Signed-off-by: Antonio Ospite <ospite@studenti.unina.it>
from math import *
import sys, time
from math import *
import sys, time
+# Constants
+EPS = 10e-5
+
# Some global settings
class config:
polygons = dict()
polygons['SHOW'] = True
# Some global settings
class config:
polygons = dict()
polygons['SHOW'] = True
- polygons['SHADING'] = 'FLAT'
+ polygons['SHADING'] = 'TOON'
#polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
polygons['HSR'] = 'NEWELL'
# Hidden to the user for now
#polygons['HSR'] = 'PAINTER' # 'PAINTER' or 'NEWELL'
polygons['HSR'] = 'NEWELL'
# Hidden to the user for now
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
- edges['STYLE'] = 'MESH'
+ edges['STYLE'] = 'MESH' # or SILHOUETTE
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
-print_debug = False
-def debug(msg):
- if print_debug:
- sys.stderr.write(msg)
-
-EPS = 10e-5
-
# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
opacity_string = ""
if color[3] != 255:
opacity = float(color[3])/255.0
opacity_string = ""
if color[3] != 255:
opacity = float(color[3])/255.0
- #opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
- opacity_string = "opacity: %g;" % (opacity)
+ opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
+ #opacity_string = "opacity: %g;" % (opacity)
self.file.write("\tstyle=\"fill:" + str_col + ";")
self.file.write(opacity_string)
self.file.write("\tstyle=\"fill:" + str_col + ";")
self.file.write(opacity_string)
mesh = obj.getData(mesh=1)
mesh = obj.getData(mesh=1)
+ # Triangolarize the mesh??
+ for f in mesh.faces: f.sel = 1
+ mesh.quadToTriangle()
+
self._doModelingTransformation(mesh, obj.matrix)
self._doBackFaceCulling(mesh)
self._doModelingTransformation(mesh, obj.matrix)
self._doBackFaceCulling(mesh)
for l in self.lights:
light_obj = l
light_pos = self._getObjPosition(l)
for l in self.lights:
light_obj = l
light_pos = self._getObjPosition(l)
+ light = light_obj.getData()
L = Vector(light_pos).normalize()
L = Vector(light_pos).normalize()
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
progress.setActivity("HSR: Painter", n*log(n))
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
progress.setActivity("HSR: Painter", n*log(n))
by_furthest_z = (lambda f1, f2: progress.update() and
cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
by_furthest_z = (lambda f1, f2: progress.update() and
cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
- def __topologicalDepthSort(self, mesh):
- """Occlusion based on topological occlusion.
-
- Build the occlusion graph of the mesh,
- and then do topological sort on that graph
- """
- return
-
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
"""
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
"""
- global EPS
-
- by_furthest_z = (lambda f1, f2:
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
- )
-
- mesh.quadToTriangle()
-
- from split import Distance, isOnSegment
-
- def projectionsOverlap(P, Q):
-
- for i in range(0, len(P.v)):
-
- v1 = Vector(P.v[i-1])
- v1[2] = 0
- v2 = Vector(P.v[i])
- v2[2] = 0
-
- EPS = 10e-5
-
- for j in range(0, len(Q.v)):
-
- v3 = Vector(Q.v[j-1])
- v3[2] = 0
- v4 = Vector(Q.v[j])
- v4[2] = 0
-
- #print "\n\nTEST if we have coincidence!"
- #print v1, v2
- #print v3, v4
- #print "distances:"
- d1 = (v1-v3).length
- d2 = (v1-v4).length
- d3 = (v2-v3).length
- d4 = (v2-v4).length
- #print d1, d2, d3, d4
- #print "-----------------------\n"
- if d1 < EPS or d2 < EPS or d3 < EPS or d4 < EPS:
- continue
-
- # TODO: Replace with LineIntersect2D in newer API
- ret = LineIntersect(v1, v2, v3, v4)
-
- # if line v1-v2 and v3-v4 intersect both return
- # values are the same.
- if ret and ret[0] == ret[1] and isOnSegment(v1, v2, ret[0], True) and isOnSegment(v3, v4, ret[1], True):
-
- #l1 = (ret[0] - v1).length
- #l2 = (ret[0] - v2).length
- #l3 = (ret[1] - v3).length
- #l4 = (ret[1] - v4).length
+ # Find non planar quads and convert them to triangle
+ #for f in mesh.faces:
+ # f.sel = 0
+ # if is_nonplanar_quad(f.v):
+ # print "NON QUAD??"
+ # f.sel = 1
- #print "New DISTACES againt the intersection point:"
- #print l1, l2, l3, l4
- #print "-----------------------\n"
- #if l1 < EPS or l2 < EPS or l3 < EPS or l4 < EPS:
- # continue
-
- debug("Projections OVERLAP!!\n")
- debug("line1:"+
- " M "+ str(v1[0])+','+str(v1[1]) + ' L ' + str(v2[0])+','+str(v2[1]) + '\n' +
- " M "+ str(v3[0])+','+str(v3[1]) + ' L ' + str(v4[0])+','+str(v4[1]) + '\n' +
- "\n")
- debug("return: "+ str(ret)+"\n")
- return True
-
- return False
-
-
- from facesplit import facesplit
+ # Now reselect all faces
+ for f in mesh.faces:
+ f.sel = 1
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
# FIXME: using NMesh to sort faces. We should avoid that!
nmesh = NMesh.GetRaw(mesh.name)
facelist = nmesh.faces[:]
maplist = []
facelist = nmesh.faces[:]
maplist = []
- EPS = 10e-5
-
- global progress
# The steps are _at_least_ equal to len(facelist), we do not count the
# feces coming out from splitting!!
# The steps are _at_least_ equal to len(facelist), we do not count the
# feces coming out from splitting!!
progress.setActivity("HSR: Newell", len(facelist))
#progress.setQuiet(True)
progress.setActivity("HSR: Newell", len(facelist))
#progress.setQuiet(True)
- #split_done = 0
- #marked_face = 0
-
while len(facelist):
debug("\n----------------------\n")
debug("len(facelits): %d\n" % len(facelist))
while len(facelist):
debug("\n----------------------\n")
debug("len(facelits): %d\n" % len(facelist))
pSign = sign(P.normal[2])
# We can discard faces parallel to the view vector
pSign = sign(P.normal[2])
# We can discard faces parallel to the view vector
facelist.remove(P)
continue
facelist.remove(P)
continue
debug("\n")
qSign = sign(Q.normal[2])
debug("\n")
qSign = sign(Q.normal[2])
+ # TODO: check also if Q is parallel??
- # We need to test only those Qs whose furthest vertex
+ # Test 0: We need to test only those Qs whose furthest vertex
# is closer to the observer than the closest vertex of P.
zP = [v.co[2] for v in P.v]
zQ = [v.co[2] for v in Q.v]
# is closer to the observer than the closest vertex of P.
zP = [v.co[2] for v in P.v]
zQ = [v.co[2] for v in Q.v]
- notZOverlap = min(zP) > max(zQ) + EPS
+ notZOverlap = min(zP) > max(zQ)+EPS
if notZOverlap:
debug("\nTest 0\n")
if notZOverlap:
debug("\nTest 0\n")
else:
debug("met a marked face\n")
continue
else:
debug("met a marked face\n")
continue
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
debug("NOT X OVERLAP!\n")
continue
debug("NOT X OVERLAP!\n")
continue
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
debug("Q IN FRONT OF P!\n")
continue
debug("Q IN FRONT OF P!\n")
continue
- # Test 5: Line Intersections... TODO
- # Check if polygons effectively overlap each other, not only
- # boundig boxes as done before.
- # Since we We are working in normalized projection coordinates
- # we kust check if polygons intersect.
+
+ # Test 5: Check if projections of polygons effectively overlap,
+ # in previous tests we checked only bounding boxes.
if not projectionsOverlap(P, Q):
debug("\nTest 5\n")
debug("Projections do not overlap!\n")
continue
if not projectionsOverlap(P, Q):
debug("\nTest 5\n")
debug("Projections do not overlap!\n")
continue
+ # We still can't say if P obscures Q.
- # We still do not know if P obscures Q.
-
- # But if Q is marked we do a split trying to resolve a
+ # But if Q is marked we do a face-split trying to resolve a
# difficulty (maybe a visibility cycle).
if Q.smooth == 1:
# Split P or Q
# difficulty (maybe a visibility cycle).
if Q.smooth == 1:
# Split P or Q
# The question now is: Does Q obscure P?
# The question now is: Does Q obscure P?
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
+ if facelist == None:
+ maplist = [P, Q]
+ print [v.co for v in P]
+ print [v.co for v in Q]
+ break
+
# end of while len(facelist)
nmesh.faces = maplist
# end of while len(facelist)
nmesh.faces = maplist
- for f in nmesh.faces:
- f.sel = 1
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.