v1 = midpoint(f[0], f[1])
+            #    v2 = midpoint(f[2], f[3])
+            #vec3 = (Vector(v2)+10*Vector(f.normal))
+            #
+            #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
+
+            #plane = NMesh.Face([v1, v2, v3])
+            #
+            #newfaces = splitOn(plane, f)
+
+        
+        if newfaces == None:
+            print "Big FAT problem, we weren't able to split POLYGONS!"
+            raise AssertionError
+
+        #print newfaces
+        if newfaces:
+            #for v in f:
+            #    if v not in plane and v in nmesh.verts:
+            #        nmesh.verts.remove(v)
+            for nf in newfaces:
+
+                nf.mat = f.mat
+                nf.sel = f.sel
+                nf.col = [f.col[0]] * len(nf.v)
+
+                nf.smooth = 0
+
+                for v in nf:
+                    nmesh.verts.append(v)
+                # insert pieces in the list
+                facelist.append(nf)
+
+            facelist.remove(f)
+
+        # and resort the faces
+        facelist.sort(by_furthest_z)
+        facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
+        facelist.reverse()
+
+        #print [ f.smooth for f in facelist ]
+
+        return facelist
+
+    facesplit = staticmethod(facesplit)
+
+    def isOnSegment(v1, v2, p, extremes_internal=False):
+        """Check if point p is in segment v1v2.
+        """
+
+        l1 = (v1-p).length
+        l2 = (v2-p).length
+
+        # Should we consider extreme points as internal ?
+        # The test:
+        # if p == v1 or p == v2:
+        if l1 < EPS or l2 < EPS:
+            return extremes_internal
+
+        l = (v1-v2).length
+
+        # if the sum of l1 and l2 is circa l, then the point is on segment,
+        if abs(l - (l1+l2)) < EPS:
+            return True
+        else:
+            return False
+
+    isOnSegment = staticmethod(isOnSegment)
+
+    def Distance(point, face):
+        """ Calculate the distance between a point and a face.
+
+        An alternative but more expensive method can be:
+
+            ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
+                    Vector(face.no), Vector(point), 0)
+
+            d = Vector(ip - point).length
+
+        See: http://mathworld.wolfram.com/Point-PlaneDistance.html
+        """
+
+        p = Vector(point)
+        plNormal = Vector(face.no)
+        plVert0 = Vector(face.v[0])
+
+        d = (plVert0 * plNormal) - (p * plNormal)
+
+        #d = plNormal * (plVert0 - p)
+
+        #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
+
+        return d
+
+    Distance = staticmethod(Distance)
+
+    def makeFaces(vl):
+        #
+        # make one or two new faces based on a list of vertex-indices
+        #
+        newfaces = []
+
+        if len(vl) <= 4:
+            nf = NMesh.Face()
+
+            for v in vl:
+                nf.v.append(v)
+
+            newfaces.append(nf)
+
+        else:
+            nf = NMesh.Face()
+
+            nf.v.append(vl[0])
+            nf.v.append(vl[1])
+            nf.v.append(vl[2])
+            nf.v.append(vl[3])
+            newfaces.append(nf)
+
+            nf = NMesh.Face()
+            nf.v.append(vl[3])
+            nf.v.append(vl[4])
+            nf.v.append(vl[0])
+            newfaces.append(nf)
+
+        return newfaces
+
+    makeFaces = staticmethod(makeFaces)
+
+    def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
+        """Split P using the plane of Q.
+        Logic taken from the knife.py python script
+        """
+
+        # Check if P and Q are parallel
+        u = CrossVecs(Vector(Q.no),Vector(P.no))
+        ax = abs(u[0])
+        ay = abs(u[1])
+        az = abs(u[2])
+
+        if (ax+ay+az) < EPS:
+            print "PARALLEL planes!!"
+            return
+
+
+        # The final aim is to find the intersection line between P
+        # and the plane of Q, and split P along this line
+
+        nP = len(P.v)
+
+        # Calculate point-plane Distance between vertices of P and plane Q
+        d = []
+        for i in range(0, nP):
+            d.append(HSR.Distance(P.v[i], Q))
+
+        newVertList = []
+
+        posVertList = []
+        negVertList = []
+        for i in range(nP):
+            d0 = d[i-1]
+            V0 = P.v[i-1]
+
+            d1 = d[i]
+            V1 = P.v[i]
+
+            #print "d0:", d0, "d1:", d1
+
+            # if the vertex lies in the cutplane                       
+            if abs(d1) < EPS:
+                #print "d1 On cutplane"
+                posVertList.append(V1)
+                negVertList.append(V1)
+            else:
+                # if the previous vertex lies in cutplane
+                if abs(d0) < EPS:
+                    #print "d0 on Cutplane"
+                    if d1 > 0:
+                        #print "d1 on positive Halfspace"
+                        posVertList.append(V1)
+                    else:
+                        #print "d1 on negative Halfspace"
+                        negVertList.append(V1)
+                else:
+                    # if they are on the same side of the plane
+                    if d1*d0 > 0:
+                        #print "On the same half-space"
+                        if d1 > 0:
+                            #print "d1 on positive Halfspace"
+                            posVertList.append(V1)
+                        else:
+                            #print "d1 on negative Halfspace"
+                            negVertList.append(V1)
+
+                    # the vertices are not on the same side of the plane, so we have an intersection
+                    else:
+                        #print "Intersection"
+
+                        e = Vector(V0), Vector(V1)
+                        tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
+
+                        inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0)
+                        if inters == None:
+                            print "Split Break"
+                            break
+
+                        #print "Intersection", inters
+
+                        nv = NMesh.Vert(inters[0], inters[1], inters[2])
+                        newVertList.append(nv)
+
+                        posVertList.append(nv)
+                        negVertList.append(nv)
+
+                        if d1 > 0:
+                            posVertList.append(V1)
+                        else:
+                            negVertList.append(V1)
+
+        
+        # uniq
+        posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
+        negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
+
+
+        # If vertex are all on the same half-space, return
+        #if len(posVertList) < 3:
+        #    print "Problem, we created a face with less that 3 vertices??"
+        #    posVertList = []
+        #if len(negVertList) < 3:
+        #    print "Problem, we created a face with less that 3 vertices??"
+        #    negVertList = []
+
+        if len(posVertList) < 3 or len(negVertList) < 3:
+            #print "RETURN NONE, SURE???"
+            return None
+
+        if not return_positive_faces:
+            posVertList = []
+        if not return_negative_faces:
+            negVertList = []
+
+        newfaces = HSR.addNewFaces(posVertList, negVertList)
+
+        return newfaces
+
+    splitOn = staticmethod(splitOn)
+
+    def addNewFaces(posVertList, negVertList):
+        # Create new faces resulting from the split
+        outfaces = []
+        if len(posVertList) or len(negVertList):
+
+            #newfaces = [posVertList] + [negVertList]
+            newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
+                    [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] )
+
+            for nf in newfaces:
+                if nf and len(nf)>2:
+                    outfaces += HSR.makeFaces(nf)
+
+        return outfaces
+
+
+    addNewFaces = staticmethod(addNewFaces)
+
+
+# ---------------------------------------------------------------------
+#
 ## Mesh Utility class
 #
 # ---------------------------------------------------------------------
+
 class MeshUtils:
 
     def buildEdgeFaceUsersCache(me):
@@ -217,6 +819,7 @@ class MeshUtils:
 ## Shading Utility class
 #
 # ---------------------------------------------------------------------
+
 class ShadingUtils:
 
     shademap = None
@@ -285,13 +888,22 @@ class Projector:
 
         fovy = atan(0.5/aspect/(camera.lens/32))
         fovy = fovy * 360.0/pi
-        
+
+
+        if Blender.Get('version') < 243:
+            camPersp = 0
+            camOrtho = 1
+        else:
+            camPersp = 'persp'
+            camOrtho = 'ortho'
+            
         # What projection do we want?
-        if camera.type == 0:
+        if camera.type == camPersp:
             mP = self._calcPerspectiveMatrix(fovy, aspect, near, far) 
-        elif camera.type == 1:
-            mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale) 
+        elif camera.type == camOrtho:
+            mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
         
+
         # View transformation
         cam = Matrix(cameraObj.getInverseMatrix())
         cam.transpose() 
@@ -585,46 +1197,480 @@ class VectorWriter:
         """Set the output file name and other properties"""
 
         self.outputFileName = fileName
-        self.file = None
         
         context = Scene.GetCurrent().getRenderingContext()
         self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
 
+        self.fps = context.fps
+
         self.startFrame = 1
         self.endFrame = 1
         self.animation = False
 
 
-    ##
-    # Public Methods
-    #
-    
-    def open(self, startFrame=1, endFrame=1):
-        if startFrame != endFrame:
-            self.startFrame = startFrame
-            self.endFrame = endFrame
-            self.animation = True
+    ##
+    # Public Methods
+    #
+    
+    def open(self, startFrame=1, endFrame=1):
+        if startFrame != endFrame:
+            self.startFrame = startFrame
+            self.endFrame = endFrame
+            self.animation = True
+
+        print "Outputting to: ", self.outputFileName
+
+        return
+
+    def close(self):
+        return
+
+    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+            showHiddenEdges=False):
+        """This is the interface for the needed printing routine.
+        """
+        return
+        
+
+## SVG Writer
+
+class SVGVectorWriter(VectorWriter):
+    """A concrete class for writing SVG output.
+    """
+
+    def __init__(self, fileName):
+        """Simply call the parent Contructor.
+        """
+        VectorWriter.__init__(self, fileName)
+
+        self.file = None
+
+
+    ##
+    # Public Methods
+    #
+
+    def open(self, startFrame=1, endFrame=1):
+        """Do some initialization operations.
+        """
+        VectorWriter.open(self, startFrame, endFrame)
+
+        self.file = open(self.outputFileName, "w")
+
+        self._printHeader()
+
+    def close(self):
+        """Do some finalization operation.
+        """
+        self._printFooter()
+
+        if self.file:
+            self.file.close()
+
+        # remember to call the close method of the parent as last
+        VectorWriter.close(self)
+
+        
+    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+            showHiddenEdges=False):
+        """Convert the scene representation to SVG.
+        """
+
+        Objects = scene.getChildren()
+
+        context = scene.getRenderingContext()
+        framenumber = context.currentFrame()
+
+        if self.animation:
+            framestyle = "display:none"
+        else:
+            framestyle = "display:block"
+        
+        # Assign an id to this group so we can set properties on it using DOM
+        self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
+                (framenumber, framestyle) )
+
+
+        for obj in Objects:
+
+            if(obj.getType() != 'Mesh'):
+                continue
+
+            self.file.write("<g id=\"%s\">\n" % obj.getName())
+
+            mesh = obj.getData(mesh=1)
+
+            if doPrintPolygons:
+                self._printPolygons(mesh)
+
+            if doPrintEdges:
+                self._printEdges(mesh, showHiddenEdges)
+            
+            self.file.write("</g>\n")
+
+        self.file.write("</g>\n")
+
+    
+    ##  
+    # Private Methods
+    #
+    
+    def _calcCanvasCoord(self, v):
+        """Convert vertex in scene coordinates to canvas coordinates.
+        """
+
+        pt = Vector([0, 0, 0])
+        
+        mW = float(self.canvasSize[0])/2.0
+        mH = float(self.canvasSize[1])/2.0
+
+        # rescale to canvas size
+        pt[0] = v.co[0]*mW + mW
+        pt[1] = v.co[1]*mH + mH
+        pt[2] = v.co[2]
+         
+        # For now we want (0,0) in the top-left corner of the canvas.
+        # Mirror and translate along y
+        pt[1] *= -1
+        pt[1] += self.canvasSize[1]
+        
+        return pt
+
+    def _printHeader(self):
+        """Print SVG header."""
+
+        self.file.write("<?xml version=\"1.0\"?>\n")
+        self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\"\n")
+        self.file.write("\t\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n")
+        self.file.write("<svg version=\"1.0\"\n")
+        self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
+        self.file.write("\twidth=\"%d\" height=\"%d\">\n\n" %
+                self.canvasSize)
+
+        if self.animation:
+            delay = 1000/self.fps
+
+            self.file.write("""\n<script type="text/javascript"><![CDATA[
+            globalStartFrame=%d;
+            globalEndFrame=%d;
+
+            timerID = setInterval("NextFrame()", %d);
+            globalFrameCounter=%d;
+            \n""" % (self.startFrame, self.endFrame, delay, self.startFrame) )
+
+            self.file.write("""\n
+            function NextFrame()
+            {
+              currentElement  = document.getElementById('frame'+globalFrameCounter)
+              previousElement = document.getElementById('frame'+(globalFrameCounter-1))
+
+              if (!currentElement)
+              {
+                return;
+              }
+
+              if (globalFrameCounter > globalEndFrame)
+              {
+                clearInterval(timerID)
+              }
+              else
+              {
+                if(previousElement)
+                {
+                    previousElement.style.display="none";
+                }
+                currentElement.style.display="block";
+                globalFrameCounter++;
+              }
+            }
+            \n]]></script>\n
+            \n""")
+                
+    def _printFooter(self):
+        """Print the SVG footer."""
+
+        self.file.write("\n</svg>\n")
+
+    def _printPolygons(self, mesh): 
+        """Print the selected (visible) polygons.
+        """
+
+        if len(mesh.faces) == 0:
+            return
+
+        self.file.write("<g>\n")
+
+        for face in mesh.faces:
+            if not face.sel:
+               continue
+
+            self.file.write("<path d=\"")
+
+            #p = self._calcCanvasCoord(face.verts[0])
+            p = self._calcCanvasCoord(face.v[0])
+            self.file.write("M %g,%g L " % (p[0], p[1]))
+
+            for v in face.v[1:]:
+                p = self._calcCanvasCoord(v)
+                self.file.write("%g,%g " % (p[0], p[1]))
+            
+            # get rid of the last blank space, just cosmetics here.
+            self.file.seek(-1, 1) 
+            self.file.write(" z\"\n")
+            
+            # take as face color the first vertex color
+            if face.col:
+                fcol = face.col[0]
+                color = [fcol.r, fcol.g, fcol.b, fcol.a]
+            else:
+                color = [255, 255, 255, 255]
+
+            # Convert the color to the #RRGGBB form
+            str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
+
+            # Handle transparent polygons
+            opacity_string = ""
+            if color[3] != 255:
+                opacity = float(color[3])/255.0
+                opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+                #opacity_string = "opacity: %g;" % (opacity)
+
+            self.file.write("\tstyle=\"fill:" + str_col + ";")
+            self.file.write(opacity_string)
+
+            # use the stroke property to alleviate the "adjacent edges" problem,
+            # we simulate polygon expansion using borders,
+            # see http://www.antigrain.com/svg/index.html for more info
+            stroke_width = 1.0
+
+            # EXPANSION TRICK is not that useful where there is transparency
+            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
+                # str_col = "#000000" # For debug
+                self.file.write(" stroke:%s;\n" % str_col)
+                self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
+                self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+
+            self.file.write("\"/>\n")
+
+        self.file.write("</g>\n")
+
+    def _printEdges(self, mesh, showHiddenEdges=False):
+        """Print the wireframe using mesh edges.
+        """
+
+        stroke_width = config.edges['WIDTH']
+        stroke_col = config.edges['COLOR']
+        
+        self.file.write("<g>\n")
+
+        for e in mesh.edges:
+            
+            hidden_stroke_style = ""
+            
+            if e.sel == 0:
+                if showHiddenEdges == False:
+                    continue
+                else:
+                    hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+
+            p1 = self._calcCanvasCoord(e.v1)
+            p2 = self._calcCanvasCoord(e.v2)
+            
+            self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
+                    % ( p1[0], p1[1], p2[0], p2[1] ) )
+            self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
+            self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+            self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+            self.file.write(hidden_stroke_style)
+            self.file.write("\"/>\n")
+
+        self.file.write("</g>\n")
+
+
+## SWF Writer
+
+try:
+    from ming import *
+    SWFSupported = True
+except:
+    SWFSupported = False
+
+class SWFVectorWriter(VectorWriter):
+    """A concrete class for writing SWF output.
+    """
+
+    def __init__(self, fileName):
+        """Simply call the parent Contructor.
+        """
+        VectorWriter.__init__(self, fileName)
+
+        self.movie = None
+        self.sprite = None
+
+
+    ##
+    # Public Methods
+    #
+
+    def open(self, startFrame=1, endFrame=1):
+        """Do some initialization operations.
+        """
+        VectorWriter.open(self, startFrame, endFrame)
+        self.movie = SWFMovie()
+        self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
+        if self.animation:
+            self.movie.setRate(self.fps)
+            numframes = endFrame - startFrame + 1
+            self.movie.setFrames(numframes)
+
+    def close(self):
+        """Do some finalization operation.
+        """
+        self.movie.save(self.outputFileName)
+
+        # remember to call the close method of the parent
+        VectorWriter.close(self)
+
+    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
+            showHiddenEdges=False):
+        """Convert the scene representation to SVG.
+        """
+        context = scene.getRenderingContext()
+        framenumber = context.currentFrame()
+
+        Objects = scene.getChildren()
+
+        if self.sprite:
+            self.movie.remove(self.sprite)
+
+        sprite = SWFSprite()
+
+        for obj in Objects:
+
+            if(obj.getType() != 'Mesh'):
+                continue
+
+            mesh = obj.getData(mesh=1)
+
+            if doPrintPolygons:
+                self._printPolygons(mesh, sprite)
+
+            if doPrintEdges:
+                self._printEdges(mesh, sprite, showHiddenEdges)
+            
+        sprite.nextFrame()
+        i = self.movie.add(sprite)
+        # Remove the instance the next time
+        self.sprite = i
+        if self.animation:
+            self.movie.nextFrame()
+
+    
+    ##  
+    # Private Methods
+    #
+    
+    def _calcCanvasCoord(self, v):
+        """Convert vertex in scene coordinates to canvas coordinates.
+        """
+
+        pt = Vector([0, 0, 0])
+        
+        mW = float(self.canvasSize[0])/2.0
+        mH = float(self.canvasSize[1])/2.0
+
+        # rescale to canvas size
+        pt[0] = v.co[0]*mW + mW
+        pt[1] = v.co[1]*mH + mH
+        pt[2] = v.co[2]
+         
+        # For now we want (0,0) in the top-left corner of the canvas.
+        # Mirror and translate along y
+        pt[1] *= -1
+        pt[1] += self.canvasSize[1]
+        
+        return pt
+                
+    def _printPolygons(self, mesh, sprite): 
+        """Print the selected (visible) polygons.
+        """
+
+        if len(mesh.faces) == 0:
+            return
+
+        for face in mesh.faces:
+            if not face.sel:
+               continue
+
+            if face.col:
+                fcol = face.col[0]
+                color = [fcol.r, fcol.g, fcol.b, fcol.a]
+            else:
+                color = [255, 255, 255, 255]
+
+            s = SWFShape()
+            f = s.addFill(color[0], color[1], color[2], color[3])
+            s.setRightFill(f)
+
+            # The starting point of the shape
+            p0 = self._calcCanvasCoord(face.verts[0])
+            s.movePenTo(p0[0], p0[1])
+
+            for v in face.verts[1:]:
+                p = self._calcCanvasCoord(v)
+                s.drawLineTo(p[0], p[1])
+            
+            # Closing the shape
+            s.drawLineTo(p0[0], p0[1])
+
+            s.end()
+            sprite.add(s)
+
+
+    def _printEdges(self, mesh, sprite, showHiddenEdges=False):
+        """Print the wireframe using mesh edges.
+        """
+
+        stroke_width = config.edges['WIDTH']
+        stroke_col = config.edges['COLOR']
+
+        s = SWFShape()
+
+        for e in mesh.edges:
+
+            # Next, we set the line width and color for our shape.
+            s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
+            255)
+            
+            if e.sel == 0:
+                if showHiddenEdges == False:
+                    continue
+                else:
+                    # SWF does not support dashed lines natively, so -for now-
+                    # draw hidden lines thinner and half-trasparent
+                    s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
+                            stroke_col[2], 128)
 
-        self.file = open(self.outputFileName, "w")
-        print "Outputting to: ", self.outputFileName
+            p1 = self._calcCanvasCoord(e.v1)
+            p2 = self._calcCanvasCoord(e.v2)
 
-        return
+            s.movePenTo(p1[0], p1[1])
+            s.drawLineTo(p2[0], p2[1])
 
-    def close(self):
-        self.file.close()
-        return
+        s.end()
+        sprite.add(s)
+            
 
-    def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
-            showHiddenEdges=False):
-        """This is the interface for the needed printing routine.
-        """
-        return
-        
+## PDF Writer
 
-## SVG Writer
+try:
+    from reportlab.pdfgen import canvas
+    PDFSupported = True
+except:
+    PDFSupported = False
 
-class SVGVectorWriter(VectorWriter):
-    """A concrete class for writing SVG output.
+class PDFVectorWriter(VectorWriter):
+    """A concrete class for writing PDF output.
     """
 
     def __init__(self, fileName):
@@ -632,6 +1678,8 @@ class SVGVectorWriter(VectorWriter):
         """
         VectorWriter.__init__(self, fileName)
 
+        self.canvas = None
+
 
     ##
     # Public Methods
@@ -641,44 +1689,31 @@ class SVGVectorWriter(VectorWriter):
         """Do some initialization operations.
         """
         VectorWriter.open(self, startFrame, endFrame)
-        self._printHeader()
+        size = (self.canvasSize[0], self.canvasSize[1])
+        self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
 
     def close(self):
         """Do some finalization operation.
         """
-        self._printFooter()
+        self.canvas.save()
 
         # remember to call the close method of the parent
         VectorWriter.close(self)
 
-        
     def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
             showHiddenEdges=False):
         """Convert the scene representation to SVG.
         """
-
-        Objects = scene.getChildren()
-
         context = scene.getRenderingContext()
         framenumber = context.currentFrame()
 
-        if self.animation:
-            framestyle = "display:none"
-        else:
-            framestyle = "display:block"
-        
-        # Assign an id to this group so we can set properties on it using DOM
-        self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
-                (framenumber, framestyle) )
-
+        Objects = scene.getChildren()
 
         for obj in Objects:
 
             if(obj.getType() != 'Mesh'):
                 continue
 
-            self.file.write("<g id=\"%s\">\n" % obj.getName())
-
             mesh = obj.getData(mesh=1)
 
             if doPrintPolygons:
@@ -687,10 +1722,7 @@ class SVGVectorWriter(VectorWriter):
             if doPrintEdges:
                 self._printEdges(mesh, showHiddenEdges)
             
-            self.file.write("</g>\n")
-
-        self.file.write("</g>\n")
-
+        self.canvas.showPage()
     
     ##  
     # Private Methods
@@ -716,60 +1748,7 @@ class SVGVectorWriter(VectorWriter):
         pt[1] += self.canvasSize[1]
         
         return pt
-
-    def _printHeader(self):
-        """Print SVG header."""
-
-        self.file.write("<?xml version=\"1.0\"?>\n")
-        self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\"\n")
-        self.file.write("\t\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n")
-        self.file.write("<svg version=\"1.0\"\n")
-        self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
-        self.file.write("\twidth=\"%d\" height=\"%d\">\n\n" %
-                self.canvasSize)
-
-        if self.animation:
-
-            self.file.write("""\n<script type="text/javascript"><![CDATA[
-            globalStartFrame=%d;
-            globalEndFrame=%d;
-
-            /* FIXME: Use 1000 as interval as lower values gives problems */
-            timerID = setInterval("NextFrame()", 1000);
-            globalFrameCounter=%d;
-
-            function NextFrame()
-            {
-              currentElement  = document.getElementById('frame'+globalFrameCounter)
-              previousElement = document.getElementById('frame'+(globalFrameCounter-1))
-
-              if (!currentElement)
-              {
-                return;
-              }
-
-              if (globalFrameCounter > globalEndFrame)
-              {
-                clearInterval(timerID)
-              }
-              else
-              {
-                if(previousElement)
-                {
-                    previousElement.style.display="none";
-                }
-                currentElement.style.display="block";
-                globalFrameCounter++;
-              }
-            }
-            \n]]></script>\n
-            \n""" % (self.startFrame, self.endFrame, self.startFrame) )
                 
-    def _printFooter(self):
-        """Print the SVG footer."""
-
-        self.file.write("\n</svg>\n")
-
     def _printPolygons(self, mesh): 
         """Print the selected (visible) polygons.
         """
@@ -777,60 +1756,35 @@ class SVGVectorWriter(VectorWriter):
         if len(mesh.faces) == 0:
             return
 
-        self.file.write("<g>\n")
-
         for face in mesh.faces:
             if not face.sel:
                continue
 
-            self.file.write("<path d=\"")
-
-            p = self._calcCanvasCoord(face.verts[0])
-            self.file.write("M %g,%g L " % (p[0], p[1]))
-
-            for v in face.verts[1:]:
-                p = self._calcCanvasCoord(v)
-                self.file.write("%g,%g " % (p[0], p[1]))
-            
-            # get rid of the last blank space, just cosmetics here.
-            self.file.seek(-1, 1) 
-            self.file.write(" z\"\n")
-            
-            # take as face color the first vertex color
             if face.col:
                 fcol = face.col[0]
-                color = [fcol.r, fcol.g, fcol.b, fcol.a]
+                color = [fcol.r/255.0, fcol.g/255.0, fcol.b/255.0,
+                        fcol.a/255.0]
             else:
-                color = [255, 255, 255, 255]
-
-            # Convert the color to the #RRGGBB form
-            str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
-
-            # Handle transparent polygons
-            opacity_string = ""
-            if color[3] != 255:
-                opacity = float(color[3])/255.0
-                #opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
-                opacity_string = "opacity: %g;" % (opacity)
+                color = [1, 1, 1, 1]
 
-            self.file.write("\tstyle=\"fill:" + str_col + ";")
-            self.file.write(opacity_string)
+            self.canvas.setFillColorRGB(color[0], color[1], color[2])
+            # For debug
+            self.canvas.setStrokeColorRGB(0, 0, 0)
 
-            # use the stroke property to alleviate the "adjacent edges" problem,
-            # we simulate polygon expansion using borders,
-            # see http://www.antigrain.com/svg/index.html for more info
-            stroke_width = 1.0
+            path = self.canvas.beginPath()
 
-            # EXPANSION TRICK is not that useful where there is transparency
-            if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
-                # str_col = "#000000" # For debug
-                self.file.write(" stroke:%s;\n" % str_col)
-                self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
-                self.file.write(" stroke-linecap:round;stroke-linejoin:round")
+            # The starting point of the path
+            p0 = self._calcCanvasCoord(face.verts[0])
+            path.moveTo(p0[0], p0[1])
 
-            self.file.write("\"/>\n")
+            for v in face.verts[1:]:
+                p = self._calcCanvasCoord(v)
+                path.lineTo(p[0], p[1])
+            
+            # Closing the shape
+            path.close()
 
-        self.file.write("</g>\n")
+            self.canvas.drawPath(path, stroke=0, fill=1)
 
     def _printEdges(self, mesh, showHiddenEdges=False):
         """Print the wireframe using mesh edges.
@@ -838,31 +1792,30 @@ class SVGVectorWriter(VectorWriter):
 
         stroke_width = config.edges['WIDTH']
         stroke_col = config.edges['COLOR']
-        
-        self.file.write("<g>\n")
+       
+        self.canvas.setLineCap(1)
+        self.canvas.setLineJoin(1)
+        self.canvas.setLineWidth(stroke_width)
+        self.canvas.setStrokeColorRGB(stroke_col[0]/255.0, stroke_col[1]/255.0,
+            stroke_col[2]/255)
 
         for e in mesh.edges:
-            
-            hidden_stroke_style = ""
-            
+
+            self.canvas.setLineWidth(stroke_width)
+
             if e.sel == 0:
                 if showHiddenEdges == False:
                     continue
                 else:
-                    hidden_stroke_style = ";\n stroke-dasharray:3, 3"
+                    # PDF does not support dashed lines natively, so -for now-
+                    # draw hidden lines thinner
+                    self.canvas.setLineWidth(stroke_width/2.0)
 
             p1 = self._calcCanvasCoord(e.v1)
             p2 = self._calcCanvasCoord(e.v2)
-            
-            self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
-                    % ( p1[0], p1[1], p2[0], p2[1] ) )
-            self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
-            self.file.write(" stroke-width:"+str(stroke_width)+";\n")
-            self.file.write(" stroke-linecap:round;stroke-linejoin:round")
-            self.file.write(hidden_stroke_style)
-            self.file.write("\"/>\n")
 
-        self.file.write("</g>\n")
+            self.canvas.line(p1[0], p1[1], p2[0], p2[1])
+
 
 
 # ---------------------------------------------------------------------
@@ -884,6 +1837,10 @@ edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
 # A dictionary to collect the supported output formats
 outputWriters = dict()
 outputWriters['SVG'] = SVGVectorWriter
+if SWFSupported:
+    outputWriters['SWF'] = SWFVectorWriter
+if PDFSupported:
+    outputWriters['PDF'] = PDFVectorWriter
 
 
 class Renderer:
@@ -914,13 +1871,7 @@ class Renderer:
                             )
 
         # Render from the currently active camera 
-        self.cameraObj = self._SCENE.getCurrentCamera()
-
-        # Get a projector for this camera.
-        # NOTE: the projector wants object in world coordinates,
-        # so we should remember to apply modelview transformations
-        # _before_ we do projection transformations.
-        self.proj = Projector(self.cameraObj, self.canvasRatio)
+        #self.cameraObj = self._SCENE.getCurrentCamera()
 
         # Get the list of lighting sources
         obj_lst = self._SCENE.getChildren()
@@ -963,15 +1914,28 @@ class Renderer:
             outputWriter.open(startFrame, endFrame)
         
         # Do the rendering process frame by frame
-        print "Start Rendering of %d frames" % (endFrame-startFrame)
+        print "Start Rendering of %d frames" % (endFrame-startFrame+1)
         for f in xrange(startFrame, endFrame+1):
             print "\n\nFrame: %d" % f
-            context.currentFrame(f)
+
+            # FIXME To get the correct camera position we have to use +1 here.
+            # Is there a bug somewhere in the Scene module?
+            context.currentFrame(f+1)
+            self.cameraObj = self._SCENE.getCurrentCamera()
 
             # Use some temporary workspace, a full copy of the scene
             inputScene = self._SCENE.copy(2)
-            # And Set our camera accordingly
-            self.cameraObj = inputScene.getCurrentCamera()
+
+            # To get the objects at this frame remove the +1 ...
+            ctx = inputScene.getRenderingContext()
+            ctx.currentFrame(f)
+
+
+            # Get a projector for this camera.
+            # NOTE: the projector wants object in world coordinates,
+            # so we should remember to apply modelview transformations
+            # _before_ we do projection transformations.
+            self.proj = Projector(self.cameraObj, self.canvasRatio)
 
             try:
                 renderedScene = self.doRenderScene(inputScene)
@@ -1038,6 +2002,7 @@ class Renderer:
 
             self._doBackFaceCulling(mesh)
 
+
             # When doing HSR with NEWELL we may want to flip all normals
             # toward the viewer
             if config.polygons['HSR'] == "NEWELL":
@@ -1049,7 +2014,6 @@ class Renderer:
 
             self._doLighting(mesh)
 
-
             # Do "projection" now so we perform further processing
             # in Normalized View Coordinates
             self._doProjection(mesh, self.proj)
@@ -1060,7 +2024,6 @@ class Renderer:
 
             self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
 
-            
             # Update the object data, important! :)
             mesh.update()
 
@@ -1140,7 +2103,7 @@ class Renderer:
         For now clip away only objects according to their center position.
         """
 
-        cpos = self._getObjPosition(self.cameraObj)
+        cam_pos = self._getObjPosition(self.cameraObj)
         view_vect = self._cameraViewVector()
 
         near = self.cameraObj.data.clipStart
@@ -1154,7 +2117,8 @@ class Renderer:
         for o in Objects:
             if o.getType() != 'Mesh': continue;
 
-            obj_vect = Vector(cpos) - self._getObjPosition(o)
+            """
+            obj_vect = Vector(cam_pos) - self._getObjPosition(o)
 
             d = obj_vect*view_vect
             theta = AngleBetweenVecs(obj_vect, view_vect)
@@ -1162,6 +2126,30 @@ class Renderer:
             # if the object is outside the view frustum, clip it away
             if (d < near) or (d > far) or (theta > fovy):
                 scene.unlink(o)
+            """
+
+            # Use the object bounding box
+            # (whose points are already in WorldSpace Coordinate)
+
+            bb = o.getBoundBox()
+            
+            points_outside = 0
+            for p in bb:
+                p_vect = Vector(cam_pos) - Vector(p)
+
+                d = p_vect * view_vect
+                theta = AngleBetweenVecs(p_vect, view_vect)
+
+                # Is this point outside the view frustum?
+                if (d < near) or (d > far) or (theta > fovy):
+                    points_outside += 1
+
+            # If the bb is all outside the view frustum we clip the whole
+            # object away
+            if points_outside == len(bb):
+                scene.unlink(o)
+
+
 
     def _doConvertGeometricObjsToMesh(self, scene):
         """Convert all "geometric" objects to mesh ones.
@@ -1199,18 +2187,25 @@ class Renderer:
 
         c = self._getObjPosition(self.cameraObj)
 
-        by_center_pos = (lambda o1, o2:
+        by_obj_center_pos = (lambda o1, o2:
                 (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
                 cmp((self._getObjPosition(o1) - Vector(c)).length,
                     (self._getObjPosition(o2) - Vector(c)).length)
             )
 
-        # TODO: implement sorting by bounding box, if obj1.bb is inside obj2.bb,
-        # then ob1 goes farther than obj2, useful when obj2 has holes
-        by_bbox = None
+        # Implement sorting by bounding box, the object with the bb
+        # nearest to the camera should be drawn as last.
+        by_nearest_bbox_point = (lambda o1, o2:
+                (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
+                cmp( min( [(Vector(p) - Vector(c)).length for p in o1.getBoundBox()] ),
+                     min( [(Vector(p) - Vector(c)).length for p in o2.getBoundBox()] )
+                )
+            )
+
         
         Objects = scene.getChildren()
-        Objects.sort(by_center_pos)
+        #Objects.sort(by_obj_center_pos)
+        Objects.sort(by_nearest_bbox_point)
         
         # update the scene
         for o in Objects:
@@ -1356,7 +2351,7 @@ class Renderer:
             for l in self.lights:
                 light_obj = l
                 light_pos = self._getObjPosition(l)
-                light = light_obj.data
+                light = light_obj.getData()
             
                 L = Vector(light_pos).normalize()
 
@@ -1445,6 +2440,71 @@ class Renderer:
         """Clip faces against the View Frustum.
         """
 
+        # The Canonical View Volume, 8 vertices, and 6 faces,
+        # We consider its face normals pointing outside
+        
+        v1 = NMesh.Vert(1, 1, -1)
+        v2 = NMesh.Vert(1, -1, -1)
+        v3 = NMesh.Vert(-1, -1, -1)
+        v4 = NMesh.Vert(-1, 1, -1)
+        v5 = NMesh.Vert(1, 1, 1)
+        v6 = NMesh.Vert(1, -1, 1)
+        v7 = NMesh.Vert(-1, -1, 1)
+        v8 = NMesh.Vert(-1, 1, 1)
+
+        cvv = []
+        f1 = NMesh.Face([v1, v4, v3, v2])
+        cvv.append(f1)
+        f2 = NMesh.Face([v5, v6, v7, v8])
+        cvv.append(f2)
+        f3 = NMesh.Face([v1, v2, v6, v5])
+        cvv.append(f3)
+        f4 = NMesh.Face([v2, v3, v7, v6])
+        cvv.append(f4)
+        f5 = NMesh.Face([v3, v4, v8, v7])
+        cvv.append(f5)
+        f6 = NMesh.Face([v4, v1, v5, v8])
+        cvv.append(f6)
+
+        nmesh = NMesh.GetRaw(mesh.name)
+        clippedfaces = nmesh.faces[:]
+        facelist = clippedfaces[:]
+
+        for clipface in cvv:
+
+            clippedfaces = []
+
+            for f in facelist:
+                
+                newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
+
+                if not newfaces:
+                    # Check if the face is all outside the view frustum
+                    # TODO: Do this test before, it is more efficient
+                    points_outside = 0
+                    for v in f:
+                        if abs(v[0]) > 1-EPS or abs(v[1]) > 1-EPS or abs(v[2]) > 1-EPS:
+                            points_outside += 1
+
+                    if points_outside != len(f):
+                        clippedfaces.append(f)
+                else:
+                    for nf in newfaces:
+                        for v in nf:
+                            nmesh.verts.append(v)
+
+                        nf.mat = f.mat
+                        nf.sel = f.sel
+                        nf.col = [f.col[0]] * len(nf.v)
+
+                        clippedfaces.append(nf)
+            facelist = clippedfaces[:]
+
+
+        nmesh.faces = facelist
+        nmesh.update()
+        
+
     # HSR routines
     def __simpleDepthSort(self, mesh):
         """Sort faces by the furthest vertex.
@@ -1453,11 +2513,11 @@ class Renderer:
         solves HSR correctly only for convex meshes.
         """
 
-        global progress
+        #global progress
+
         # The sorting requires circa n*log(n) steps
         n = len(mesh.faces)
         progress.setActivity("HSR: Painter", n*log(n))
-        
 
         by_furthest_z = (lambda f1, f2: progress.update() and
                 cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
@@ -1472,92 +2532,26 @@ class Renderer:
 
         nmesh.update()
 
-    def __topologicalDepthSort(self, mesh):
-        """Occlusion based on topological occlusion.
-        
-        Build the occlusion graph of the mesh,
-        and then do topological sort on that graph
-        """
-        return
 
     def __newellDepthSort(self, mesh):
         """Newell's depth sorting.
 
         """
-        global EPS
-
-        by_furthest_z = (lambda f1, f2:
-                cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
-                )
-
-        mesh.quadToTriangle()
-
-        from split import Distance, isOnSegment
-
-        def projectionsOverlap(P, Q):
-
-            for i in range(0, len(P.v)):
-
-                v1 = Vector(P.v[i-1])
-                v1[2] = 0
-                v2 = Vector(P.v[i])
-                v2[2] = 0
-
-                EPS = 10e-5
-
-                for j in range(0, len(Q.v)):
-
-                    v3 = Vector(Q.v[j-1])
-                    v3[2] = 0
-                    v4 = Vector(Q.v[j])
-                    v4[2] = 0
-
-                    #print "\n\nTEST if we have coincidence!"
-                    #print v1, v2
-                    #print v3, v4
-                    #print "distances:"
-                    d1 = (v1-v3).length
-                    d2 = (v1-v4).length
-                    d3 = (v2-v3).length
-                    d4 = (v2-v4).length
-                    #print d1, d2, d3, d4
-                    #print "-----------------------\n"
-
-                    if d1 < EPS or d2 < EPS or d3 < EPS or d4 < EPS:
-                        continue
-                    
-                    # TODO: Replace with LineIntersect2D in newer API
-                    ret = LineIntersect(v1, v2, v3, v4)
-
-                    # if line v1-v2 and v3-v4 intersect both return
-                    # values are the same.
-                    if ret and ret[0] == ret[1]  and isOnSegment(v1, v2, ret[0], True) and isOnSegment(v3, v4, ret[1], True):
 
-                        #l1 = (ret[0] - v1).length
-                        #l2 = (ret[0] - v2).length
+        #global progress
 
-                        #l3 = (ret[1] - v3).length
-                        #l4 = (ret[1] - v4).length
+        # Find non planar quads and convert them to triangle
+        #for f in mesh.faces:
+        #    f.sel = 0
+        #    if is_nonplanar_quad(f.v):
+        #        print "NON QUAD??"
+        #        f.sel = 1
 
-                        #print "New DISTACES againt the intersection point:"
-                        #print l1, l2, l3, l4
-                        #print "-----------------------\n"
 
-                        #if  l1 < EPS or l2 < EPS or l3 < EPS or l4 < EPS:
-                        #    continue
-
-                        debug("Projections OVERLAP!!\n")
-                        debug("line1:"+
-                                " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
-                                " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
-                                "\n")
-                        debug("return: "+ str(ret)+"\n")
-                        return True
-
-            return False
-
-
-        from facesplit import facesplit
+        # Now reselect all faces
+        for f in mesh.faces:
+            f.sel = 1
+        mesh.quadToTriangle()
 
         # FIXME: using NMesh to sort faces. We should avoid that!
         nmesh = NMesh.GetRaw(mesh.name)
@@ -1566,7 +2560,6 @@ class Renderer:
         nmesh.faces.sort(by_furthest_z)
         nmesh.faces.reverse()
 
-        
         # Begin depth sort tests
 
         # use the smooth flag to set marked faces
@@ -1576,9 +2569,6 @@ class Renderer:
         facelist = nmesh.faces[:]
         maplist = []
 
-        EPS = 10e-5
-
-        global progress
 
         # The steps are _at_least_ equal to len(facelist), we do not count the
         # feces coming out from splitting!!
@@ -1586,9 +2576,6 @@ class Renderer:
         #progress.setQuiet(True)
 
         
-        #split_done = 0
-        #marked_face = 0
-
         while len(facelist):
             debug("\n----------------------\n")
             debug("len(facelits): %d\n" % len(facelist))
@@ -1597,9 +2584,9 @@ class Renderer:
             pSign = sign(P.normal[2])
 
             # We can discard faces parallel to the view vector
-            if pSign == 0:
-                facelist.remove(P)
-                continue
+            #if P.normal[2] == 0:
+            #    facelist.remove(P)
+            #    continue
 
             split_done = 0
             face_marked = 0
@@ -1611,8 +2598,9 @@ class Renderer:
                 debug("\n")
 
                 qSign = sign(Q.normal[2])
+                # TODO: check also if Q is parallel??
  
-                # We need to test only those Qs whose furthest vertex
+                # Test 0: We need to test only those Qs whose furthest vertex
                 # is closer to the observer than the closest vertex of P.
 
                 zP = [v.co[2] for v in P.v]
@@ -1628,7 +2616,8 @@ class Renderer:
                     else:
                         debug("met a marked face\n")
                         continue
-                
+
                 # Test 1: X extent overlapping
                 xP = [v.co[0] for v in P.v]
                 xQ = [v.co[0] for v in Q.v]
@@ -1640,6 +2629,7 @@ class Renderer:
                     debug("NOT X OVERLAP!\n")
                     continue
 
+
                 # Test 2: Y extent Overlapping
                 yP = [v.co[1] for v in P.v]
                 yQ = [v.co[1] for v in Q.v]
@@ -1655,7 +2645,7 @@ class Renderer:
                 # Test 3: P vertices are all behind the plane of Q
                 n = 0
                 for Pi in P:
-                    d = qSign * Distance(Vector(Pi), Q)
+                    d = qSign * HSR.Distance(Vector(Pi), Q)
                     if d <= EPS:
                         n += 1
                 pVerticesBehindPlaneQ = (n == len(P))
@@ -1669,7 +2659,7 @@ class Renderer:
                 # Test 4: Q vertices in front of the plane of P
                 n = 0
                 for Qi in Q:
-                    d = pSign * Distance(Vector(Qi), P)
+                    d = pSign * HSR.Distance(Vector(Qi), P)
                     if d >= -EPS:
                         n += 1
                 qVerticesInFrontPlaneP = (n == len(Q))
@@ -1679,37 +2669,36 @@ class Renderer:
                     debug("Q IN FRONT OF P!\n")
                     continue
 
-                # Test 5: Line Intersections... TODO
-                # Check if polygons effectively overlap each other, not only
-                # boundig boxes as done before.
-                # Since we We are working in normalized projection coordinates
-                # we kust check if polygons intersect.
 
-                if not projectionsOverlap(P, Q):
+                # Test 5: Check if projections of polygons effectively overlap,
+                # in previous tests we checked only bounding boxes.
+
+                #if not projectionsOverlap(P, Q):
+                if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
                     debug("\nTest 5\n")
                     debug("Projections do not overlap!\n")
                     continue
 
+                # We still can't say if P obscures Q.
 
-                # We still do not know if P obscures Q.
-
-                # But if Q is marked we do a split trying to resolve a
+                # But if Q is marked we do a face-split trying to resolve a
                 # difficulty (maybe a visibility cycle).
                 if Q.smooth == 1:
                     # Split P or Q
                     debug("Possibly a cycle detected!\n")
                     debug("Split here!!\n")
 
-                    facelist = facesplit(P, Q, facelist, nmesh)
+                    facelist = HSR.facesplit(P, Q, facelist, nmesh)
                     split_done = 1
                     break 
 
                 # The question now is: Does Q obscure P?
 
+
                 # Test 3bis: Q vertices are all behind the plane of P
                 n = 0
                 for Qi in Q:
-                    d = pSign * Distance(Vector(Qi), P)
+                    d = pSign * HSR.Distance(Vector(Qi), P)
                     if d <= EPS:
                         n += 1
                 qVerticesBehindPlaneP = (n == len(Q))
@@ -1722,7 +2711,7 @@ class Renderer:
                 # Test 4bis: P vertices in front of the plane of Q
                 n = 0
                 for Pi in P:
-                    d = qSign * Distance(Vector(Pi), Q)
+                    d = qSign * HSR.Distance(Vector(Pi), Q)
                     if d >= -EPS:
                         n += 1
                 pVerticesInFrontPlaneQ = (n == len(P))
@@ -1739,7 +2728,7 @@ class Renderer:
                     debug("Test 3bis or 4bis failed\n")
                     debug("Split here!!2\n")
 
-                    facelist = facesplit(P, Q, facelist, nmesh)
+                    facelist = HSR.facesplit(P, Q, facelist, nmesh)
                     split_done = 1
                     break 
                     
@@ -1749,23 +2738,34 @@ class Renderer:
                 face_marked = 1
                 debug("Q marked!\n")
                 break
-           
             # Write P!                     
             if split_done == 0 and face_marked == 0:
                 facelist.remove(P)
                 maplist.append(P)
+                dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg")
 
                 progress.update()
 
+            if len(facelist) == 870:
+                dumpfaces([P, Q], "loopdebug.svg")
+
+
+            #if facelist == None:
+            #    maplist = [P, Q]
+            #    print [v.co for v in P]
+            #    print [v.co for v in Q]
+            #    break
+
             # end of while len(facelist)
          
 
         nmesh.faces = maplist
+        #for f in nmesh.faces:
+        #    f.sel = 1
 
-        for f in nmesh.faces:
-            f.sel = 1
         nmesh.update()
-        #print nmesh.faces
+
 
     def _doHiddenSurfaceRemoval(self, mesh):
         """Do HSR for the given mesh.
@@ -1812,7 +2812,7 @@ class Renderer:
             if edgestyleSelect(e, mesh):
                 e.sel = 1
         """
-                
+        #
 
 
 # ---------------------------------------------------------------------
@@ -1991,6 +2991,9 @@ class GUI:
         elif evt == GUI.evtOutFormatMenu:
             i = GUI.outFormatMenu.val - 1
             config.output['FORMAT']= outputWriters.keys()[i]
+            # Set the new output file
+            global outputfile
+            outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
 
         elif evt == GUI.evtAnimToggle:
             config.output['ANIMATION'] = bool(GUI.animToggle.val)
@@ -2071,8 +3074,7 @@ def vectorize(filename):
 
     if editmode: Window.EditMode(1) 
 
-# We use a global progress Indicator Object
-progress = None
+
 
 # Here the main
 if __name__ == "__main__":