The command line used for the cleanup is:
pep8 --ignore=E241,E501 vrm.py
Signed-off-by: Antonio Ospite <ospite@studenti.unina.it>
from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
from Blender.Mathutils import *
from math import *
from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
from Blender.Mathutils import *
from math import *
def uniq(alist):
tmpdict = dict()
def uniq(alist):
tmpdict = dict()
- return [tmpdict.setdefault(e,e) for e in alist if e not in tmpdict]
+ return [tmpdict.setdefault(e, e) for e in alist if e not in tmpdict]
# in python > 2.4 we ca use the following
#return [ u for u in alist if u not in locals()['_[1]'] ]
# in python > 2.4 we ca use the following
#return [ u for u in alist if u not in locals()['_[1]'] ]
class config:
polygons = dict()
polygons['SHOW'] = True
class config:
polygons = dict()
polygons['SHOW'] = True
- polygons['SHADING'] = 'FLAT' # FLAT or TOON
- polygons['HSR'] = 'PAINTER' # PAINTER or NEWELL
+ polygons['SHADING'] = 'FLAT' # FLAT or TOON
+ polygons['HSR'] = 'PAINTER' # PAINTER or NEWELL
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
# Hidden to the user for now
polygons['EXPANSION_TRICK'] = True
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
edges = dict()
edges['SHOW'] = False
edges['SHOW_HIDDEN'] = False
- edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
+ edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
edges['WIDTH'] = 2
edges['COLOR'] = [0, 0, 0]
def saveToRegistry():
registry = {}
def saveToRegistry():
registry = {}
- for k,v in config.__dict__.iteritems():
+ for k, v in config.__dict__.iteritems():
# config class store settings in dictionaries
if v.__class__ == dict().__class__:
# config class store settings in dictionaries
if v.__class__ == dict().__class__:
- regkey_prefix = k.upper()+"_"
+ regkey_prefix = k.upper() + "_"
- for opt_k,opt_v in v.iteritems():
+ for opt_k, opt_v in v.iteritems():
regkey = regkey_prefix + opt_k
registry[regkey] = opt_v
regkey = regkey_prefix + opt_k
registry[regkey] = opt_v
def loadFromRegistry():
registry = Blender.Registry.GetKey('VRM', True)
if not registry:
def loadFromRegistry():
registry = Blender.Registry.GetKey('VRM', True)
if not registry:
- for k,v in registry.iteritems():
+ for k, v in registry.iteritems():
k_tmp = k.split('_')
conf_attr = k_tmp[0].lower()
k_tmp = k.split('_')
conf_attr = k_tmp[0].lower()
- conf_key = str.join("_",k_tmp[1:])
+ conf_key = str.join("_", k_tmp[1:])
- if config.__dict__.has_key(conf_attr):
+ if conf_attr in config.__dict__:
config.__dict__[conf_attr][conf_key] = conf_val
loadFromRegistry = staticmethod(loadFromRegistry)
config.__dict__[conf_attr][conf_key] = conf_val
loadFromRegistry = staticmethod(loadFromRegistry)
# Utility functions
print_debug = False
# Utility functions
print_debug = False
def dumpfaces(flist, filename):
"""Dump a single face to a file.
"""
def dumpfaces(flist, filename):
"""Dump a single face to a file.
"""
def debug(msg):
if print_debug:
sys.stderr.write(msg)
def debug(msg):
if print_debug:
sys.stderr.write(msg)
- return (abs(v1[0]-v2[0]) < EPS and
- abs(v1[1]-v2[1]) < EPS )
+ return (abs(v1[0] - v2[0]) < EPS and
+ abs(v1[1] - v2[1]) < EPS)
by_furthest_z = (lambda f1, f2:
by_furthest_z = (lambda f1, f2:
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
def sign(x):
if x < -EPS:
def sign(x):
if x < -EPS:
class HSR:
"""A utility class for HSR processing.
"""
class HSR:
"""A utility class for HSR processing.
"""
From: http://mathworld.wolfram.com/Coplanar.html
Geometric objects lying in a common plane are said to be coplanar.
From: http://mathworld.wolfram.com/Coplanar.html
Geometric objects lying in a common plane are said to be coplanar.
- Three noncollinear points determine a plane and so are trivially coplanar.
- Four points are coplanar iff the volume of the tetrahedron defined by them is
- 0,
+ Three noncollinear points determine a plane and so are trivially
+ coplanar. Four points are coplanar iff the volume of the tetrahedron
+ defined by them is 0,
| x_1 y_1 z_1 1 |
| x_2 y_2 z_2 1 |
| x_1 y_1 z_1 1 |
| x_2 y_2 z_2 1 |
| x_4 y_4 z_4 1 | == 0
Coplanarity is equivalent to the statement that the pair of lines
| x_4 y_4 z_4 1 | == 0
Coplanarity is equivalent to the statement that the pair of lines
- determined by the four points are not skew, and can be equivalently stated
- in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
+ determined by the four points are not skew, and can be equivalently
+ stated in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
An arbitrary number of n points x_1, ..., x_n can be tested for
coplanarity by finding the point-plane distances of the points
An arbitrary number of n points x_1, ..., x_n can be tested for
coplanarity by finding the point-plane distances of the points
elif n == 3:
# three points must be complanar
return False
elif n == 3:
# three points must be complanar
return False
x1 = Vector(face[0].co)
x2 = Vector(face[1].co)
x3 = Vector(face[2].co)
x4 = Vector(face[3].co)
x1 = Vector(face[0].co)
x2 = Vector(face[1].co)
x3 = Vector(face[2].co)
x4 = Vector(face[3].co)
- v = (x3-x1) * CrossVecs((x2-x1), (x4-x3))
+ v = (x3 - x1) * CrossVecs((x2 - x1), (x4 - x3))
#z3 = s2[0].co[2]
#z4 = s2[1].co[2]
#z3 = s2[0].co[2]
#z4 = s2[1].co[2]
# calculate delta values (vector components)
# calculate delta values (vector components)
- dx1 = x2 - x1;
- dx2 = x4 - x3;
- dy1 = y2 - y1;
- dy2 = y4 - y3;
+ dx1 = x2 - x1
+ dx2 = x4 - x3
+ dy1 = y2 - y1
+ dy2 = y4 - y3
- #dz1 = z2 - z1;
- #dz2 = z4 - z3;
+ #dz1 = z2 - z1
+ #dz2 = z4 - z3
- C = dy2 * dx1 - dx2 * dy1 # /* cross product */
- if C == 0: #/* parallel */
+ C = dy2 * dx1 - dx2 * dy1 # cross product
+ if C == 0: # parallel
- dx3 = x1 - x3 # /* combined origin offset vector */
+ dx3 = x1 - x3 # combined origin offset vector
- a1 = (dy3 * dx2 - dx3 * dy2) / C;
- a2 = (dy3 * dx1 - dx3 * dy1) / C;
+ a1 = (dy3 * dx2 - dx3 * dy2) / C
+ a2 = (dy3 * dx1 - dx3 * dy1) / C
# check for degeneracies
#print_debug("\n")
# check for degeneracies
#print_debug("\n")
# Intersection on boundaries, we consider the point external?
return None
# Intersection on boundaries, we consider the point external?
return None
- elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): # /* lines cross */
- x = x1 + a1*dx1
- y = y1 + a1*dy1
+ elif (a1 > 0.0 and a1 < 1.0 and a2 > 0.0 and a2 < 1.0): # lines cross
+ x = x1 + a1 * dx1
+ y = y1 + a1 * dy1
z = 0
return (NMesh.Vert(x, y, z), a1, a2)
z = 0
return (NMesh.Vert(x, y, z), a1, a2)
for i in range(len(self.v)):
s1 = (point_at_infinity, v)
for i in range(len(self.v)):
s1 = (point_at_infinity, v)
- s2 = (self.v[i-1], self.v[i])
+ s2 = (self.v[i - 1], self.v[i])
if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
coincidence = True
if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
coincidence = True
winding_number += 1
# Check even or odd
winding_number += 1
# Check even or odd
- if winding_number % 2 == 0 :
+ if (winding_number % 2) == 0:
return False
else:
if coincidence:
return False
else:
if coincidence:
isVertInside = staticmethod(isVertInside)
isVertInside = staticmethod(isVertInside)
def det(a, b, c):
return ((b[0] - a[0]) * (c[1] - a[1]) -
def det(a, b, c):
return ((b[0] - a[0]) * (c[1] - a[1]) -
- (b[1] - a[1]) * (c[0] - a[0]) )
+ (b[1] - a[1]) * (c[0] - a[0]))
det = HSR.det
for i in range(len(P.v)):
det = HSR.det
for i in range(len(P.v)):
- if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0):
- if det(p0.co, p1.co, q.co) == 0 :
+ if (det(q.co, point_at_infinity.co, p0.co) < 0) != (det(q.co, point_at_infinity.co, p1.co) < 0):
+ if det(p0.co, p1.co, q.co) == 0:
#print "On Boundary"
return False
#print "On Boundary"
return False
- elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0):
+ elif (det(p0.co, p1.co, q.co) < 0) != (det(p0.co, p1.co, point_at_infinity.co) < 0):
is_in = not is_in
return is_in
is_in = not is_in
return is_in
for i in range(len(f1.v)):
for i in range(len(f1.v)):
# If a point of f1 in inside f2, there is an overlap!
v1 = f1.v[i]
#if HSR.isVertInside(f2, v1):
# If a point of f1 in inside f2, there is an overlap!
v1 = f1.v[i]
#if HSR.isVertInside(f2, v1):
# If not the polygon can be ovelap as well, so we check for
# intersection between an edge of f1 and all the edges of f2
# If not the polygon can be ovelap as well, so we check for
# intersection between an edge of f1 and all the edges of f2
for j in range(len(f2.v)):
for j in range(len(f2.v)):
"""
by_furthest_z = (lambda f1, f2:
"""
by_furthest_z = (lambda f1, f2:
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
)
# Choose if split P on Q plane or vice-versa
)
# Choose if split P on Q plane or vice-versa
#
#newfaces = splitOn(plane, f)
#
#newfaces = splitOn(plane, f)
if newfaces == None:
print "Big FAT problem, we weren't able to split POLYGONS!"
raise AssertionError
if newfaces == None:
print "Big FAT problem, we weren't able to split POLYGONS!"
raise AssertionError
"""Check if point p is in segment v1v2.
"""
"""Check if point p is in segment v1v2.
"""
- l1 = (v1-p).length
- l2 = (v2-p).length
+ l1 = (v1 - p).length
+ l2 = (v2 - p).length
# Should we consider extreme points as internal ?
# The test:
# Should we consider extreme points as internal ?
# The test:
if l1 < EPS or l2 < EPS:
return extremes_internal
if l1 < EPS or l2 < EPS:
return extremes_internal
# if the sum of l1 and l2 is circa l, then the point is on segment,
# if the sum of l1 and l2 is circa l, then the point is on segment,
- if abs(l - (l1+l2)) < EPS:
+ if abs(l - (l1 + l2)) < EPS:
return True
else:
return False
return True
else:
return False
"""
# Check if P and Q are parallel
"""
# Check if P and Q are parallel
- u = CrossVecs(Vector(Q.no),Vector(P.no))
+ u = CrossVecs(Vector(Q.no), Vector(P.no))
ax = abs(u[0])
ay = abs(u[1])
az = abs(u[2])
ax = abs(u[0])
ay = abs(u[1])
az = abs(u[2])
+ if (ax + ay + az) < EPS:
print "PARALLEL planes!!"
return
print "PARALLEL planes!!"
return
# The final aim is to find the intersection line between P
# and the plane of Q, and split P along this line
# The final aim is to find the intersection line between P
# and the plane of Q, and split P along this line
posVertList = []
negVertList = []
for i in range(nP):
posVertList = []
negVertList = []
for i in range(nP):
- d0 = d[i-1]
- V0 = P.v[i-1]
+ d0 = d[i - 1]
+ V0 = P.v[i - 1]
negVertList.append(V1)
else:
# if they are on the same side of the plane
negVertList.append(V1)
else:
# if they are on the same side of the plane
#print "On the same half-space"
if d1 > 0:
#print "d1 on positive Halfspace"
#print "On the same half-space"
if d1 > 0:
#print "d1 on positive Halfspace"
e = Vector(V0), Vector(V1)
tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
e = Vector(V0), Vector(V1)
tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
- inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0)
+ inters = Intersect(tri[0], tri[1], tri[2], e[1] - e[0], e[0], 0)
if inters == None:
print "Split Break"
break
if inters == None:
print "Split Break"
break
else:
negVertList.append(V1)
else:
negVertList.append(V1)
# uniq for python > 2.4
#posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
#negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
# uniq for python > 2.4
#posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
#negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
posVertList = uniq(posVertList)
negVertList = uniq(negVertList)
posVertList = uniq(posVertList)
negVertList = uniq(negVertList)
# If vertex are all on the same half-space, return
#if len(posVertList) < 3:
# print "Problem, we created a face with less that 3 vertices??"
# If vertex are all on the same half-space, return
#if len(posVertList) < 3:
# print "Problem, we created a face with less that 3 vertices??"
if len(posVertList) or len(negVertList):
#newfaces = [posVertList] + [negVertList]
if len(posVertList) or len(negVertList):
#newfaces = [posVertList] + [negVertList]
- newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
- [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] )
+ newfaces = ([[NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
+ [[NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]])
outfaces += HSR.makeFaces(nf)
return outfaces
outfaces += HSR.makeFaces(nf)
return outfaces
addNewFaces = staticmethod(addNewFaces)
addNewFaces = staticmethod(addNewFaces)
'''
def sorted_edge_indicies(ed):
'''
def sorted_edge_indicies(ed):
- i1= ed.v1.index
- i2= ed.v2.index
- if i1>i2:
- i1,i2= i2,i1
+ i1 = ed.v1.index
+ i2 = ed.v2.index
+ if i1 > i2:
+ i1, i2 = i2, i1
-
- face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
+ face_edges_dict = dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
- fvi= [v.index for v in f.v]# face vert idx's
+ fvi = [v.index for v in f.v] # face vert idx's
- i1= fvi[i]
- i2= fvi[i-1]
+ i1 = fvi[i]
+ i2 = fvi[i - 1]
- if i1>i2:
- i1,i2= i2,i1
+ if i1 > i2:
+ i1, i2 = i2, i1
- face_edges_dict[i1,i2][1].append(f)
+ face_edges_dict[i1, i2][1].append(f)
- face_edges= [None] * len(me.edges)
+ face_edges = [None] * len(me.edges)
for ed_index, ed_faces in face_edges_dict.itervalues():
for ed_index, ed_faces in face_edges_dict.itervalues():
- face_edges[ed_index]= ed_faces
+ face_edges[ed_index] = ed_faces
def toonShadingMapSetup():
levels = config.polygons['TOON_LEVELS']
def toonShadingMapSetup():
levels = config.polygons['TOON_LEVELS']
- texels = 2*levels - 1
- tmp_shademap = [0.0] + [(i)/float(texels-1) for i in xrange(1, texels-1) ] + [1.0]
+ texels = 2 * levels - 1
+ tmp_shademap = [0.0] + [(i) / float(texels - 1) for i in xrange(1, texels - 1)] + [1.0]
shademap = ShadingUtils.toonShadingMapSetup()
v = 1.0
shademap = ShadingUtils.toonShadingMapSetup()
v = 1.0
- for i in xrange(0, len(shademap)-1):
- pivot = (shademap[i]+shademap[i+1])/2.0
- j = int(u>pivot)
+ for i in xrange(0, len(shademap) - 1):
+ pivot = (shademap[i] + shademap[i + 1]) / 2.0
+ j = int(u > pivot)
+ if v < shademap[i + 1]:
camera = cameraObj.getData()
camera = cameraObj.getData()
- aspect = float(canvasRatio[0])/float(canvasRatio[1])
+ aspect = float(canvasRatio[0]) / float(canvasRatio[1])
near = camera.clipStart
far = camera.clipEnd
scale = float(camera.scale)
near = camera.clipStart
far = camera.clipEnd
scale = float(camera.scale)
- fovy = atan(0.5/aspect/(camera.lens/32))
- fovy = fovy * 360.0/pi
-
+ fovy = atan(0.5 / aspect / (camera.lens / 32))
+ fovy = fovy * 360.0 / pi
if Blender.Get('version') < 243:
camPersp = 0
if Blender.Get('version') < 243:
camPersp = 0
elif camera.type == camOrtho:
mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
elif camera.type == camOrtho:
mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
# View transformation
cam = Matrix(cameraObj.getInverseMatrix())
cam.transpose()
# View transformation
cam = Matrix(cameraObj.getInverseMatrix())
cam.transpose()
# Perspective division
if p[3] != 0:
# Perspective division
if p[3] != 0:
- p[0] = p[0]/p[3]
- p[1] = p[1]/p[3]
- p[2] = p[2]/p[3]
+ p[0] = p[0] / p[3]
+ p[1] = p[1] / p[3]
+ p[2] = p[2] / p[3]
# restore the size
p[3] = 1.0
# restore the size
p[3] = 1.0
top = near * tan(fovy * pi / 360.0)
bottom = -top
top = near * tan(fovy * pi / 360.0)
bottom = -top
- left = bottom*aspect
- right= top*aspect
- x = (2.0 * near) / (right-left)
- y = (2.0 * near) / (top-bottom)
- a = (right+left) / (right-left)
- b = (top+bottom) / (top - bottom)
- c = - ((far+near) / (far-near))
- d = - ((2*far*near)/(far-near))
+ left = bottom * aspect
+ right = top * aspect
+ x = (2.0 * near) / (right - left)
+ y = (2.0 * near) / (top - bottom)
+ a = (right + left) / (right - left)
+ b = (top + bottom) / (top - bottom)
+ c = - ((far + near) / (far - near))
+ d = - ((2 * far * near) / (far - near))
m = Matrix(
[x, 0.0, a, 0.0],
m = Matrix(
[x, 0.0, a, 0.0],
- def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
+ def _calcOrthoMatrix(self, fovy, aspect, near, far, scale):
"""Return an orthogonal projection matrix.
"""
"""Return an orthogonal projection matrix.
"""
top = near * tan(fovy * pi / 360.0) * (scale * 11)
bottom = -top
left = bottom * aspect
top = near * tan(fovy * pi / 360.0) * (scale * 11)
bottom = -top
left = bottom * aspect
- right= top * aspect
- rl = right-left
- tb = top-bottom
- fn = near-far
- tx = -((right+left)/rl)
- ty = -((top+bottom)/tb)
- tz = ((far+near)/fn)
+ right = top * aspect
+ rl = right - left
+ tb = top - bottom
+ fn = near - far
+ tx = -((right + left) / rl)
+ ty = -((top + bottom) / tb)
+ tz = ((far + near) / fn)
- [2.0/rl, 0.0, 0.0, tx],
- [0.0, 2.0/tb, 0.0, ty],
- [0.0, 0.0, 2.0/fn, tz],
- [0.0, 0.0, 0.0, 1.0])
+ [2.0 / rl, 0.0, 0.0, tx],
+ [0.0, 2.0 / tb, 0.0, ty],
+ [0.0, 0.0, 2.0 / fn, tz],
+ [0.0, 0.0, 0.0, 1.0])
return False
self.completed += 1
return False
self.completed += 1
- self.progress = ( float(self.completed) / float(self.steps) ) * 100
+ self.progress = (float(self.completed) / float(self.steps)) * 100
self.progress = int(self.progress)
return True
self.progress = int(self.progress)
return True
ProgressIndicator.show(self, progress, name)
bar_length = 70
ProgressIndicator.show(self, progress, name)
bar_length = 70
- bar_progress = int( (progress/100.0) * bar_length )
+ bar_progress = int((progress / 100.0) * bar_length)
bar = ("=" * bar_progress).ljust(bar_length)
bar = ("=" * bar_progress).ljust(bar_length)
- self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+ self.swirl_count = (self.swirl_count + 1) % len(self.swirl_chars)
swirl_char = self.swirl_chars[self.swirl_count]
progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress)
swirl_char = self.swirl_chars[self.swirl_count]
progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress)
- sys.stderr.write(progress_bar+"\r")
+ sys.stderr.write(progress_bar + "\r")
if progress == 100:
sys.stderr.write("\n")
if progress == 100:
sys.stderr.write("\n")
def show(self, progress, name):
ProgressIndicator.show(self, progress)
def show(self, progress, name):
ProgressIndicator.show(self, progress)
- self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
+ self.swirl_count = (self.swirl_count + 1) % len(self.swirl_chars)
swirl_char = self.swirl_chars[self.swirl_count]
progress_text = "%s - %c %3d%%" % (name, swirl_char, progress)
# Finally draw the Progress Bar
swirl_char = self.swirl_chars[self.swirl_count]
progress_text = "%s - %c %3d%%" % (name, swirl_char, progress)
# Finally draw the Progress Bar
- Window.WaitCursor(1) # Maybe we can move that call in the constructor?
- Window.DrawProgressBar(progress/100.0, progress_text)
+ Window.WaitCursor(1) # Maybe we can move that call in the constructor?
+ Window.DrawProgressBar(progress / 100.0, progress_text)
if progress == 100:
Window.DrawProgressBar(1, progress_text)
Window.WaitCursor(0)
if progress == 100:
Window.DrawProgressBar(1, progress_text)
Window.WaitCursor(0)
# ---------------------------------------------------------------------
#
## 2D Object representation class
# ---------------------------------------------------------------------
#
## 2D Object representation class
self.outputFileName = fileName
context = Scene.GetCurrent().getRenderingContext()
self.outputFileName = fileName
context = Scene.GetCurrent().getRenderingContext()
- self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
+ self.canvasSize = (context.imageSizeX(), context.imageSizeY())
self.endFrame = 1
self.animation = False
self.endFrame = 1
self.animation = False
# remember to call the close method of the parent as last
VectorWriter.close(self)
# remember to call the close method of the parent as last
VectorWriter.close(self)
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
"""Convert the scene representation to SVG.
def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
showHiddenEdges=False):
"""Convert the scene representation to SVG.
# Assign an id to this group so we can set properties on it using DOM
self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
# Assign an id to this group so we can set properties on it using DOM
self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
- (framenumber, framestyle) )
-
+ (framenumber, framestyle))
- if(obj.getType() != 'Mesh'):
+ if obj.getType() != 'Mesh':
continue
self.file.write("<g id=\"%s\">\n" % obj.getName())
continue
self.file.write("<g id=\"%s\">\n" % obj.getName())
self.file.write("</g>\n")
self.file.write("</g>\n")
- mW = float(self.canvasSize[0])/2.0
- mH = float(self.canvasSize[1])/2.0
+ mW = float(self.canvasSize[0]) / 2.0
+ mH = float(self.canvasSize[1]) / 2.0
- pt[0] = v.co[0]*mW + mW
- pt[1] = v.co[1]*mH + mH
+ pt[0] = v.co[0] * mW + mW
+ pt[1] = v.co[1] * mH + mH
pt[2] = v.co[2]
# For now we want (0,0) in the top-left corner of the canvas.
pt[2] = v.co[2]
# For now we want (0,0) in the top-left corner of the canvas.
self.canvasSize)
if self.animation:
self.canvasSize)
if self.animation:
+ delay = 1000 / self.fps
self.file.write("""\n<script type="text/javascript"><![CDATA[
globalStartFrame=%d;
self.file.write("""\n<script type="text/javascript"><![CDATA[
globalStartFrame=%d;
timerID = setInterval("NextFrame()", %d);
globalFrameCounter=%d;
timerID = setInterval("NextFrame()", %d);
globalFrameCounter=%d;
- \n""" % (self.startFrame, self.endFrame, delay, self.startFrame) )
+ \n""" % (self.startFrame, self.endFrame, delay, self.startFrame))
self.file.write("""\n
function NextFrame()
self.file.write("""\n
function NextFrame()
for face in mesh.faces:
if not face.sel:
for face in mesh.faces:
if not face.sel:
self.file.write("<path d=\"")
self.file.write("<path d=\"")
# Handle transparent polygons
opacity_string = ""
if color[3] != 255:
# Handle transparent polygons
opacity_string = ""
if color[3] != 255:
- opacity = float(color[3])/255.0
+ opacity = float(color[3]) / 255.0
opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
#opacity_string = "opacity: %g;" % (opacity)
opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
#opacity_string = "opacity: %g;" % (opacity)
p2 = self._calcCanvasCoord(e.v2)
self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
p2 = self._calcCanvasCoord(e.v2)
self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
- % ( p1[0], p1[1], p2[0], p2[1] ) )
- self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
- self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+ % (p1[0], p1[1], p2[0], p2[1]))
+ self.file.write(" style=\"stroke:rgb(" + str(stroke_col[0]) + "," + str(stroke_col[1]) + "," + str(stroke_col[2]) + ");")
+ self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
self.file.write(hidden_stroke_style)
self.file.write("\"/>\n")
self.file.write(" stroke-linecap:round;stroke-linejoin:round")
self.file.write(hidden_stroke_style)
self.file.write("\"/>\n")
except:
SWFSupported = False
except:
SWFSupported = False
class SWFVectorWriter(VectorWriter):
"""A concrete class for writing SWF output.
"""
class SWFVectorWriter(VectorWriter):
"""A concrete class for writing SWF output.
"""
self.movie = None
self.sprite = None
self.movie = None
self.sprite = None
if self.animation:
self.movie.nextFrame()
if self.animation:
self.movie.nextFrame()
- mW = float(self.canvasSize[0])/2.0
- mH = float(self.canvasSize[1])/2.0
+ mW = float(self.canvasSize[0]) / 2.0
+ mH = float(self.canvasSize[1]) / 2.0
- pt[0] = v.co[0]*mW + mW
- pt[1] = v.co[1]*mH + mH
+ pt[0] = v.co[0] * mW + mW
+ pt[1] = v.co[1] * mH + mH
pt[2] = v.co[2]
# For now we want (0,0) in the top-left corner of the canvas.
pt[2] = v.co[2]
# For now we want (0,0) in the top-left corner of the canvas.
for face in mesh.faces:
if not face.sel:
for face in mesh.faces:
if not face.sel:
if face.col:
fcol = face.col[0]
if face.col:
fcol = face.col[0]
def _printEdges(self, mesh, sprite, showHiddenEdges=False):
"""Print the wireframe using mesh edges.
"""
def _printEdges(self, mesh, sprite, showHiddenEdges=False):
"""Print the wireframe using mesh edges.
"""
else:
# SWF does not support dashed lines natively, so -for now-
# draw hidden lines thinner and half-trasparent
else:
# SWF does not support dashed lines natively, so -for now-
# draw hidden lines thinner and half-trasparent
- s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
+ s.setLine(stroke_width / 2, stroke_col[0], stroke_col[1],
stroke_col[2], 128)
p1 = self._calcCanvasCoord(e.v1)
stroke_col[2], 128)
p1 = self._calcCanvasCoord(e.v1)
except:
PDFSupported = False
except:
PDFSupported = False
class PDFVectorWriter(VectorWriter):
"""A concrete class for writing PDF output.
"""
class PDFVectorWriter(VectorWriter):
"""A concrete class for writing PDF output.
"""
- mW = float(self.canvasSize[0])/2.0
- mH = float(self.canvasSize[1])/2.0
+ mW = float(self.canvasSize[0]) / 2.0
+ mH = float(self.canvasSize[1]) / 2.0
- pt[0] = v.co[0]*mW + mW
- pt[1] = v.co[1]*mH + mH
+ pt[0] = v.co[0] * mW + mW
+ pt[1] = v.co[1] * mH + mH
pt[2] = v.co[2]
# For now we want (0,0) in the top-left corner of the canvas.
pt[2] = v.co[2]
# For now we want (0,0) in the top-left corner of the canvas.
for face in mesh.faces:
if not face.sel:
for face in mesh.faces:
if not face.sel:
if face.col:
fcol = face.col[0]
if face.col:
fcol = face.col[0]
- color = [fcol.r/255.0, fcol.g/255.0, fcol.b/255.0,
- fcol.a/255.0]
+ color = [fcol.r / 255.0, fcol.g / 255.0, fcol.b / 255.0,
+ fcol.a / 255.0]
else:
color = [1, 1, 1, 1]
else:
color = [1, 1, 1, 1]
self.canvas.setLineCap(1)
self.canvas.setLineJoin(1)
self.canvas.setLineWidth(stroke_width)
self.canvas.setLineCap(1)
self.canvas.setLineJoin(1)
self.canvas.setLineWidth(stroke_width)
- self.canvas.setStrokeColorRGB(stroke_col[0]/255.0, stroke_col[1]/255.0,
- stroke_col[2]/255)
+ self.canvas.setStrokeColorRGB(stroke_col[0] / 255.0, stroke_col[1] / 255.0,
+ stroke_col[2] / 255)
else:
# PDF does not support dashed lines natively, so -for now-
# draw hidden lines thinner
else:
# PDF does not support dashed lines natively, so -for now-
# draw hidden lines thinner
- self.canvas.setLineWidth(stroke_width/2.0)
+ self.canvas.setLineWidth(stroke_width / 2.0)
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
self.canvas.line(p1[0], p1[1], p2[0], p2[1])
p1 = self._calcCanvasCoord(e.v1)
p2 = self._calcCanvasCoord(e.v2)
self.canvas.line(p1[0], p1[1], p2[0], p2[1])
# ---------------------------------------------------------------------
#
## Rendering Classes
# ---------------------------------------------------------------------
#
## Rendering Classes
# Use the aspect ratio of the scene rendering context
context = self._SCENE.getRenderingContext()
# Use the aspect ratio of the scene rendering context
context = self._SCENE.getRenderingContext()
- aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY())
- self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio,
+ aspect_ratio = float(context.imageSizeX()) / float(context.imageSizeY())
+ self.canvasRatio = (float(context.aspectRatioX()) * aspect_ratio,
float(context.aspectRatioY())
)
float(context.aspectRatioY())
)
outputWriter.open(startFrame, endFrame)
# Do the rendering process frame by frame
outputWriter.open(startFrame, endFrame)
# Do the rendering process frame by frame
- print "Start Rendering of %d frames" % (endFrame-startFrame+1)
- for f in xrange(startFrame, endFrame+1):
+ print "Start Rendering of %d frames" % (endFrame - startFrame + 1)
+ for f in xrange(startFrame, endFrame + 1):
print "\n\nFrame: %d" % f
# FIXME To get the correct camera position we have to use +1 here.
# Is there a bug somewhere in the Scene module?
print "\n\nFrame: %d" % f
# FIXME To get the correct camera position we have to use +1 here.
# Is there a bug somewhere in the Scene module?
- context.currentFrame(f+1)
+ context.currentFrame(f + 1)
self.cameraObj = self._SCENE.objects.camera
# Use some temporary workspace, a full copy of the scene
self.cameraObj = self._SCENE.objects.camera
# Use some temporary workspace, a full copy of the scene
ctx = inputScene.getRenderingContext()
ctx.currentFrame(f)
ctx = inputScene.getRenderingContext()
ctx.currentFrame(f)
# Get a projector for this camera.
# NOTE: the projector wants object in world coordinates,
# so we should remember to apply modelview transformations
# Get a projector for this camera.
# NOTE: the projector wants object in world coordinates,
# so we should remember to apply modelview transformations
try:
renderedScene = self.doRenderScene(inputScene)
try:
renderedScene = self.doRenderScene(inputScene)
print "There was an error! Aborting."
import traceback
print traceback.print_exc()
print "There was an error! Aborting."
import traceback
print traceback.print_exc()
return
outputWriter.printCanvas(renderedScene,
return
outputWriter.printCanvas(renderedScene,
- doPrintPolygons = config.polygons['SHOW'],
- doPrintEdges = config.edges['SHOW'],
- showHiddenEdges = config.edges['SHOW_HIDDEN'])
+ doPrintPolygons=config.polygons['SHOW'],
+ doPrintEdges=config.edges['SHOW'],
+ showHiddenEdges=config.edges['SHOW_HIDDEN'])
# delete the rendered scene
self._SCENE.makeCurrent()
# delete the rendered scene
self._SCENE.makeCurrent()
print "Done!"
context.currentFrame(origCurrentFrame)
print "Done!"
context.currentFrame(origCurrentFrame)
def doRenderScene(self, workScene):
"""Control the rendering process.
def doRenderScene(self, workScene):
"""Control the rendering process.
Objects = workScene.objects
print "Total Objects: %d" % len(Objects)
Objects = workScene.objects
print "Total Objects: %d" % len(Objects)
- for i,obj in enumerate(Objects):
+ for i, obj in enumerate(Objects):
print "\n\n-------"
print "Rendering Object: %d" % i
print "\n\n-------"
print "Rendering Object: %d" % i
self._doBackFaceCulling(mesh)
self._doBackFaceCulling(mesh)
# When doing HSR with NEWELL we may want to flip all normals
# toward the viewer
if config.polygons['HSR'] == "NEWELL":
for f in mesh.faces:
# When doing HSR with NEWELL we may want to flip all normals
# toward the viewer
if config.polygons['HSR'] == "NEWELL":
for f in mesh.faces:
mesh.flipNormals()
for f in mesh.faces:
f.sel = 1
mesh.flipNormals()
for f in mesh.faces:
f.sel = 1
"""
return Vector(self.cameraObj.matrix[2]).resize3D()
"""
return Vector(self.cameraObj.matrix[2]).resize3D()
# Faces methods
def _isFaceVisible(self, face):
# Faces methods
def _isFaceVisible(self, face):
# the difference between the camera position and one point of
# the face, we choose the farthest point from the camera.
if self.cameraObj.data.getType() == 0:
# the difference between the camera position and one point of
# the face, we choose the farthest point from the camera.
if self.cameraObj.data.getType() == 0:
- vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
+ vv = max([((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face])
# if d > 0 the face is visible from the camera
d = view_vect * normal
# if d > 0 the face is visible from the camera
d = view_vect * normal
# Scene methods
def _filterHiddenObjects(self, scene):
# Scene methods
def _filterHiddenObjects(self, scene):
- visible_obj_list = [ obj for obj in Objects if
- set(obj.layers).intersection(set(scene.getLayers())) ]
+ visible_obj_list = [obj for obj in Objects if
+ set(obj.layers).intersection(set(scene.getLayers()))]
for o in Objects:
if o not in visible_obj_list:
for o in Objects:
if o not in visible_obj_list:
def _buildLightSetup(self, scene):
# Get the list of lighting sources
obj_lst = scene.objects
def _buildLightSetup(self, scene):
# Get the list of lighting sources
obj_lst = scene.objects
- self.lights = [ o for o in obj_lst if o.getType() == 'Lamp' ]
+ self.lights = [o for o in obj_lst if o.getType() == 'Lamp']
# When there are no lights we use a default lighting source
# that have the same position of the camera
# When there are no lights we use a default lighting source
# that have the same position of the camera
lobj.link(l)
self.lights.append(lobj)
lobj.link(l)
self.lights.append(lobj)
def _doSceneClipping(self, scene):
"""Clip whole objects against the View Frustum.
def _doSceneClipping(self, scene):
"""Clip whole objects against the View Frustum.
view_vect = self._cameraViewVector()
near = self.cameraObj.data.clipStart
view_vect = self._cameraViewVector()
near = self.cameraObj.data.clipStart
- far = self.cameraObj.data.clipEnd
+ far = self.cameraObj.data.clipEnd
- aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1])
- fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
- fovy = fovy * 360.0/pi
+ aspect = float(self.canvasRatio[0]) / float(self.canvasRatio[1])
+ fovy = atan(0.5 / aspect / (self.cameraObj.data.lens / 32))
+ fovy = fovy * 360.0 / pi
Objects = scene.objects
for o in Objects:
Objects = scene.objects
for o in Objects:
- if o.getType() != 'Mesh': continue;
+ if o.getType() != 'Mesh':
+ continue
"""
obj_vect = Vector(cam_pos) - self._getObjPosition(o)
"""
obj_vect = Vector(cam_pos) - self._getObjPosition(o)
if points_outside == len(bb):
scene.objects.unlink(o)
if points_outside == len(bb):
scene.objects.unlink(o)
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
"""
def _doConvertGeometricObjsToMesh(self, scene):
"""Convert all "geometric" objects to mesh ones.
"""
- objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
+ objList = [o for o in Objects if o.getType() in geometricObjTypes]
for obj in objList:
old_obj = obj
obj = self._convertToRawMeshObj(obj)
scene.objects.link(obj)
scene.objects.unlink(old_obj)
for obj in objList:
old_obj = obj
obj = self._convertToRawMeshObj(obj)
scene.objects.link(obj)
scene.objects.unlink(old_obj)
# XXX Workaround for Text and Curve which have some normals
# inverted when they are converted to Mesh, REMOVE that when
# blender will fix that!!
if old_obj.getType() in ['Curve', 'Text']:
me = obj.getData(mesh=1)
# XXX Workaround for Text and Curve which have some normals
# inverted when they are converted to Mesh, REMOVE that when
# blender will fix that!!
if old_obj.getType() in ['Curve', 'Text']:
me = obj.getData(mesh=1)
- for f in me.faces: f.sel = 1;
- for v in me.verts: v.sel = 1;
+
+ for f in me.faces:
+ f.sel = 1
+ for v in me.verts:
+ v.sel = 1
+
me.remDoubles(0)
me.triangleToQuad()
me.recalcNormals()
me.update()
me.remDoubles(0)
me.triangleToQuad()
me.recalcNormals()
me.update()
def _doSceneDepthSorting(self, scene):
"""Sort objects in the scene.
def _doSceneDepthSorting(self, scene):
"""Sort objects in the scene.
# nearest to the camera should be drawn as last.
by_nearest_bbox_point = (lambda o1, o2:
(o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
# nearest to the camera should be drawn as last.
by_nearest_bbox_point = (lambda o1, o2:
(o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
- cmp( min( [(Vector(p) - Vector(c)).length for p in o1.getBoundBox()] ),
- min( [(Vector(p) - Vector(c)).length for p in o2.getBoundBox()] )
+ cmp(min([(Vector(p) - Vector(c)).length for p in o1.getBoundBox()]),
+ min([(Vector(p) - Vector(c)).length for p in o2.getBoundBox()])
Objects = list(scene.objects)
#Objects.sort(by_obj_center_pos)
Objects = list(scene.objects)
#Objects.sort(by_obj_center_pos)
"""Merge all the Mesh Objects in a scene into a single Mesh Object.
"""
"""Merge all the Mesh Objects in a scene into a single Mesh Object.
"""
- oList = [o for o in scene.objects if o.getType()=='Mesh']
+ oList = [o for o in scene.objects if o.getType() == 'Mesh']
# FIXME: Object.join() do not work if the list contains 1 object
if len(oList) == 1:
# FIXME: Object.join() do not work if the list contains 1 object
if len(oList) == 1:
# Per object/mesh methods
def _convertToRawMeshObj(self, object):
"""Convert geometry based object to a mesh object.
"""
# Per object/mesh methods
def _convertToRawMeshObj(self, object):
"""Convert geometry based object to a mesh object.
"""
- me = Mesh.New('RawMesh_'+object.name)
+ me = Mesh.New('RawMesh_' + object.name)
me.getFromObject(object.name)
me.getFromObject(object.name)
- newObject = Object.New('Mesh', 'RawMesh_'+object.name)
+ newObject = Object.New('Mesh', 'RawMesh_' + object.name)
newObject.link(me)
# If the object has no materials set a default material
newObject.link(me)
# If the object has no materials set a default material
elif mat.getMode() & Material.Modes['SHADELESS']:
I = mat.getRGBCol()
# Convert to a value between 0 and 255
elif mat.getMode() & Material.Modes['SHADELESS']:
I = mat.getRGBCol()
# Convert to a value between 0 and 255
- tmp_col = [ int(c * 255.0) for c in I]
+ tmp_col = [int(c * 255.0) for c in I]
for c in f.col:
c.r = tmp_col[0]
for c in f.col:
c.r = tmp_col[0]
# do vertex color calculation
TotDiffSpec = Vector([0.0, 0.0, 0.0])
# do vertex color calculation
TotDiffSpec = Vector([0.0, 0.0, 0.0])
N = Vector(f.no).normalize()
if config.polygons['SHADING'] == 'TOON':
N = Vector(f.no).normalize()
if config.polygons['SHADING'] == 'TOON':
- NL = ShadingUtils.toonShading(N*L)
+ NL = ShadingUtils.toonShading(N * L)
# Should we use NL instead of (N*L) here?
# Should we use NL instead of (N*L) here?
+ R = 2 * (N * L) * N - L
Idiff = Ip * kd * max(0, NL)
Idiff = Ip * kd * max(0, NL)
# Specular component
ks = mat.getSpec() * Vector(mat.getSpecCol())
ns = mat.getHardness()
# Specular component
ks = mat.getSpec() * Vector(mat.getSpecCol())
ns = mat.getHardness()
- Ispec = Ip * ks * pow(max(0, (V*R)), ns)
-
- TotDiffSpec += (Idiff+Ispec)
+ Ispec = Ip * ks * pow(max(0, (V * R)), ns)
+ TotDiffSpec += (Idiff + Ispec)
# Ambient component
Iamb = Vector(Blender.World.Get()[0].getAmb())
ka = mat.getAmb()
# Emissive component (convert to a triplet)
# Ambient component
Iamb = Vector(Blender.World.Get()[0].getAmb())
ka = mat.getAmb()
# Emissive component (convert to a triplet)
- ki = Vector([mat.getEmit()]*3)
+ ki = Vector([mat.getEmit()] * 3)
#I = ki + Iamb + (Idiff + Ispec)
I = ki + (ka * Iamb) + TotDiffSpec
#I = ki + Iamb + (Idiff + Ispec)
I = ki + (ka * Iamb) + TotDiffSpec
# Set Alpha component
I = list(I)
I.append(mat.getAlpha())
# Clamp I values between 0 and 1
# Set Alpha component
I = list(I)
I.append(mat.getAlpha())
# Clamp I values between 0 and 1
- I = [ min(c, 1) for c in I]
- I = [ max(0, c) for c in I]
+ I = [min(c, 1) for c in I]
+ I = [max(0, c) for c in I]
# Convert to a value between 0 and 255
# Convert to a value between 0 and 255
- tmp_col = [ int(c * 255.0) for c in I]
+ tmp_col = [int(c * 255.0) for c in I]
for c in f.col:
c.r = tmp_col[0]
for c in f.col:
c.r = tmp_col[0]
# TODO: Do this test before, it is more efficient
points_outside = 0
for v in f:
# TODO: Do this test before, it is more efficient
points_outside = 0
for v in f:
- if abs(v[0]) > 1-EPS or abs(v[1]) > 1-EPS or abs(v[2]) > 1-EPS:
+ if abs(v[0]) > (1 - EPS) or abs(v[1]) > (1 - EPS) or abs(v[2]) > (1 - EPS):
points_outside += 1
if points_outside != len(f):
points_outside += 1
if points_outside != len(f):
clippedfaces.append(nf)
facelist = clippedfaces[:]
clippedfaces.append(nf)
facelist = clippedfaces[:]
nmesh.faces = facelist
nmesh.update()
nmesh.faces = facelist
nmesh.update()
# HSR routines
def __simpleDepthSort(self, mesh):
"""Sort faces by the furthest vertex.
# HSR routines
def __simpleDepthSort(self, mesh):
"""Sort faces by the furthest vertex.
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
# The sorting requires circa n*log(n) steps
n = len(mesh.faces)
- progress.setActivity("HSR: Painter", n*log(n))
+ progress.setActivity("HSR: Painter", n * log(n))
by_furthest_z = (lambda f1, f2: progress.update() and
by_furthest_z = (lambda f1, f2: progress.update() and
- cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
+ cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2]) + EPS)
)
# FIXME: using NMesh to sort faces. We should avoid that!
)
# FIXME: using NMesh to sort faces. We should avoid that!
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
def __newellDepthSort(self, mesh):
"""Newell's depth sorting.
# print "NON QUAD??"
# f.sel = 1
# print "NON QUAD??"
# f.sel = 1
# Now reselect all faces
for f in mesh.faces:
f.sel = 1
# Now reselect all faces
for f in mesh.faces:
f.sel = 1
facelist = nmesh.faces[:]
maplist = []
facelist = nmesh.faces[:]
maplist = []
# The steps are _at_least_ equal to len(facelist), we do not count the
# feces coming out from splitting!!
progress.setActivity("HSR: Newell", len(facelist))
#progress.setQuiet(True)
# The steps are _at_least_ equal to len(facelist), we do not count the
# feces coming out from splitting!!
progress.setActivity("HSR: Newell", len(facelist))
#progress.setQuiet(True)
while len(facelist):
debug("\n----------------------\n")
debug("len(facelits): %d\n" % len(facelist))
while len(facelist):
debug("\n----------------------\n")
debug("len(facelits): %d\n" % len(facelist))
debug("met a marked face\n")
continue
debug("met a marked face\n")
continue
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
#notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
# Test 1: X extent overlapping
xP = [v.co[0] for v in P.v]
xQ = [v.co[0] for v in Q.v]
#notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
- notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
+ notXOverlap = min(xQ) >= (max(xP) - EPS) or min(xP) >= (max(xQ) - EPS)
if notXOverlap:
debug("\nTest 1\n")
debug("NOT X OVERLAP!\n")
continue
if notXOverlap:
debug("\nTest 1\n")
debug("NOT X OVERLAP!\n")
continue
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
# Test 2: Y extent Overlapping
yP = [v.co[1] for v in P.v]
yQ = [v.co[1] for v in Q.v]
- #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
- notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
+ #notYOverlap = max(yP) <= min(yQ) or max(yQ) <= min(yP)
+ notYOverlap = min(yQ) >= (max(yP) - EPS) or min(yP) >= (max(yQ) - EPS)
if notYOverlap:
debug("\nTest 2\n")
debug("NOT Y OVERLAP!\n")
continue
if notYOverlap:
debug("\nTest 2\n")
debug("NOT Y OVERLAP!\n")
continue
# Test 3: P vertices are all behind the plane of Q
n = 0
for Pi in P:
# Test 3: P vertices are all behind the plane of Q
n = 0
for Pi in P:
debug("P BEHIND Q!\n")
continue
debug("P BEHIND Q!\n")
continue
# Test 4: Q vertices in front of the plane of P
n = 0
for Qi in Q:
# Test 4: Q vertices in front of the plane of P
n = 0
for Qi in Q:
debug("Q IN FRONT OF P!\n")
continue
debug("Q IN FRONT OF P!\n")
continue
# Test 5: Check if projections of polygons effectively overlap,
# in previous tests we checked only bounding boxes.
#if not projectionsOverlap(P, Q):
# Test 5: Check if projections of polygons effectively overlap,
# in previous tests we checked only bounding boxes.
#if not projectionsOverlap(P, Q):
- if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
+ if not (HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
debug("\nTest 5\n")
debug("Projections do not overlap!\n")
continue
debug("\nTest 5\n")
debug("Projections do not overlap!\n")
continue
# The question now is: Does Q obscure P?
# The question now is: Does Q obscure P?
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
# Test 3bis: Q vertices are all behind the plane of P
n = 0
for Qi in Q:
debug("\nTest 3bis\n")
debug("Q BEHIND P!\n")
debug("\nTest 3bis\n")
debug("Q BEHIND P!\n")
# Test 4bis: P vertices in front of the plane of Q
n = 0
for Pi in P:
# Test 4bis: P vertices in front of the plane of Q
n = 0
for Pi in P:
debug("\nTest 4bis\n")
debug("P IN FRONT OF Q!\n")
debug("\nTest 4bis\n")
debug("P IN FRONT OF Q!\n")
# We don't even know if Q does obscure P, so they should
# intersect each other, split one of them in two parts.
if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
# We don't even know if Q does obscure P, so they should
# intersect each other, split one of them in two parts.
if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
if split_done == 0 and face_marked == 0:
facelist.remove(P)
maplist.append(P)
if split_done == 0 and face_marked == 0:
facelist.remove(P)
maplist.append(P)
- dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg")
+ dumpfaces(maplist, "dump" + str(len(maplist)).zfill(4) + ".svg")
progress.update()
if len(facelist) == 870:
dumpfaces([P, Q], "loopdebug.svg")
progress.update()
if len(facelist) == 870:
dumpfaces([P, Q], "loopdebug.svg")
#if facelist == None:
# maplist = [P, Q]
# print [v.co for v in P]
#if facelist == None:
# maplist = [P, Q]
# print [v.co for v in P]
# end of while len(facelist)
# end of while len(facelist)
nmesh.faces = maplist
#for f in nmesh.faces:
# f.sel = 1
nmesh.update()
nmesh.faces = maplist
#for f in nmesh.faces:
# f.sel = 1
nmesh.update()
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.
"""
def _doHiddenSurfaceRemoval(self, mesh):
"""Do HSR for the given mesh.
"""
print "\nUsing the Newell's algorithm for HSR."
self.__newellDepthSort(mesh)
print "\nUsing the Newell's algorithm for HSR."
self.__newellDepthSort(mesh)
def _doEdgesStyle(self, mesh, edgestyleSelect):
"""Process Mesh Edges accroding to a given selection style.
def _doEdgesStyle(self, mesh, edgestyleSelect):
"""Process Mesh Edges accroding to a given selection style.
edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
- for i,edge_faces in enumerate(edge_cache):
+ for i, edge_faces in enumerate(edge_cache):
mesh.edges[i].sel = 0
if edgestyleSelect(edge_faces):
mesh.edges[i].sel = 1
mesh.edges[i].sel = 0
if edgestyleSelect(edge_faces):
mesh.edges[i].sel = 1
#
# ---------------------------------------------------------------------
#
# ---------------------------------------------------------------------
from Blender import BGL, Draw
from Blender.BGL import *
from Blender import BGL, Draw
from Blender.BGL import *
class GUI:
def _init():
# Output Format menu
output_format = config.output['FORMAT']
class GUI:
def _init():
# Output Format menu
output_format = config.output['FORMAT']
- default_value = outputWriters.keys().index(output_format)+1
+ default_value = outputWriters.keys().index(output_format) + 1
GUI.outFormatMenu = Draw.Create(default_value)
GUI.evtOutFormatMenu = 0
GUI.outFormatMenu = Draw.Create(default_value)
GUI.evtOutFormatMenu = 0
# Shading Style menu
shading_style = config.polygons['SHADING']
# Shading Style menu
shading_style = config.polygons['SHADING']
- default_value = shadingStyles.keys().index(shading_style)+1
+ default_value = shadingStyles.keys().index(shading_style) + 1
GUI.shadingStyleMenu = Draw.Create(default_value)
GUI.evtShadingStyleMenu = 21
GUI.shadingStyleMenu = Draw.Create(default_value)
GUI.evtShadingStyleMenu = 21
# Edge Style menu
edge_style = config.edges['STYLE']
# Edge Style menu
edge_style = config.edges['STYLE']
- default_value = edgeStyles.keys().index(edge_style)+1
+ default_value = edgeStyles.keys().index(edge_style) + 1
GUI.edgeStyleMenu = Draw.Create(default_value)
GUI.evtEdgeStyleMenu = 6
GUI.edgeStyleMenu = Draw.Create(default_value)
GUI.evtEdgeStyleMenu = 6
# Edge Color Picker
c = config.edges['COLOR']
# Edge Color Picker
c = config.edges['COLOR']
- GUI.edgeColorPicker = Draw.Create(c[0]/255.0, c[1]/255.0, c[2]/255.0)
+ GUI.edgeColorPicker = Draw.Create(c[0] / 255.0, c[1] / 255.0, c[2] / 255.0)
GUI.evtEdgeColorPicker = 71
# Render Button
GUI.evtEdgeColorPicker = 71
# Render Button
Draw.Text("Select the output Format:")
outMenuStruct = "Output Format %t"
for t in outputWriters.keys():
Draw.Text("Select the output Format:")
outMenuStruct = "Output Format %t"
for t in outputWriters.keys():
- outMenuStruct = outMenuStruct + "|%s" % t
+ outMenuStruct = outMenuStruct + "|%s" % t
GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu,
GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu,
- 10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
+ 10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
# Animation toggle
GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle,
# Animation toggle
GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle,
- 10, 260, 160, 18, GUI.animToggle.val,
- "Toggle rendering of animations")
+ 10, 260, 160, 18, GUI.animToggle.val,
+ "Toggle rendering of animations")
# Join Objects toggle
GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle,
# Join Objects toggle
GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle,
- 10, 235, 160, 18, GUI.joinObjsToggle.val,
- "Join objects in the rendered file")
+ 10, 235, 160, 18, GUI.joinObjsToggle.val,
+ "Join objects in the rendered file")
- Draw.Button("Render", GUI.evtRenderButton, 10, 210-25, 75, 25+18,
- "Start Rendering")
- Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!")
+ Draw.Button("Render", GUI.evtRenderButton, 10, 210 - 25, 75, 25 + 18,
+ "Start Rendering")
+ Draw.Button("Exit", GUI.evtExitButton, 95, 210 - 25, 75, 25 + 18, "Exit!")
- Draw.Button("Save settings as default", GUI.evtSaveDefaultButton, 10, 210-50, 160, 18,
+ Draw.Button("Save settings as default", GUI.evtSaveDefaultButton, 10, 210 - 50, 160, 18,
"Save settings as default")
# Rendering Styles
"Save settings as default")
# Rendering Styles
# Render Polygons
GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle,
# Render Polygons
GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle,
- 200, 285, 160, 18, GUI.polygonsToggle.val,
- "Render filled polygons")
+ 200, 285, 160, 18, GUI.polygonsToggle.val,
+ "Render filled polygons")
if GUI.polygonsToggle.val == 1:
if GUI.polygonsToggle.val == 1:
for t in shadingStyles.keys():
shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower()
GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu,
for t in shadingStyles.keys():
shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower()
GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu,
- 200, 260, 160, 18, GUI.shadingStyleMenu.val,
- "Choose the shading style")
-
+ 200, 260, 160, 18, GUI.shadingStyleMenu.val,
+ "Choose the shading style")
# Render Edges
GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle,
# Render Edges
GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle,
- 200, 235, 160, 18, GUI.showEdgesToggle.val,
- "Render polygon edges")
+ 200, 235, 160, 18, GUI.showEdgesToggle.val,
+ "Render polygon edges")
if GUI.showEdgesToggle.val == 1:
if GUI.showEdgesToggle.val == 1:
for t in edgeStyles.keys():
edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower()
GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu,
for t in edgeStyles.keys():
edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower()
GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu,
- 200, 210, 160, 18, GUI.edgeStyleMenu.val,
- "Choose the edge style")
+ 200, 210, 160, 18, GUI.edgeStyleMenu.val,
+ "Choose the edge style")
# Edge size
GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider,
# Edge size
GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider,
- 200, 185, 140, 18, GUI.edgeWidthSlider.val,
- 0.0, 10.0, 0, "Change Edge Width")
+ 200, 185, 140, 18, GUI.edgeWidthSlider.val,
+ 0.0, 10.0, 0, "Change Edge Width")
# Edge Color
GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker,
# Edge Color
GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker,
- 342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
+ 342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
# Show Hidden Edges
GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges",
# Show Hidden Edges
GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges",
- GUI.evtShowHiddenEdgesToggle,
- 200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
- "Render hidden edges as dashed lines")
-
+ GUI.evtShowHiddenEdgesToggle,
+ 200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
+ "Render hidden edges as dashed lines")
elif evt == GUI.evtOutFormatMenu:
i = GUI.outFormatMenu.val - 1
elif evt == GUI.evtOutFormatMenu:
i = GUI.outFormatMenu.val - 1
- config.output['FORMAT']= outputWriters.keys()[i]
+ config.output['FORMAT'] = outputWriters.keys()[i]
# Set the new output file
global outputfile
outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
# Set the new output file
global outputfile
outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val)
elif evt == GUI.evtEdgeColorPicker:
config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val)
elif evt == GUI.evtEdgeColorPicker:
- config.edges['COLOR'] = [int(c*255.0) for c in GUI.edgeColorPicker.val]
+ config.edges['COLOR'] = [int(c * 255.0) for c in GUI.edgeColorPicker.val]
elif evt == GUI.evtRenderButton:
label = "Save %s" % config.output['FORMAT']
elif evt == GUI.evtRenderButton:
label = "Save %s" % config.output['FORMAT']
button_event = staticmethod(button_event)
conf_debug = staticmethod(conf_debug)
button_event = staticmethod(button_event)
conf_debug = staticmethod(conf_debug)
# A wrapper function for the vectorizing process
def vectorize(filename):
"""The vectorizing process is as follows:
# A wrapper function for the vectorizing process
def vectorize(filename):
"""The vectorizing process is as follows:
from Blender import Window
editmode = Window.EditMode()
from Blender import Window
editmode = Window.EditMode()
- if editmode: Window.EditMode(0)
+ if editmode:
+ Window.EditMode(0)
actualWriter = outputWriters[config.output['FORMAT']]
writer = actualWriter(filename)
actualWriter = outputWriters[config.output['FORMAT']]
writer = actualWriter(filename)
renderer = Renderer()
renderer.doRendering(writer, config.output['ANIMATION'])
renderer = Renderer()
renderer.doRendering(writer, config.output['ANIMATION'])
- if editmode: Window.EditMode(1)
-
+ if editmode:
+ Window.EditMode(1)