6 Tooltip: 'Vector Rendering Method script'
9 __author__ = "Antonio Ospite"
10 __url__ = ["http://projects.blender.org/projects/vrm"]
11 __version__ = "0.3.beta"
14 Render the scene and save the result in vector format.
17 # ---------------------------------------------------------------------
18 # Copyright (c) 2006 Antonio Ospite
20 # This program is free software; you can redistribute it and/or modify
21 # it under the terms of the GNU General Public License as published by
22 # the Free Software Foundation; either version 2 of the License, or
23 # (at your option) any later version.
25 # This program is distributed in the hope that it will be useful,
26 # but WITHOUT ANY WARRANTY; without even the implied warranty of
27 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 # GNU General Public License for more details.
30 # You should have received a copy of the GNU General Public License
31 # along with this program; if not, write to the Free Software
32 # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
34 # ---------------------------------------------------------------------
37 # Thanks to Emilio Aguirre for S2flender from which I took inspirations :)
38 # Thanks to Nikola Radovanovic, the author of the original VRM script,
39 # the code you read here has been rewritten _almost_ entirely
40 # from scratch but Nikola gave me the idea, so I thank him publicly.
42 # ---------------------------------------------------------------------
44 # Things TODO for a next release:
45 # - FIX the issue with negative scales in object tranformations!
46 # - Use a better depth sorting algorithm
47 # - Review how selections are made (this script uses selection states of
48 # primitives to represent visibility infos)
49 # - Use a data structure other than Mesh to represent the 2D image?
50 # Think to a way to merge (adjacent) polygons that have the same color.
51 # Or a way to use paths for silhouettes and contours.
52 # - Consider SMIL for animation handling instead of ECMA Script? (Firefox do
53 # not support SMIL for animations)
54 # - Switch to the Mesh structure, should be considerably faster
55 # (partially done, but with Mesh we cannot sort faces, yet)
56 # - Implement Edge Styles (silhouettes, contours, etc.) (partially done).
57 # - Implement Shading Styles? (partially done, to make more flexible).
58 # - Add Vector Writers other than SVG.
59 # - set the background color!
60 # - Check memory use!!
62 # ---------------------------------------------------------------------
67 # * First release after code restucturing.
68 # Now the script offers a useful set of functionalities
69 # and it can render animations, too.
70 # * Optimization in Renderer.doEdgeStyle(), build a topology cache
71 # so to speed up the lookup of adjacent faces of an edge.
73 # * The SVG output is now SVG 1.0 valid.
74 # Checked with: http://jiggles.w3.org/svgvalidator/ValidatorURI.html
75 # * Progress indicator during HSR.
76 # * Initial SWF output support (using ming)
77 # * Fixed a bug in the animation code, now the projection matrix is
78 # recalculated at each frame!
79 # * PDF output (using reportlab)
80 # * Fixed another problem in the animation code the current frame was off
81 # by one in the case of camera movement.
82 # * Use fps as specified in blender when VectorWriter handles animation
83 # * Remove the real file opening in the abstract VectorWriter
84 # * View frustum clipping
85 # * Scene clipping done using bounding box instead of object center
87 # ---------------------------------------------------------------------
90 from Blender import Scene, Object, Mesh, NMesh, Material, Lamp, Camera, Window
91 from Blender.Mathutils import *
98 # We use a global progress Indicator Object
102 # Some global settings
106 polygons['SHOW'] = True
107 polygons['SHADING'] = 'FLAT' # FLAT or TOON
108 polygons['HSR'] = 'NEWELL' # PAINTER or NEWELL
109 # Hidden to the user for now
110 polygons['EXPANSION_TRICK'] = True
112 polygons['TOON_LEVELS'] = 2
115 edges['SHOW'] = False
116 edges['SHOW_HIDDEN'] = False
117 edges['STYLE'] = 'MESH' # MESH or SILHOUETTE
119 edges['COLOR'] = [0, 0, 0]
122 output['FORMAT'] = 'SVG'
123 output['ANIMATION'] = False
124 output['JOIN_OBJECTS'] = True
130 def dumpfaces(flist, filename):
131 """Dump a single face to a file.
142 writerobj = SVGVectorWriter(filename)
145 writerobj._printPolygons(m)
151 sys.stderr.write(msg)
154 return (abs(v1[0]-v2[0]) < EPS and
155 abs(v1[1]-v2[1]) < EPS )
156 by_furthest_z = (lambda f1, f2:
157 cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
172 # ---------------------------------------------------------------------
176 # ---------------------------------------------------------------------
182 """A utility class for HSR processing.
185 def is_nonplanar_quad(face):
186 """Determine if a quad is non-planar.
188 From: http://mathworld.wolfram.com/Coplanar.html
190 Geometric objects lying in a common plane are said to be coplanar.
191 Three noncollinear points determine a plane and so are trivially coplanar.
192 Four points are coplanar iff the volume of the tetrahedron defined by them is
198 | x_4 y_4 z_4 1 | == 0
200 Coplanarity is equivalent to the statement that the pair of lines
201 determined by the four points are not skew, and can be equivalently stated
202 in vector form as (x_3-x_1).[(x_2-x_1)x(x_4-x_3)]==0.
204 An arbitrary number of n points x_1, ..., x_n can be tested for
205 coplanarity by finding the point-plane distances of the points
206 x_4, ..., x_n from the plane determined by (x_1,x_2,x_3)
207 and checking if they are all zero.
208 If so, the points are all coplanar.
210 We here check only for 4-point complanarity.
216 print "ERROR a mesh in Blender can't have more than 4 vertices or less than 3"
220 # three points must be complanar
223 x1 = Vector(face[0].co)
224 x2 = Vector(face[1].co)
225 x3 = Vector(face[2].co)
226 x4 = Vector(face[3].co)
228 v = (x3-x1) * CrossVecs((x2-x1), (x4-x3))
234 is_nonplanar_quad = staticmethod(is_nonplanar_quad)
236 def pointInPolygon(poly, v):
239 pointInPolygon = staticmethod(pointInPolygon)
241 def edgeIntersection(s1, s2, do_perturbate=False):
243 (x1, y1) = s1[0].co[0], s1[0].co[1]
244 (x2, y2) = s1[1].co[0], s1[1].co[1]
246 (x3, y3) = s2[0].co[0], s2[0].co[1]
247 (x4, y4) = s2[1].co[0], s2[1].co[1]
255 # calculate delta values (vector components)
264 C = dy2 * dx1 - dx2 * dy1 # /* cross product */
265 if C == 0: #/* parallel */
268 dx3 = x1 - x3 # /* combined origin offset vector */
271 a1 = (dy3 * dx2 - dx3 * dy2) / C;
272 a2 = (dy3 * dx1 - dx3 * dy1) / C;
274 # check for degeneracies
276 #print_debug(str(a1)+"\n")
277 #print_debug(str(a2)+"\n\n")
279 if (a1 == 0 or a1 == 1 or a2 == 0 or a2 == 1):
280 # Intersection on boundaries, we consider the point external?
283 elif (a1>0.0 and a1<1.0 and a2>0.0 and a2<1.0): # /* lines cross */
289 return (NMesh.Vert(x, y, z), a1, a2)
292 # lines have intersections but not those segments
295 edgeIntersection = staticmethod(edgeIntersection)
297 def isVertInside(self, v):
301 # Create point at infinity
302 point_at_infinity = NMesh.Vert(-INF, v.co[1], -INF)
304 for i in range(len(self.v)):
305 s1 = (point_at_infinity, v)
306 s2 = (self.v[i-1], self.v[i])
308 if EQ(v.co, s2[0].co) or EQ(v.co, s2[1].co):
311 if HSR.edgeIntersection(s1, s2, do_perturbate=False):
315 if winding_number % 2 == 0 :
322 isVertInside = staticmethod(isVertInside)
326 return ((b[0] - a[0]) * (c[1] - a[1]) -
327 (b[1] - a[1]) * (c[0] - a[0]) )
329 det = staticmethod(det)
331 def pointInPolygon(q, P):
334 point_at_infinity = NMesh.Vert(-INF, q.co[1], -INF)
338 for i in range(len(P.v)):
341 if (det(q.co, point_at_infinity.co, p0.co)<0) != (det(q.co, point_at_infinity.co, p1.co)<0):
342 if det(p0.co, p1.co, q.co) == 0 :
345 elif (det(p0.co, p1.co, q.co)<0) != (det(p0.co, p1.co, point_at_infinity.co)<0):
350 pointInPolygon = staticmethod(pointInPolygon)
352 def projectionsOverlap(f1, f2):
353 """ If you have nonconvex, but still simple polygons, an acceptable method
354 is to iterate over all vertices and perform the Point-in-polygon test[1].
355 The advantage of this method is that you can compute the exact
356 intersection point and collision normal that you will need to simulate
357 collision. When you have the point that lies inside the other polygon, you
358 just iterate over all edges of the second polygon again and look for edge
359 intersections. Note that this method detects collsion when it already
360 happens. This algorithm is fast enough to perform it hundreds of times per
363 for i in range(len(f1.v)):
366 # If a point of f1 in inside f2, there is an overlap!
368 #if HSR.isVertInside(f2, v1):
369 if HSR.pointInPolygon(v1, f2):
372 # If not the polygon can be ovelap as well, so we check for
373 # intersection between an edge of f1 and all the edges of f2
377 for j in range(len(f2.v)):
384 intrs = HSR.edgeIntersection(e1, e2)
386 #print_debug(str(v0.co) + " " + str(v1.co) + " " +
387 # str(v2.co) + " " + str(v3.co) )
388 #print_debug("\nIntersection\n")
394 projectionsOverlap = staticmethod(projectionsOverlap)
396 def midpoint(p1, p2):
397 """Return the midpoint of two vertices.
399 m = MidpointVecs(Vector(p1), Vector(p2))
400 mv = NMesh.Vert(m[0], m[1], m[2])
404 midpoint = staticmethod(midpoint)
406 def facesplit(P, Q, facelist, nmesh):
407 """Split P or Q according to the strategy illustrated in the Newell's
411 by_furthest_z = (lambda f1, f2:
412 cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
415 # Choose if split P on Q plane or vice-versa
419 d = HSR.Distance(Vector(Pi), Q)
422 pIntersectQ = (n != len(P))
426 d = HSR.Distance(Vector(Qi), P)
429 qIntersectP = (n != len(Q))
433 # 1. If parts of P lie in both half-spaces of Q
434 # then splice P in two with the plane of Q
440 newfaces = HSR.splitOn(plane, f)
442 # 2. Else if parts of Q lie in both half-space of P
443 # then splice Q in two with the plane of P
444 if qIntersectP and newfaces == None:
449 newfaces = HSR.splitOn(plane, f)
452 # 3. Else slice P in half through the mid-point of
453 # the longest pair of opposite sides
456 print "We ignore P..."
463 # v1 = midpoint(f[0], f[1])
464 # v2 = midpoint(f[1], f[2])
466 # v1 = midpoint(f[0], f[1])
467 # v2 = midpoint(f[2], f[3])
468 #vec3 = (Vector(v2)+10*Vector(f.normal))
470 #v3 = NMesh.Vert(vec3[0], vec3[1], vec3[2])
472 #plane = NMesh.Face([v1, v2, v3])
474 #newfaces = splitOn(plane, f)
478 print "Big FAT problem, we weren't able to split POLYGONS!"
484 # if v not in plane and v in nmesh.verts:
485 # nmesh.verts.remove(v)
490 nf.col = [f.col[0]] * len(nf.v)
495 nmesh.verts.append(v)
496 # insert pieces in the list
501 # and resort the faces
502 facelist.sort(by_furthest_z)
503 facelist.sort(lambda f1, f2: cmp(f1.smooth, f2.smooth))
506 #print [ f.smooth for f in facelist ]
510 facesplit = staticmethod(facesplit)
512 def isOnSegment(v1, v2, p, extremes_internal=False):
513 """Check if point p is in segment v1v2.
519 # Should we consider extreme points as internal ?
521 # if p == v1 or p == v2:
522 if l1 < EPS or l2 < EPS:
523 return extremes_internal
527 # if the sum of l1 and l2 is circa l, then the point is on segment,
528 if abs(l - (l1+l2)) < EPS:
533 isOnSegment = staticmethod(isOnSegment)
535 def Distance(point, face):
536 """ Calculate the distance between a point and a face.
538 An alternative but more expensive method can be:
540 ip = Intersect(Vector(face[0]), Vector(face[1]), Vector(face[2]),
541 Vector(face.no), Vector(point), 0)
543 d = Vector(ip - point).length
545 See: http://mathworld.wolfram.com/Point-PlaneDistance.html
549 plNormal = Vector(face.no)
550 plVert0 = Vector(face.v[0])
552 d = (plVert0 * plNormal) - (p * plNormal)
554 #d = plNormal * (plVert0 - p)
556 #print "\nd: %.10f - sel: %d, %s\n" % (d, face.sel, str(point))
560 Distance = staticmethod(Distance)
564 # make one or two new faces based on a list of vertex-indices
593 makeFaces = staticmethod(makeFaces)
595 def splitOn(Q, P, return_positive_faces=True, return_negative_faces=True):
596 """Split P using the plane of Q.
597 Logic taken from the knife.py python script
600 # Check if P and Q are parallel
601 u = CrossVecs(Vector(Q.no),Vector(P.no))
607 print "PARALLEL planes!!"
611 # The final aim is to find the intersection line between P
612 # and the plane of Q, and split P along this line
616 # Calculate point-plane Distance between vertices of P and plane Q
618 for i in range(0, nP):
619 d.append(HSR.Distance(P.v[i], Q))
632 #print "d0:", d0, "d1:", d1
634 # if the vertex lies in the cutplane
636 #print "d1 On cutplane"
637 posVertList.append(V1)
638 negVertList.append(V1)
640 # if the previous vertex lies in cutplane
642 #print "d0 on Cutplane"
644 #print "d1 on positive Halfspace"
645 posVertList.append(V1)
647 #print "d1 on negative Halfspace"
648 negVertList.append(V1)
650 # if they are on the same side of the plane
652 #print "On the same half-space"
654 #print "d1 on positive Halfspace"
655 posVertList.append(V1)
657 #print "d1 on negative Halfspace"
658 negVertList.append(V1)
660 # the vertices are not on the same side of the plane, so we have an intersection
662 #print "Intersection"
664 e = Vector(V0), Vector(V1)
665 tri = Vector(Q[0]), Vector(Q[1]), Vector(Q[2])
667 inters = Intersect(tri[0], tri[1], tri[2], e[1]-e[0], e[0], 0)
672 #print "Intersection", inters
674 nv = NMesh.Vert(inters[0], inters[1], inters[2])
675 newVertList.append(nv)
677 posVertList.append(nv)
678 negVertList.append(nv)
681 posVertList.append(V1)
683 negVertList.append(V1)
687 posVertList = [ u for u in posVertList if u not in locals()['_[1]'] ]
688 negVertList = [ u for u in negVertList if u not in locals()['_[1]'] ]
691 # If vertex are all on the same half-space, return
692 #if len(posVertList) < 3:
693 # print "Problem, we created a face with less that 3 vertices??"
695 #if len(negVertList) < 3:
696 # print "Problem, we created a face with less that 3 vertices??"
699 if len(posVertList) < 3 or len(negVertList) < 3:
700 #print "RETURN NONE, SURE???"
703 if not return_positive_faces:
705 if not return_negative_faces:
708 newfaces = HSR.addNewFaces(posVertList, negVertList)
712 splitOn = staticmethod(splitOn)
714 def addNewFaces(posVertList, negVertList):
715 # Create new faces resulting from the split
717 if len(posVertList) or len(negVertList):
719 #newfaces = [posVertList] + [negVertList]
720 newfaces = ( [[ NMesh.Vert(v[0], v[1], v[2]) for v in posVertList]] +
721 [[ NMesh.Vert(v[0], v[1], v[2]) for v in negVertList]] )
725 outfaces += HSR.makeFaces(nf)
730 addNewFaces = staticmethod(addNewFaces)
733 # ---------------------------------------------------------------------
735 ## Mesh Utility class
737 # ---------------------------------------------------------------------
741 def buildEdgeFaceUsersCache(me):
743 Takes a mesh and returns a list aligned with the meshes edges.
744 Each item is a list of the faces that use the edge
745 would be the equiv for having ed.face_users as a property
747 Taken from .blender/scripts/bpymodules/BPyMesh.py,
748 thanks to ideasman_42.
751 def sorted_edge_indicies(ed):
759 face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
761 fvi= [v.index for v in f.v]# face vert idx's
762 for i in xrange(len(f)):
769 face_edges_dict[i1,i2][1].append(f)
771 face_edges= [None] * len(me.edges)
772 for ed_index, ed_faces in face_edges_dict.itervalues():
773 face_edges[ed_index]= ed_faces
777 def isMeshEdge(adjacent_faces):
780 A mesh edge is visible if _at_least_one_ of its adjacent faces is selected.
781 Note: if the edge has no adjacent faces we want to show it as well,
782 useful for "edge only" portion of objects.
785 if len(adjacent_faces) == 0:
788 selected_faces = [f for f in adjacent_faces if f.sel]
790 if len(selected_faces) != 0:
795 def isSilhouetteEdge(adjacent_faces):
796 """Silhuette selection rule.
798 An edge is a silhuette edge if it is shared by two faces with
799 different selection status or if it is a boundary edge of a selected
803 if ((len(adjacent_faces) == 1 and adjacent_faces[0].sel == 1) or
804 (len(adjacent_faces) == 2 and
805 adjacent_faces[0].sel != adjacent_faces[1].sel)
811 buildEdgeFaceUsersCache = staticmethod(buildEdgeFaceUsersCache)
812 isMeshEdge = staticmethod(isMeshEdge)
813 isSilhouetteEdge = staticmethod(isSilhouetteEdge)
816 # ---------------------------------------------------------------------
818 ## Shading Utility class
820 # ---------------------------------------------------------------------
826 def toonShadingMapSetup():
827 levels = config.polygons['TOON_LEVELS']
829 texels = 2*levels - 1
830 tmp_shademap = [0.0] + [(i)/float(texels-1) for i in xrange(1, texels-1) ] + [1.0]
836 shademap = ShadingUtils.shademap
839 shademap = ShadingUtils.toonShadingMapSetup()
842 for i in xrange(0, len(shademap)-1):
843 pivot = (shademap[i]+shademap[i+1])/2.0
848 if v < shademap[i+1]:
853 toonShadingMapSetup = staticmethod(toonShadingMapSetup)
854 toonShading = staticmethod(toonShading)
857 # ---------------------------------------------------------------------
859 ## Projections classes
861 # ---------------------------------------------------------------------
864 """Calculate the projection of an object given the camera.
866 A projector is useful to so some per-object transformation to obtain the
867 projection of an object given the camera.
869 The main method is #doProjection# see the method description for the
873 def __init__(self, cameraObj, canvasRatio):
874 """Calculate the projection matrix.
876 The projection matrix depends, in this case, on the camera settings.
877 TAKE CARE: This projector expects vertices in World Coordinates!
880 camera = cameraObj.getData()
882 aspect = float(canvasRatio[0])/float(canvasRatio[1])
883 near = camera.clipStart
886 scale = float(camera.scale)
888 fovy = atan(0.5/aspect/(camera.lens/32))
889 fovy = fovy * 360.0/pi
891 # What projection do we want?
893 mP = self._calcPerspectiveMatrix(fovy, aspect, near, far)
894 elif camera.type == 1:
895 mP = self._calcOrthoMatrix(fovy, aspect, near, far, scale)
897 # View transformation
898 cam = Matrix(cameraObj.getInverseMatrix())
903 self.projectionMatrix = mP
909 def doProjection(self, v):
910 """Project the point on the view plane.
912 Given a vertex calculate the projection using the current projection
916 # Note that we have to work on the vertex using homogeneous coordinates
917 # From blender 2.42+ we don't need to resize the vector to be 4d
918 # when applying a 4x4 matrix, but we do that anyway since we need the
919 # 4th coordinate later
920 p = self.projectionMatrix * Vector(v).resize4D()
922 # Perspective division
939 def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
940 """Return a perspective projection matrix.
943 top = near * tan(fovy * pi / 360.0)
947 x = (2.0 * near) / (right-left)
948 y = (2.0 * near) / (top-bottom)
949 a = (right+left) / (right-left)
950 b = (top+bottom) / (top - bottom)
951 c = - ((far+near) / (far-near))
952 d = - ((2*far*near)/(far-near))
958 [0.0, 0.0, -1.0, 0.0])
962 def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
963 """Return an orthogonal projection matrix.
966 # The 11 in the formula was found emiprically
967 top = near * tan(fovy * pi / 360.0) * (scale * 11)
969 left = bottom * aspect
974 tx = -((right+left)/rl)
975 ty = -((top+bottom)/tb)
979 [2.0/rl, 0.0, 0.0, tx],
980 [0.0, 2.0/tb, 0.0, ty],
981 [0.0, 0.0, 2.0/fn, tz],
982 [0.0, 0.0, 0.0, 1.0])
987 # ---------------------------------------------------------------------
989 ## Progress Indicator
991 # ---------------------------------------------------------------------
994 """A model for a progress indicator.
996 Do the progress calculation calculation and
997 the view independent stuff of a progress indicator.
999 def __init__(self, steps=0):
1005 def setSteps(self, steps):
1006 """Set the number of steps of the activity wich we want to track.
1013 def setName(self, name):
1014 """Set the name of the activity wich we want to track.
1021 def getProgress(self):
1022 return self.progress
1029 """Update the model, call this method when one step is completed.
1031 if self.progress == 100:
1035 self.progress = ( float(self.completed) / float(self.steps) ) * 100
1036 self.progress = int(self.progress)
1041 class ProgressIndicator:
1042 """An abstraction of a View for the Progress Model
1046 # Use a refresh rate so we do not show the progress at
1047 # every update, but every 'self.refresh_rate' times.
1048 self.refresh_rate = 10
1049 self.shows_counter = 0
1053 self.progressModel = None
1055 def setQuiet(self, value):
1058 def setActivity(self, name, steps):
1059 """Initialize the Model.
1061 In a future version (with subactivities-progress support) this method
1062 could only set the current activity.
1064 self.progressModel = Progress()
1065 self.progressModel.setName(name)
1066 self.progressModel.setSteps(steps)
1068 def getActivity(self):
1069 return self.progressModel
1072 """Update the model and show the actual progress.
1074 assert(self.progressModel)
1076 if self.progressModel.update():
1080 self.show(self.progressModel.getProgress(),
1081 self.progressModel.getName())
1083 # We return always True here so we can call the update() method also
1084 # from lambda funcs (putting the call in logical AND with other ops)
1087 def show(self, progress, name=""):
1088 self.shows_counter = (self.shows_counter + 1) % self.refresh_rate
1089 if self.shows_counter != 0:
1093 self.shows_counter = -1
1096 class ConsoleProgressIndicator(ProgressIndicator):
1097 """Show a progress bar on stderr, a la wget.
1100 ProgressIndicator.__init__(self)
1102 self.swirl_chars = ["-", "\\", "|", "/"]
1103 self.swirl_count = -1
1105 def show(self, progress, name):
1106 ProgressIndicator.show(self, progress, name)
1109 bar_progress = int( (progress/100.0) * bar_length )
1110 bar = ("=" * bar_progress).ljust(bar_length)
1112 self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
1113 swirl_char = self.swirl_chars[self.swirl_count]
1115 progress_bar = "%s |%s| %c %3d%%" % (name, bar, swirl_char, progress)
1117 sys.stderr.write(progress_bar+"\r")
1119 sys.stderr.write("\n")
1122 class GraphicalProgressIndicator(ProgressIndicator):
1123 """Interface to the Blender.Window.DrawProgressBar() method.
1126 ProgressIndicator.__init__(self)
1128 #self.swirl_chars = ["-", "\\", "|", "/"]
1129 # We have to use letters with the same width, for now!
1130 # Blender progress bar considers the font widths when
1131 # calculating the progress bar width.
1132 self.swirl_chars = ["\\", "/"]
1133 self.swirl_count = -1
1135 def show(self, progress, name):
1136 ProgressIndicator.show(self, progress)
1138 self.swirl_count = (self.swirl_count+1)%len(self.swirl_chars)
1139 swirl_char = self.swirl_chars[self.swirl_count]
1141 progress_text = "%s - %c %3d%%" % (name, swirl_char, progress)
1143 # Finally draw the Progress Bar
1144 Window.WaitCursor(1) # Maybe we can move that call in the constructor?
1145 Window.DrawProgressBar(progress/100.0, progress_text)
1148 Window.DrawProgressBar(1, progress_text)
1149 Window.WaitCursor(0)
1153 # ---------------------------------------------------------------------
1155 ## 2D Object representation class
1157 # ---------------------------------------------------------------------
1159 # TODO: a class to represent the needed properties of a 2D vector image
1160 # For now just using a [N]Mesh structure.
1163 # ---------------------------------------------------------------------
1165 ## Vector Drawing Classes
1167 # ---------------------------------------------------------------------
1173 A class for printing output in a vectorial format.
1175 Given a 2D representation of the 3D scene the class is responsible to
1176 write it is a vector format.
1178 Every subclasses of VectorWriter must have at last the following public
1182 - printCanvas(self, scene,
1183 doPrintPolygons=True, doPrintEdges=False, showHiddenEdges=False):
1186 def __init__(self, fileName):
1187 """Set the output file name and other properties"""
1189 self.outputFileName = fileName
1191 context = Scene.GetCurrent().getRenderingContext()
1192 self.canvasSize = ( context.imageSizeX(), context.imageSizeY() )
1194 self.fps = context.fps
1198 self.animation = False
1205 def open(self, startFrame=1, endFrame=1):
1206 if startFrame != endFrame:
1207 self.startFrame = startFrame
1208 self.endFrame = endFrame
1209 self.animation = True
1211 print "Outputting to: ", self.outputFileName
1218 def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
1219 showHiddenEdges=False):
1220 """This is the interface for the needed printing routine.
1227 class SVGVectorWriter(VectorWriter):
1228 """A concrete class for writing SVG output.
1231 def __init__(self, fileName):
1232 """Simply call the parent Contructor.
1234 VectorWriter.__init__(self, fileName)
1243 def open(self, startFrame=1, endFrame=1):
1244 """Do some initialization operations.
1246 VectorWriter.open(self, startFrame, endFrame)
1248 self.file = open(self.outputFileName, "w")
1253 """Do some finalization operation.
1260 # remember to call the close method of the parent as last
1261 VectorWriter.close(self)
1264 def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
1265 showHiddenEdges=False):
1266 """Convert the scene representation to SVG.
1269 Objects = scene.getChildren()
1271 context = scene.getRenderingContext()
1272 framenumber = context.currentFrame()
1275 framestyle = "display:none"
1277 framestyle = "display:block"
1279 # Assign an id to this group so we can set properties on it using DOM
1280 self.file.write("<g id=\"frame%d\" style=\"%s\">\n" %
1281 (framenumber, framestyle) )
1286 if(obj.getType() != 'Mesh'):
1289 self.file.write("<g id=\"%s\">\n" % obj.getName())
1291 mesh = obj.getData(mesh=1)
1294 self._printPolygons(mesh)
1297 self._printEdges(mesh, showHiddenEdges)
1299 self.file.write("</g>\n")
1301 self.file.write("</g>\n")
1308 def _calcCanvasCoord(self, v):
1309 """Convert vertex in scene coordinates to canvas coordinates.
1312 pt = Vector([0, 0, 0])
1314 mW = float(self.canvasSize[0])/2.0
1315 mH = float(self.canvasSize[1])/2.0
1317 # rescale to canvas size
1318 pt[0] = v.co[0]*mW + mW
1319 pt[1] = v.co[1]*mH + mH
1322 # For now we want (0,0) in the top-left corner of the canvas.
1323 # Mirror and translate along y
1325 pt[1] += self.canvasSize[1]
1329 def _printHeader(self):
1330 """Print SVG header."""
1332 self.file.write("<?xml version=\"1.0\"?>\n")
1333 self.file.write("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\"\n")
1334 self.file.write("\t\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n")
1335 self.file.write("<svg version=\"1.0\"\n")
1336 self.file.write("\txmlns=\"http://www.w3.org/2000/svg\"\n")
1337 self.file.write("\twidth=\"%d\" height=\"%d\">\n\n" %
1341 delay = 1000/self.fps
1343 self.file.write("""\n<script type="text/javascript"><![CDATA[
1344 globalStartFrame=%d;
1347 timerID = setInterval("NextFrame()", %d);
1348 globalFrameCounter=%d;
1349 \n""" % (self.startFrame, self.endFrame, delay, self.startFrame) )
1351 self.file.write("""\n
1352 function NextFrame()
1354 currentElement = document.getElementById('frame'+globalFrameCounter)
1355 previousElement = document.getElementById('frame'+(globalFrameCounter-1))
1357 if (!currentElement)
1362 if (globalFrameCounter > globalEndFrame)
1364 clearInterval(timerID)
1370 previousElement.style.display="none";
1372 currentElement.style.display="block";
1373 globalFrameCounter++;
1379 def _printFooter(self):
1380 """Print the SVG footer."""
1382 self.file.write("\n</svg>\n")
1384 def _printPolygons(self, mesh):
1385 """Print the selected (visible) polygons.
1388 if len(mesh.faces) == 0:
1391 self.file.write("<g>\n")
1393 for face in mesh.faces:
1397 self.file.write("<path d=\"")
1399 #p = self._calcCanvasCoord(face.verts[0])
1400 p = self._calcCanvasCoord(face.v[0])
1401 self.file.write("M %g,%g L " % (p[0], p[1]))
1403 for v in face.v[1:]:
1404 p = self._calcCanvasCoord(v)
1405 self.file.write("%g,%g " % (p[0], p[1]))
1407 # get rid of the last blank space, just cosmetics here.
1408 self.file.seek(-1, 1)
1409 self.file.write(" z\"\n")
1411 # take as face color the first vertex color
1414 color = [fcol.r, fcol.g, fcol.b, fcol.a]
1416 color = [255, 255, 255, 255]
1418 # Convert the color to the #RRGGBB form
1419 str_col = "#%02X%02X%02X" % (color[0], color[1], color[2])
1421 # Handle transparent polygons
1424 opacity = float(color[3])/255.0
1425 opacity_string = " fill-opacity: %g; stroke-opacity: %g; opacity: 1;" % (opacity, opacity)
1426 #opacity_string = "opacity: %g;" % (opacity)
1428 self.file.write("\tstyle=\"fill:" + str_col + ";")
1429 self.file.write(opacity_string)
1431 # use the stroke property to alleviate the "adjacent edges" problem,
1432 # we simulate polygon expansion using borders,
1433 # see http://www.antigrain.com/svg/index.html for more info
1436 # EXPANSION TRICK is not that useful where there is transparency
1437 if config.polygons['EXPANSION_TRICK'] and color[3] == 255:
1438 # str_col = "#000000" # For debug
1439 self.file.write(" stroke:%s;\n" % str_col)
1440 self.file.write(" stroke-width:" + str(stroke_width) + ";\n")
1441 self.file.write(" stroke-linecap:round;stroke-linejoin:round")
1443 self.file.write("\"/>\n")
1445 self.file.write("</g>\n")
1447 def _printEdges(self, mesh, showHiddenEdges=False):
1448 """Print the wireframe using mesh edges.
1451 stroke_width = config.edges['WIDTH']
1452 stroke_col = config.edges['COLOR']
1454 self.file.write("<g>\n")
1456 for e in mesh.edges:
1458 hidden_stroke_style = ""
1461 if showHiddenEdges == False:
1464 hidden_stroke_style = ";\n stroke-dasharray:3, 3"
1466 p1 = self._calcCanvasCoord(e.v1)
1467 p2 = self._calcCanvasCoord(e.v2)
1469 self.file.write("<line x1=\"%g\" y1=\"%g\" x2=\"%g\" y2=\"%g\"\n"
1470 % ( p1[0], p1[1], p2[0], p2[1] ) )
1471 self.file.write(" style=\"stroke:rgb("+str(stroke_col[0])+","+str(stroke_col[1])+","+str(stroke_col[2])+");")
1472 self.file.write(" stroke-width:"+str(stroke_width)+";\n")
1473 self.file.write(" stroke-linecap:round;stroke-linejoin:round")
1474 self.file.write(hidden_stroke_style)
1475 self.file.write("\"/>\n")
1477 self.file.write("</g>\n")
1486 SWFSupported = False
1488 class SWFVectorWriter(VectorWriter):
1489 """A concrete class for writing SWF output.
1492 def __init__(self, fileName):
1493 """Simply call the parent Contructor.
1495 VectorWriter.__init__(self, fileName)
1505 def open(self, startFrame=1, endFrame=1):
1506 """Do some initialization operations.
1508 VectorWriter.open(self, startFrame, endFrame)
1509 self.movie = SWFMovie()
1510 self.movie.setDimension(self.canvasSize[0], self.canvasSize[1])
1512 self.movie.setRate(self.fps)
1513 numframes = endFrame - startFrame + 1
1514 self.movie.setFrames(numframes)
1517 """Do some finalization operation.
1519 self.movie.save(self.outputFileName)
1521 # remember to call the close method of the parent
1522 VectorWriter.close(self)
1524 def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
1525 showHiddenEdges=False):
1526 """Convert the scene representation to SVG.
1528 context = scene.getRenderingContext()
1529 framenumber = context.currentFrame()
1531 Objects = scene.getChildren()
1534 self.movie.remove(self.sprite)
1536 sprite = SWFSprite()
1540 if(obj.getType() != 'Mesh'):
1543 mesh = obj.getData(mesh=1)
1546 self._printPolygons(mesh, sprite)
1549 self._printEdges(mesh, sprite, showHiddenEdges)
1552 i = self.movie.add(sprite)
1553 # Remove the instance the next time
1556 self.movie.nextFrame()
1563 def _calcCanvasCoord(self, v):
1564 """Convert vertex in scene coordinates to canvas coordinates.
1567 pt = Vector([0, 0, 0])
1569 mW = float(self.canvasSize[0])/2.0
1570 mH = float(self.canvasSize[1])/2.0
1572 # rescale to canvas size
1573 pt[0] = v.co[0]*mW + mW
1574 pt[1] = v.co[1]*mH + mH
1577 # For now we want (0,0) in the top-left corner of the canvas.
1578 # Mirror and translate along y
1580 pt[1] += self.canvasSize[1]
1584 def _printPolygons(self, mesh, sprite):
1585 """Print the selected (visible) polygons.
1588 if len(mesh.faces) == 0:
1591 for face in mesh.faces:
1597 color = [fcol.r, fcol.g, fcol.b, fcol.a]
1599 color = [255, 255, 255, 255]
1602 f = s.addFill(color[0], color[1], color[2], color[3])
1605 # The starting point of the shape
1606 p0 = self._calcCanvasCoord(face.verts[0])
1607 s.movePenTo(p0[0], p0[1])
1609 for v in face.verts[1:]:
1610 p = self._calcCanvasCoord(v)
1611 s.drawLineTo(p[0], p[1])
1614 s.drawLineTo(p0[0], p0[1])
1620 def _printEdges(self, mesh, sprite, showHiddenEdges=False):
1621 """Print the wireframe using mesh edges.
1624 stroke_width = config.edges['WIDTH']
1625 stroke_col = config.edges['COLOR']
1629 for e in mesh.edges:
1631 # Next, we set the line width and color for our shape.
1632 s.setLine(stroke_width, stroke_col[0], stroke_col[1], stroke_col[2],
1636 if showHiddenEdges == False:
1639 # SWF does not support dashed lines natively, so -for now-
1640 # draw hidden lines thinner and half-trasparent
1641 s.setLine(stroke_width/2, stroke_col[0], stroke_col[1],
1644 p1 = self._calcCanvasCoord(e.v1)
1645 p2 = self._calcCanvasCoord(e.v2)
1647 s.movePenTo(p1[0], p1[1])
1648 s.drawLineTo(p2[0], p2[1])
1657 from reportlab.pdfgen import canvas
1660 PDFSupported = False
1662 class PDFVectorWriter(VectorWriter):
1663 """A concrete class for writing PDF output.
1666 def __init__(self, fileName):
1667 """Simply call the parent Contructor.
1669 VectorWriter.__init__(self, fileName)
1678 def open(self, startFrame=1, endFrame=1):
1679 """Do some initialization operations.
1681 VectorWriter.open(self, startFrame, endFrame)
1682 size = (self.canvasSize[0], self.canvasSize[1])
1683 self.canvas = canvas.Canvas(self.outputFileName, pagesize=size, bottomup=0)
1686 """Do some finalization operation.
1690 # remember to call the close method of the parent
1691 VectorWriter.close(self)
1693 def printCanvas(self, scene, doPrintPolygons=True, doPrintEdges=False,
1694 showHiddenEdges=False):
1695 """Convert the scene representation to SVG.
1697 context = scene.getRenderingContext()
1698 framenumber = context.currentFrame()
1700 Objects = scene.getChildren()
1704 if(obj.getType() != 'Mesh'):
1707 mesh = obj.getData(mesh=1)
1710 self._printPolygons(mesh)
1713 self._printEdges(mesh, showHiddenEdges)
1715 self.canvas.showPage()
1721 def _calcCanvasCoord(self, v):
1722 """Convert vertex in scene coordinates to canvas coordinates.
1725 pt = Vector([0, 0, 0])
1727 mW = float(self.canvasSize[0])/2.0
1728 mH = float(self.canvasSize[1])/2.0
1730 # rescale to canvas size
1731 pt[0] = v.co[0]*mW + mW
1732 pt[1] = v.co[1]*mH + mH
1735 # For now we want (0,0) in the top-left corner of the canvas.
1736 # Mirror and translate along y
1738 pt[1] += self.canvasSize[1]
1742 def _printPolygons(self, mesh):
1743 """Print the selected (visible) polygons.
1746 if len(mesh.faces) == 0:
1749 for face in mesh.faces:
1755 color = [fcol.r/255.0, fcol.g/255.0, fcol.b/255.0,
1758 color = [1, 1, 1, 1]
1760 self.canvas.setFillColorRGB(color[0], color[1], color[2])
1762 self.canvas.setStrokeColorRGB(0, 0, 0)
1764 path = self.canvas.beginPath()
1766 # The starting point of the path
1767 p0 = self._calcCanvasCoord(face.verts[0])
1768 path.moveTo(p0[0], p0[1])
1770 for v in face.verts[1:]:
1771 p = self._calcCanvasCoord(v)
1772 path.lineTo(p[0], p[1])
1777 self.canvas.drawPath(path, stroke=0, fill=1)
1779 def _printEdges(self, mesh, showHiddenEdges=False):
1780 """Print the wireframe using mesh edges.
1783 stroke_width = config.edges['WIDTH']
1784 stroke_col = config.edges['COLOR']
1786 self.canvas.setLineCap(1)
1787 self.canvas.setLineJoin(1)
1788 self.canvas.setLineWidth(stroke_width)
1789 self.canvas.setStrokeColorRGB(stroke_col[0]/255.0, stroke_col[1]/255.0,
1792 for e in mesh.edges:
1794 self.canvas.setLineWidth(stroke_width)
1797 if showHiddenEdges == False:
1800 # PDF does not support dashed lines natively, so -for now-
1801 # draw hidden lines thinner
1802 self.canvas.setLineWidth(stroke_width/2.0)
1804 p1 = self._calcCanvasCoord(e.v1)
1805 p2 = self._calcCanvasCoord(e.v2)
1807 self.canvas.line(p1[0], p1[1], p2[0], p2[1])
1811 # ---------------------------------------------------------------------
1813 ## Rendering Classes
1815 # ---------------------------------------------------------------------
1817 # A dictionary to collect different shading style methods
1818 shadingStyles = dict()
1819 shadingStyles['FLAT'] = None
1820 shadingStyles['TOON'] = None
1822 # A dictionary to collect different edge style methods
1824 edgeStyles['MESH'] = MeshUtils.isMeshEdge
1825 edgeStyles['SILHOUETTE'] = MeshUtils.isSilhouetteEdge
1827 # A dictionary to collect the supported output formats
1828 outputWriters = dict()
1829 outputWriters['SVG'] = SVGVectorWriter
1831 outputWriters['SWF'] = SWFVectorWriter
1833 outputWriters['PDF'] = PDFVectorWriter
1837 """Render a scene viewed from the active camera.
1839 This class is responsible of the rendering process, transformation and
1840 projection of the objects in the scene are invoked by the renderer.
1842 The rendering is done using the active camera for the current scene.
1846 """Make the rendering process only for the current scene by default.
1848 We will work on a copy of the scene, to be sure that the current scene do
1849 not get modified in any way.
1852 # Render the current Scene, this should be a READ-ONLY property
1853 self._SCENE = Scene.GetCurrent()
1855 # Use the aspect ratio of the scene rendering context
1856 context = self._SCENE.getRenderingContext()
1858 aspect_ratio = float(context.imageSizeX())/float(context.imageSizeY())
1859 self.canvasRatio = (float(context.aspectRatioX())*aspect_ratio,
1860 float(context.aspectRatioY())
1863 # Render from the currently active camera
1864 #self.cameraObj = self._SCENE.getCurrentCamera()
1866 # Get the list of lighting sources
1867 obj_lst = self._SCENE.getChildren()
1868 self.lights = [ o for o in obj_lst if o.getType() == 'Lamp']
1870 # When there are no lights we use a default lighting source
1871 # that have the same position of the camera
1872 if len(self.lights) == 0:
1873 l = Lamp.New('Lamp')
1874 lobj = Object.New('Lamp')
1875 lobj.loc = self.cameraObj.loc
1877 self.lights.append(lobj)
1884 def doRendering(self, outputWriter, animation=False):
1885 """Render picture or animation and write it out.
1888 - a Vector writer object that will be used to output the result.
1889 - a flag to tell if we want to render an animation or only the
1893 context = self._SCENE.getRenderingContext()
1894 origCurrentFrame = context.currentFrame()
1896 # Handle the animation case
1898 startFrame = origCurrentFrame
1899 endFrame = startFrame
1902 startFrame = context.startFrame()
1903 endFrame = context.endFrame()
1904 outputWriter.open(startFrame, endFrame)
1906 # Do the rendering process frame by frame
1907 print "Start Rendering of %d frames" % (endFrame-startFrame+1)
1908 for f in xrange(startFrame, endFrame+1):
1909 print "\n\nFrame: %d" % f
1911 # FIXME To get the correct camera position we have to use +1 here.
1912 # Is there a bug somewhere in the Scene module?
1913 context.currentFrame(f+1)
1914 self.cameraObj = self._SCENE.getCurrentCamera()
1916 # Use some temporary workspace, a full copy of the scene
1917 inputScene = self._SCENE.copy(2)
1919 # To get the objects at this frame remove the +1 ...
1920 ctx = inputScene.getRenderingContext()
1924 # Get a projector for this camera.
1925 # NOTE: the projector wants object in world coordinates,
1926 # so we should remember to apply modelview transformations
1927 # _before_ we do projection transformations.
1928 self.proj = Projector(self.cameraObj, self.canvasRatio)
1931 renderedScene = self.doRenderScene(inputScene)
1933 print "There was an error! Aborting."
1935 print traceback.print_exc()
1937 self._SCENE.makeCurrent()
1938 Scene.unlink(inputScene)
1942 outputWriter.printCanvas(renderedScene,
1943 doPrintPolygons = config.polygons['SHOW'],
1944 doPrintEdges = config.edges['SHOW'],
1945 showHiddenEdges = config.edges['SHOW_HIDDEN'])
1947 # delete the rendered scene
1948 self._SCENE.makeCurrent()
1949 Scene.unlink(renderedScene)
1952 outputWriter.close()
1954 context.currentFrame(origCurrentFrame)
1957 def doRenderScene(self, workScene):
1958 """Control the rendering process.
1960 Here we control the entire rendering process invoking the operation
1961 needed to transform and project the 3D scene in two dimensions.
1964 # global processing of the scene
1966 self._doSceneClipping(workScene)
1968 self._doConvertGeometricObjsToMesh(workScene)
1970 if config.output['JOIN_OBJECTS']:
1971 self._joinMeshObjectsInScene(workScene)
1973 self._doSceneDepthSorting(workScene)
1975 # Per object activities
1977 Objects = workScene.getChildren()
1978 print "Total Objects: %d" % len(Objects)
1979 for i,obj in enumerate(Objects):
1981 print "Rendering Object: %d" % i
1983 if obj.getType() != 'Mesh':
1984 print "Only Mesh supported! - Skipping type:", obj.getType()
1987 print "Rendering: ", obj.getName()
1989 mesh = obj.getData(mesh=1)
1991 self._doModelingTransformation(mesh, obj.matrix)
1993 self._doBackFaceCulling(mesh)
1996 # When doing HSR with NEWELL we may want to flip all normals
1998 if config.polygons['HSR'] == "NEWELL":
1999 for f in mesh.faces:
2002 for f in mesh.faces:
2005 self._doLighting(mesh)
2007 # Do "projection" now so we perform further processing
2008 # in Normalized View Coordinates
2009 self._doProjection(mesh, self.proj)
2011 self._doViewFrustumClipping(mesh)
2013 self._doHiddenSurfaceRemoval(mesh)
2015 self._doEdgesStyle(mesh, edgeStyles[config.edges['STYLE']])
2017 # Update the object data, important! :)
2029 def _getObjPosition(self, obj):
2030 """Return the obj position in World coordinates.
2032 return obj.matrix.translationPart()
2034 def _cameraViewVector(self):
2035 """Get the View Direction form the camera matrix.
2037 return Vector(self.cameraObj.matrix[2]).resize3D()
2042 def _isFaceVisible(self, face):
2043 """Determine if a face of an object is visible from the current camera.
2045 The view vector is calculated from the camera location and one of the
2046 vertices of the face (expressed in World coordinates, after applying
2047 modelview transformations).
2049 After those transformations we determine if a face is visible by
2050 computing the angle between the face normal and the view vector, this
2051 angle has to be between -90 and 90 degrees for the face to be visible.
2052 This corresponds somehow to the dot product between the two, if it
2053 results > 0 then the face is visible.
2055 There is no need to normalize those vectors since we are only interested in
2056 the sign of the cross product and not in the product value.
2058 NOTE: here we assume the face vertices are in WorldCoordinates, so
2059 please transform the object _before_ doing the test.
2062 normal = Vector(face.no)
2063 camPos = self._getObjPosition(self.cameraObj)
2066 # View Vector in orthographics projections is the view Direction of
2068 if self.cameraObj.data.getType() == 1:
2069 view_vect = self._cameraViewVector()
2071 # View vector in perspective projections can be considered as
2072 # the difference between the camera position and one point of
2073 # the face, we choose the farthest point from the camera.
2074 if self.cameraObj.data.getType() == 0:
2075 vv = max( [ ((camPos - Vector(v.co)).length, (camPos - Vector(v.co))) for v in face] )
2079 # if d > 0 the face is visible from the camera
2080 d = view_vect * normal
2090 def _doSceneClipping(self, scene):
2091 """Clip whole objects against the View Frustum.
2093 For now clip away only objects according to their center position.
2096 cam_pos = self._getObjPosition(self.cameraObj)
2097 view_vect = self._cameraViewVector()
2099 near = self.cameraObj.data.clipStart
2100 far = self.cameraObj.data.clipEnd
2102 aspect = float(self.canvasRatio[0])/float(self.canvasRatio[1])
2103 fovy = atan(0.5/aspect/(self.cameraObj.data.lens/32))
2104 fovy = fovy * 360.0/pi
2106 Objects = scene.getChildren()
2108 if o.getType() != 'Mesh': continue;
2111 obj_vect = Vector(cam_pos) - self._getObjPosition(o)
2113 d = obj_vect*view_vect
2114 theta = AngleBetweenVecs(obj_vect, view_vect)
2116 # if the object is outside the view frustum, clip it away
2117 if (d < near) or (d > far) or (theta > fovy):
2121 # Use the object bounding box
2122 # (whose points are already in WorldSpace Coordinate)
2124 bb = o.getBoundBox()
2128 p_vect = Vector(cam_pos) - Vector(p)
2130 d = p_vect * view_vect
2131 theta = AngleBetweenVecs(p_vect, view_vect)
2133 # Is this point outside the view frustum?
2134 if (d < near) or (d > far) or (theta > fovy):
2137 # If the bb is all outside the view frustum we clip the whole
2139 if points_outside == len(bb):
2144 def _doConvertGeometricObjsToMesh(self, scene):
2145 """Convert all "geometric" objects to mesh ones.
2147 geometricObjTypes = ['Mesh', 'Surf', 'Curve', 'Text']
2148 #geometricObjTypes = ['Mesh', 'Surf', 'Curve']
2150 Objects = scene.getChildren()
2151 objList = [ o for o in Objects if o.getType() in geometricObjTypes ]
2154 obj = self._convertToRawMeshObj(obj)
2156 scene.unlink(old_obj)
2159 # XXX Workaround for Text and Curve which have some normals
2160 # inverted when they are converted to Mesh, REMOVE that when
2161 # blender will fix that!!
2162 if old_obj.getType() in ['Curve', 'Text']:
2163 me = obj.getData(mesh=1)
2164 for f in me.faces: f.sel = 1;
2165 for v in me.verts: v.sel = 1;
2172 def _doSceneDepthSorting(self, scene):
2173 """Sort objects in the scene.
2175 The object sorting is done accordingly to the object centers.
2178 c = self._getObjPosition(self.cameraObj)
2180 by_obj_center_pos = (lambda o1, o2:
2181 (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
2182 cmp((self._getObjPosition(o1) - Vector(c)).length,
2183 (self._getObjPosition(o2) - Vector(c)).length)
2186 # Implement sorting by bounding box, the object with the bb
2187 # nearest to the camera should be drawn as last.
2188 by_nearest_bbox_point = (lambda o1, o2:
2189 (o1.getType() == 'Mesh' and o2.getType() == 'Mesh') and
2190 cmp( min( [(Vector(p) - Vector(c)).length for p in o1.getBoundBox()] ),
2191 min( [(Vector(p) - Vector(c)).length for p in o2.getBoundBox()] )
2196 Objects = scene.getChildren()
2197 #Objects.sort(by_obj_center_pos)
2198 Objects.sort(by_nearest_bbox_point)
2205 def _joinMeshObjectsInScene(self, scene):
2206 """Merge all the Mesh Objects in a scene into a single Mesh Object.
2209 oList = [o for o in scene.getChildren() if o.getType()=='Mesh']
2211 # FIXME: Object.join() do not work if the list contains 1 object
2215 mesh = Mesh.New('BigOne')
2216 bigObj = Object.New('Mesh', 'BigOne')
2223 except RuntimeError:
2224 print "\nWarning! - Can't Join Objects\n"
2225 scene.unlink(bigObj)
2228 print "Objects Type error?"
2236 # Per object/mesh methods
2238 def _convertToRawMeshObj(self, object):
2239 """Convert geometry based object to a mesh object.
2241 me = Mesh.New('RawMesh_'+object.name)
2242 me.getFromObject(object.name)
2244 newObject = Object.New('Mesh', 'RawMesh_'+object.name)
2247 # If the object has no materials set a default material
2248 if not me.materials:
2249 me.materials = [Material.New()]
2250 #for f in me.faces: f.mat = 0
2252 newObject.setMatrix(object.getMatrix())
2256 def _doModelingTransformation(self, mesh, matrix):
2257 """Transform object coordinates to world coordinates.
2259 This step is done simply applying to the object its tranformation
2260 matrix and recalculating its normals.
2262 # XXX FIXME: blender do not transform normals in the right way when
2263 # there are negative scale values
2264 if matrix[0][0] < 0 or matrix[1][1] < 0 or matrix[2][2] < 0:
2265 print "WARNING: Negative scales, expect incorrect results!"
2267 mesh.transform(matrix, True)
2269 def _doBackFaceCulling(self, mesh):
2270 """Simple Backface Culling routine.
2272 At this level we simply do a visibility test face by face and then
2273 select the vertices belonging to visible faces.
2276 # Select all vertices, so edges can be displayed even if there are no
2278 for v in mesh.verts:
2281 Mesh.Mode(Mesh.SelectModes['FACE'])
2283 for f in mesh.faces:
2285 if self._isFaceVisible(f):
2288 def _doLighting(self, mesh):
2289 """Apply an Illumination and shading model to the object.
2291 The model used is the Phong one, it may be inefficient,
2292 but I'm just learning about rendering and starting from Phong seemed
2293 the most natural way.
2296 # If the mesh has vertex colors already, use them,
2297 # otherwise turn them on and do some calculations
2298 if mesh.vertexColors:
2300 mesh.vertexColors = 1
2302 materials = mesh.materials
2304 camPos = self._getObjPosition(self.cameraObj)
2306 # We do per-face color calculation (FLAT Shading), we can easily turn
2307 # to a per-vertex calculation if we want to implement some shading
2308 # technique. For an example see:
2309 # http://www.miralab.unige.ch/papers/368.pdf
2310 for f in mesh.faces:
2316 mat = materials[f.mat]
2318 # A new default material
2320 mat = Material.New('defMat')
2322 # Check if it is a shadeless material
2323 elif mat.getMode() & Material.Modes['SHADELESS']:
2325 # Convert to a value between 0 and 255
2326 tmp_col = [ int(c * 255.0) for c in I]
2337 # do vertex color calculation
2339 TotDiffSpec = Vector([0.0, 0.0, 0.0])
2341 for l in self.lights:
2343 light_pos = self._getObjPosition(l)
2344 light = light_obj.getData()
2346 L = Vector(light_pos).normalize()
2348 V = (Vector(camPos) - Vector(f.cent)).normalize()
2350 N = Vector(f.no).normalize()
2352 if config.polygons['SHADING'] == 'TOON':
2353 NL = ShadingUtils.toonShading(N*L)
2357 # Should we use NL instead of (N*L) here?
2358 R = 2 * (N*L) * N - L
2360 Ip = light.getEnergy()
2362 # Diffuse co-efficient
2363 kd = mat.getRef() * Vector(mat.getRGBCol())
2365 kd[i] *= light.col[i]
2367 Idiff = Ip * kd * max(0, NL)
2370 # Specular component
2371 ks = mat.getSpec() * Vector(mat.getSpecCol())
2372 ns = mat.getHardness()
2373 Ispec = Ip * ks * pow(max(0, (V*R)), ns)
2375 TotDiffSpec += (Idiff+Ispec)
2379 Iamb = Vector(Blender.World.Get()[0].getAmb())
2382 # Emissive component (convert to a triplet)
2383 ki = Vector([mat.getEmit()]*3)
2385 #I = ki + Iamb + (Idiff + Ispec)
2386 I = ki + (ka * Iamb) + TotDiffSpec
2389 # Set Alpha component
2391 I.append(mat.getAlpha())
2393 # Clamp I values between 0 and 1
2394 I = [ min(c, 1) for c in I]
2395 I = [ max(0, c) for c in I]
2397 # Convert to a value between 0 and 255
2398 tmp_col = [ int(c * 255.0) for c in I]
2406 def _doProjection(self, mesh, projector):
2407 """Apply Viewing and Projection tranformations.
2410 for v in mesh.verts:
2411 p = projector.doProjection(v.co[:])
2416 #mesh.recalcNormals()
2419 # We could reeset Camera matrix, since now
2420 # we are in Normalized Viewing Coordinates,
2421 # but doung that would affect World Coordinate
2422 # processing for other objects
2424 #self.cameraObj.data.type = 1
2425 #self.cameraObj.data.scale = 2.0
2426 #m = Matrix().identity()
2427 #self.cameraObj.setMatrix(m)
2429 def _doViewFrustumClipping(self, mesh):
2430 """Clip faces against the View Frustum.
2433 # The Canonical View Volume, 8 vertices, and 6 faces,
2434 # We consider its face normals pointing outside
2436 v1 = NMesh.Vert(1, 1, -1)
2437 v2 = NMesh.Vert(1, -1, -1)
2438 v3 = NMesh.Vert(-1, -1, -1)
2439 v4 = NMesh.Vert(-1, 1, -1)
2440 v5 = NMesh.Vert(1, 1, 1)
2441 v6 = NMesh.Vert(1, -1, 1)
2442 v7 = NMesh.Vert(-1, -1, 1)
2443 v8 = NMesh.Vert(-1, 1, 1)
2446 f1 = NMesh.Face([v1, v4, v3, v2])
2448 f2 = NMesh.Face([v5, v6, v7, v8])
2450 f3 = NMesh.Face([v1, v2, v6, v5])
2452 f4 = NMesh.Face([v2, v3, v7, v6])
2454 f5 = NMesh.Face([v3, v4, v8, v7])
2456 f6 = NMesh.Face([v4, v1, v5, v8])
2459 nmesh = NMesh.GetRaw(mesh.name)
2460 clippedfaces = nmesh.faces[:]
2461 facelist = clippedfaces[:]
2463 for clipface in cvv:
2469 newfaces = HSR.splitOn(clipface, f, return_positive_faces=False)
2472 # Check if the face is all outside the view frustum
2473 # TODO: Do this test before, it is more efficient
2476 if abs(v[0]) > 1-EPS or abs(v[1]) > 1-EPS or abs(v[2]) > 1-EPS:
2479 if points_outside != len(f):
2480 clippedfaces.append(f)
2484 nmesh.verts.append(v)
2488 nf.col = [f.col[0]] * len(nf.v)
2490 clippedfaces.append(nf)
2491 facelist = clippedfaces[:]
2494 nmesh.faces = facelist
2499 def __simpleDepthSort(self, mesh):
2500 """Sort faces by the furthest vertex.
2502 This simple mesthod is known also as the painter algorithm, and it
2503 solves HSR correctly only for convex meshes.
2508 # The sorting requires circa n*log(n) steps
2510 progress.setActivity("HSR: Painter", n*log(n))
2512 by_furthest_z = (lambda f1, f2: progress.update() and
2513 cmp(max([v.co[2] for v in f1]), max([v.co[2] for v in f2])+EPS)
2516 # FIXME: using NMesh to sort faces. We should avoid that!
2517 nmesh = NMesh.GetRaw(mesh.name)
2519 # remember that _higher_ z values mean further points
2520 nmesh.faces.sort(by_furthest_z)
2521 nmesh.faces.reverse()
2526 def __newellDepthSort(self, mesh):
2527 """Newell's depth sorting.
2533 # Find non planar quads and convert them to triangle
2534 #for f in mesh.faces:
2536 # if is_nonplanar_quad(f.v):
2537 # print "NON QUAD??"
2541 # Now reselect all faces
2542 for f in mesh.faces:
2544 mesh.quadToTriangle()
2546 # FIXME: using NMesh to sort faces. We should avoid that!
2547 nmesh = NMesh.GetRaw(mesh.name)
2549 # remember that _higher_ z values mean further points
2550 nmesh.faces.sort(by_furthest_z)
2551 nmesh.faces.reverse()
2553 # Begin depth sort tests
2555 # use the smooth flag to set marked faces
2556 for f in nmesh.faces:
2559 facelist = nmesh.faces[:]
2563 # The steps are _at_least_ equal to len(facelist), we do not count the
2564 # feces coming out from splitting!!
2565 progress.setActivity("HSR: Newell", len(facelist))
2566 #progress.setQuiet(True)
2569 while len(facelist):
2570 debug("\n----------------------\n")
2571 debug("len(facelits): %d\n" % len(facelist))
2574 pSign = sign(P.normal[2])
2576 # We can discard faces parallel to the view vector
2577 #if P.normal[2] == 0:
2578 # facelist.remove(P)
2584 for Q in facelist[1:]:
2586 debug("P.smooth: " + str(P.smooth) + "\n")
2587 debug("Q.smooth: " + str(Q.smooth) + "\n")
2590 qSign = sign(Q.normal[2])
2591 # TODO: check also if Q is parallel??
2593 # Test 0: We need to test only those Qs whose furthest vertex
2594 # is closer to the observer than the closest vertex of P.
2596 zP = [v.co[2] for v in P.v]
2597 zQ = [v.co[2] for v in Q.v]
2598 notZOverlap = min(zP) > max(zQ) + EPS
2602 debug("NOT Z OVERLAP!\n")
2604 # If Q is not marked then we can safely print P
2607 debug("met a marked face\n")
2611 # Test 1: X extent overlapping
2612 xP = [v.co[0] for v in P.v]
2613 xQ = [v.co[0] for v in Q.v]
2614 #notXOverlap = (max(xP) <= min(xQ)) or (max(xQ) <= min(xP))
2615 notXOverlap = (min(xQ) >= max(xP)-EPS) or (min(xP) >= max(xQ)-EPS)
2619 debug("NOT X OVERLAP!\n")
2623 # Test 2: Y extent Overlapping
2624 yP = [v.co[1] for v in P.v]
2625 yQ = [v.co[1] for v in Q.v]
2626 #notYOverlap = (max(yP) <= min(yQ)) or (max(yQ) <= min(yP))
2627 notYOverlap = (min(yQ) >= max(yP)-EPS) or (min(yP) >= max(yQ)-EPS)
2631 debug("NOT Y OVERLAP!\n")
2635 # Test 3: P vertices are all behind the plane of Q
2638 d = qSign * HSR.Distance(Vector(Pi), Q)
2641 pVerticesBehindPlaneQ = (n == len(P))
2643 if pVerticesBehindPlaneQ:
2645 debug("P BEHIND Q!\n")
2649 # Test 4: Q vertices in front of the plane of P
2652 d = pSign * HSR.Distance(Vector(Qi), P)
2655 qVerticesInFrontPlaneP = (n == len(Q))
2657 if qVerticesInFrontPlaneP:
2659 debug("Q IN FRONT OF P!\n")
2663 # Test 5: Check if projections of polygons effectively overlap,
2664 # in previous tests we checked only bounding boxes.
2666 #if not projectionsOverlap(P, Q):
2667 if not ( HSR.projectionsOverlap(P, Q) or HSR.projectionsOverlap(Q, P)):
2669 debug("Projections do not overlap!\n")
2672 # We still can't say if P obscures Q.
2674 # But if Q is marked we do a face-split trying to resolve a
2675 # difficulty (maybe a visibility cycle).
2678 debug("Possibly a cycle detected!\n")
2679 debug("Split here!!\n")
2681 facelist = HSR.facesplit(P, Q, facelist, nmesh)
2685 # The question now is: Does Q obscure P?
2688 # Test 3bis: Q vertices are all behind the plane of P
2691 d = pSign * HSR.Distance(Vector(Qi), P)
2694 qVerticesBehindPlaneP = (n == len(Q))
2696 if qVerticesBehindPlaneP:
2697 debug("\nTest 3bis\n")
2698 debug("Q BEHIND P!\n")
2701 # Test 4bis: P vertices in front of the plane of Q
2704 d = qSign * HSR.Distance(Vector(Pi), Q)
2707 pVerticesInFrontPlaneQ = (n == len(P))
2709 if pVerticesInFrontPlaneQ:
2710 debug("\nTest 4bis\n")
2711 debug("P IN FRONT OF Q!\n")
2714 # We don't even know if Q does obscure P, so they should
2715 # intersect each other, split one of them in two parts.
2716 if not qVerticesBehindPlaneP and not pVerticesInFrontPlaneQ:
2717 debug("\nSimple Intersection?\n")
2718 debug("Test 3bis or 4bis failed\n")
2719 debug("Split here!!2\n")
2721 facelist = HSR.facesplit(P, Q, facelist, nmesh)
2726 facelist.insert(0, Q)
2729 debug("Q marked!\n")
2733 if split_done == 0 and face_marked == 0:
2736 dumpfaces(maplist, "dump"+str(len(maplist)).zfill(4)+".svg")
2740 if len(facelist) == 870:
2741 dumpfaces([P, Q], "loopdebug.svg")
2744 #if facelist == None:
2746 # print [v.co for v in P]
2747 # print [v.co for v in Q]
2750 # end of while len(facelist)
2753 nmesh.faces = maplist
2754 #for f in nmesh.faces:
2760 def _doHiddenSurfaceRemoval(self, mesh):
2761 """Do HSR for the given mesh.
2763 if len(mesh.faces) == 0:
2766 if config.polygons['HSR'] == 'PAINTER':
2767 print "\nUsing the Painter algorithm for HSR."
2768 self.__simpleDepthSort(mesh)
2770 elif config.polygons['HSR'] == 'NEWELL':
2771 print "\nUsing the Newell's algorithm for HSR."
2772 self.__newellDepthSort(mesh)
2775 def _doEdgesStyle(self, mesh, edgestyleSelect):
2776 """Process Mesh Edges accroding to a given selection style.
2778 Examples of algorithms:
2781 given an edge if its adjacent faces have the same normal (that is
2782 they are complanar), than deselect it.
2785 given an edge if one its adjacent faces is frontfacing and the
2786 other is backfacing, than select it, else deselect.
2789 Mesh.Mode(Mesh.SelectModes['EDGE'])
2791 edge_cache = MeshUtils.buildEdgeFaceUsersCache(mesh)
2793 for i,edge_faces in enumerate(edge_cache):
2794 mesh.edges[i].sel = 0
2795 if edgestyleSelect(edge_faces):
2796 mesh.edges[i].sel = 1
2799 for e in mesh.edges:
2802 if edgestyleSelect(e, mesh):
2808 # ---------------------------------------------------------------------
2810 ## GUI Class and Main Program
2812 # ---------------------------------------------------------------------
2815 from Blender import BGL, Draw
2816 from Blender.BGL import *
2822 # Output Format menu
2823 output_format = config.output['FORMAT']
2824 default_value = outputWriters.keys().index(output_format)+1
2825 GUI.outFormatMenu = Draw.Create(default_value)
2826 GUI.evtOutFormatMenu = 0
2828 # Animation toggle button
2829 GUI.animToggle = Draw.Create(config.output['ANIMATION'])
2830 GUI.evtAnimToggle = 1
2832 # Join Objects toggle button
2833 GUI.joinObjsToggle = Draw.Create(config.output['JOIN_OBJECTS'])
2834 GUI.evtJoinObjsToggle = 2
2836 # Render filled polygons
2837 GUI.polygonsToggle = Draw.Create(config.polygons['SHOW'])
2839 # Shading Style menu
2840 shading_style = config.polygons['SHADING']
2841 default_value = shadingStyles.keys().index(shading_style)+1
2842 GUI.shadingStyleMenu = Draw.Create(default_value)
2843 GUI.evtShadingStyleMenu = 21
2845 GUI.evtPolygonsToggle = 3
2846 # We hide the config.polygons['EXPANSION_TRICK'], for now
2848 # Render polygon edges
2849 GUI.showEdgesToggle = Draw.Create(config.edges['SHOW'])
2850 GUI.evtShowEdgesToggle = 4
2852 # Render hidden edges
2853 GUI.showHiddenEdgesToggle = Draw.Create(config.edges['SHOW_HIDDEN'])
2854 GUI.evtShowHiddenEdgesToggle = 5
2857 edge_style = config.edges['STYLE']
2858 default_value = edgeStyles.keys().index(edge_style)+1
2859 GUI.edgeStyleMenu = Draw.Create(default_value)
2860 GUI.evtEdgeStyleMenu = 6
2863 GUI.edgeWidthSlider = Draw.Create(config.edges['WIDTH'])
2864 GUI.evtEdgeWidthSlider = 7
2867 c = config.edges['COLOR']
2868 GUI.edgeColorPicker = Draw.Create(c[0]/255.0, c[1]/255.0, c[2]/255.0)
2869 GUI.evtEdgeColorPicker = 71
2872 GUI.evtRenderButton = 8
2875 GUI.evtExitButton = 9
2879 # initialize static members
2882 glClear(GL_COLOR_BUFFER_BIT)
2883 glColor3f(0.0, 0.0, 0.0)
2884 glRasterPos2i(10, 350)
2885 Draw.Text("VRM: Vector Rendering Method script. Version %s." %
2887 glRasterPos2i(10, 335)
2888 Draw.Text("Press Q or ESC to quit.")
2890 # Build the output format menu
2891 glRasterPos2i(10, 310)
2892 Draw.Text("Select the output Format:")
2893 outMenuStruct = "Output Format %t"
2894 for t in outputWriters.keys():
2895 outMenuStruct = outMenuStruct + "|%s" % t
2896 GUI.outFormatMenu = Draw.Menu(outMenuStruct, GUI.evtOutFormatMenu,
2897 10, 285, 160, 18, GUI.outFormatMenu.val, "Choose the Output Format")
2900 GUI.animToggle = Draw.Toggle("Animation", GUI.evtAnimToggle,
2901 10, 260, 160, 18, GUI.animToggle.val,
2902 "Toggle rendering of animations")
2904 # Join Objects toggle
2905 GUI.joinObjsToggle = Draw.Toggle("Join objects", GUI.evtJoinObjsToggle,
2906 10, 235, 160, 18, GUI.joinObjsToggle.val,
2907 "Join objects in the rendered file")
2910 Draw.Button("Render", GUI.evtRenderButton, 10, 210-25, 75, 25+18,
2912 Draw.Button("Exit", GUI.evtExitButton, 95, 210-25, 75, 25+18, "Exit!")
2915 glRasterPos2i(200, 310)
2916 Draw.Text("Rendering Style:")
2919 GUI.polygonsToggle = Draw.Toggle("Filled Polygons", GUI.evtPolygonsToggle,
2920 200, 285, 160, 18, GUI.polygonsToggle.val,
2921 "Render filled polygons")
2923 if GUI.polygonsToggle.val == 1:
2925 # Polygon Shading Style
2926 shadingStyleMenuStruct = "Shading Style %t"
2927 for t in shadingStyles.keys():
2928 shadingStyleMenuStruct = shadingStyleMenuStruct + "|%s" % t.lower()
2929 GUI.shadingStyleMenu = Draw.Menu(shadingStyleMenuStruct, GUI.evtShadingStyleMenu,
2930 200, 260, 160, 18, GUI.shadingStyleMenu.val,
2931 "Choose the shading style")
2935 GUI.showEdgesToggle = Draw.Toggle("Show Edges", GUI.evtShowEdgesToggle,
2936 200, 235, 160, 18, GUI.showEdgesToggle.val,
2937 "Render polygon edges")
2939 if GUI.showEdgesToggle.val == 1:
2942 edgeStyleMenuStruct = "Edge Style %t"
2943 for t in edgeStyles.keys():
2944 edgeStyleMenuStruct = edgeStyleMenuStruct + "|%s" % t.lower()
2945 GUI.edgeStyleMenu = Draw.Menu(edgeStyleMenuStruct, GUI.evtEdgeStyleMenu,
2946 200, 210, 160, 18, GUI.edgeStyleMenu.val,
2947 "Choose the edge style")
2950 GUI.edgeWidthSlider = Draw.Slider("Width: ", GUI.evtEdgeWidthSlider,
2951 200, 185, 140, 18, GUI.edgeWidthSlider.val,
2952 0.0, 10.0, 0, "Change Edge Width")
2955 GUI.edgeColorPicker = Draw.ColorPicker(GUI.evtEdgeColorPicker,
2956 342, 185, 18, 18, GUI.edgeColorPicker.val, "Choose Edge Color")
2959 GUI.showHiddenEdgesToggle = Draw.Toggle("Show Hidden Edges",
2960 GUI.evtShowHiddenEdgesToggle,
2961 200, 160, 160, 18, GUI.showHiddenEdgesToggle.val,
2962 "Render hidden edges as dashed lines")
2964 glRasterPos2i(10, 160)
2965 Draw.Text("%s (c) 2006" % __author__)
2967 def event(evt, val):
2969 if evt == Draw.ESCKEY or evt == Draw.QKEY:
2976 def button_event(evt):
2978 if evt == GUI.evtExitButton:
2981 elif evt == GUI.evtOutFormatMenu:
2982 i = GUI.outFormatMenu.val - 1
2983 config.output['FORMAT']= outputWriters.keys()[i]
2984 # Set the new output file
2986 outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
2988 elif evt == GUI.evtAnimToggle:
2989 config.output['ANIMATION'] = bool(GUI.animToggle.val)
2991 elif evt == GUI.evtJoinObjsToggle:
2992 config.output['JOIN_OBJECTS'] = bool(GUI.joinObjsToggle.val)
2994 elif evt == GUI.evtPolygonsToggle:
2995 config.polygons['SHOW'] = bool(GUI.polygonsToggle.val)
2997 elif evt == GUI.evtShadingStyleMenu:
2998 i = GUI.shadingStyleMenu.val - 1
2999 config.polygons['SHADING'] = shadingStyles.keys()[i]
3001 elif evt == GUI.evtShowEdgesToggle:
3002 config.edges['SHOW'] = bool(GUI.showEdgesToggle.val)
3004 elif evt == GUI.evtShowHiddenEdgesToggle:
3005 config.edges['SHOW_HIDDEN'] = bool(GUI.showHiddenEdgesToggle.val)
3007 elif evt == GUI.evtEdgeStyleMenu:
3008 i = GUI.edgeStyleMenu.val - 1
3009 config.edges['STYLE'] = edgeStyles.keys()[i]
3011 elif evt == GUI.evtEdgeWidthSlider:
3012 config.edges['WIDTH'] = float(GUI.edgeWidthSlider.val)
3014 elif evt == GUI.evtEdgeColorPicker:
3015 config.edges['COLOR'] = [int(c*255.0) for c in GUI.edgeColorPicker.val]
3017 elif evt == GUI.evtRenderButton:
3018 label = "Save %s" % config.output['FORMAT']
3019 # Show the File Selector
3021 Blender.Window.FileSelector(vectorize, label, outputfile)
3024 print "Event: %d not handled!" % evt
3031 from pprint import pprint
3033 pprint(config.output)
3034 pprint(config.polygons)
3035 pprint(config.edges)
3037 _init = staticmethod(_init)
3038 draw = staticmethod(draw)
3039 event = staticmethod(event)
3040 button_event = staticmethod(button_event)
3041 conf_debug = staticmethod(conf_debug)
3043 # A wrapper function for the vectorizing process
3044 def vectorize(filename):
3045 """The vectorizing process is as follows:
3047 - Instanciate the writer and the renderer
3052 print "\nERROR: invalid file name!"
3055 from Blender import Window
3056 editmode = Window.EditMode()
3057 if editmode: Window.EditMode(0)
3059 actualWriter = outputWriters[config.output['FORMAT']]
3060 writer = actualWriter(filename)
3062 renderer = Renderer()
3063 renderer.doRendering(writer, config.output['ANIMATION'])
3065 if editmode: Window.EditMode(1)
3070 if __name__ == "__main__":
3075 basename = Blender.sys.basename(Blender.Get('filename'))
3077 outputfile = Blender.sys.splitext(basename)[0] + "." + str(config.output['FORMAT']).lower()
3079 if Blender.mode == 'background':
3080 progress = ConsoleProgressIndicator()
3081 vectorize(outputfile)
3083 progress = GraphicalProgressIndicator()
3084 Draw.Register(GUI.draw, GUI.event, GUI.button_event)