#
# ---------------------------------------------------------------------
-class Projection:
- def __init__(self):
- print "New projection"
-
-class PerspectiveProjection(Projection):
- def __init___(self):
- Projection.__init__(self)
- print "Perspective"
-
- def doProjection():
- print "do a perspective projection!!"
-
-def Perspective(fovy, aspect, near, far):
- top = near * tan(fovy * pi / 360.0)
- bottom = -top
- left = bottom*aspect
- right= top*aspect
- x = (2.0 * near) / (right-left)
- y = (2.0 * near) / (top-bottom)
- a = (right+left) / (right-left)
- b = (top+bottom) / (top - bottom)
- c = - ((far+near) / (far-near))
- d = - ((2*far*near)/(far-near))
- return Matrix([x,0.0,a,0.0],[0.0,y,b,0.0],[0.0,0.0,c,d],[0.0,0.0,-1.0,0.0])
-
-def flatten_new(v, cameraObj, canvasSize, obMesh):
-
- cam = cameraObj.getInverseMatrix()
- cam.transpose()
-
- # Changing the view mode
- cmra = cameraObj.getData()
-
- #if cmra.type:
- # print "Ortho"
- #m2 = Ortho(fovy,float(w*ax)/float(h*ay),cmra.clipStart, cmra.clipEnd,17) #cmra.scale)
- #else:
- # print "Perspective"
+class Projector:
+ """Calculate the projection of an object given the camera.
- #Create Frustum
- #frustum = _Frustum(cam,m2)
+ A projector is useful to so some per-object transformation to obtain the
+ projection of an object given the camera.
- m1 = Matrix()
- mP = Matrix()
-
- fovy = atan(0.5/(float(canvasSize[0])/float(canvasSize[1]))/(cmra.lens/32))
- fovy = fovy * 360/pi
+ The main method is #doProjection# see the method description for the
+ parameter list.
+ """
- m2 = Perspective(fovy,float(canvasSize[0])/float(canvasSize[1]),cmra.clipStart, cmra.clipEnd)
+ def __init__(self, cameraObj, obMesh, canvasSize):
+ """Calculate the projection matrix.
- m1 = obMesh.matrixWorld #mat
- m1.transpose()
- mP = cam * m1
- mP = m2 * mP
-
- #Transform the vertices to global coordinates
- p = mP*Vector([v.co[0],v.co[1],v.co[2],1.0])
- #tf.append(p)
- #p = m1*Vector([v.co[0],v.co[1],v.co[2],1.0])
- #t2.append([p[0],p[1],p[2]])
-
- mW = canvasSize[0]/2
- mH = canvasSize[1]/2
-
- if p[3]<=0:
- p[0] = int(p[0]*mW)+mW
- p[1] = int(p[1]*mH)+mH
- else:
- p[0] = int((p[0]/p[3])*mW)+mW
- p[1] = int((p[1]/p[3])*mH)+mH
-
- # Mirror and translate along y
- p[1] *= -1
- p[1] += canvasSize[1]
-
- return p
+ The projection matrix depends, in this case, on the camera settings,
+ and also on object transformation matrix.
+ """
+ self.size = canvasSize
+ camera = cameraObj.getData()
-# distance from camera Z'
-def Distance(PX,PY,PZ):
-
- dist = sqrt(PX*PX+PY*PY+PZ*PZ)
- return dist
+ aspect = float(canvasSize[0])/float(canvasSize[1])
+ near = camera.clipStart
+ far = camera.clipEnd
-def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
-
- NewPoint = []
- # Rotate X
- NewY = (PY * cos(AngleX))-(PZ * sin(AngleX))
- NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX))
- # Rotate Y
- PZ = NewZ
- PY = NewY
- NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY))
- NewX = (PX * cos(AngleY))+(PZ * sin(AngleY))
- PX = NewX
- PZ = NewZ
- # Rotate Z
- NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ))
- NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ))
- NewPoint.append(NewX)
- NewPoint.append(NewY)
- NewPoint.append(NewZ)
- return NewPoint
+ fovy = atan(0.5/aspect/(camera.lens/32))
+ fovy = fovy * 360/pi
+
+ # What projection do we want?
+ if camera.type:
+ m2 = self._calcOrthoMatrix(fovy, aspect, near, far, 17) #camera.scale)
+ else:
+ m2 = self._calcPerspectiveMatrix(fovy, aspect, near, far)
+
+ m1 = Matrix()
+ mP = Matrix()
-def flatten(vertx, verty, vertz, cameraObj, canvasSize):
+ # View transformation
+ cam = cameraObj.getInverseMatrix()
+ cam.transpose()
- camera = cameraObj.getData()
- Lens = camera.getLens() # The Camera lens
+ m1 = obMesh.getMatrix()
+ m1.transpose()
+
+ mP = cam * m1
+ mP = m2 * mP
- xres = canvasSize[0] # X res for output
- yres = canvasSize[1] # Y res for output
- ratio = xres/yres
+ self.projectionMatrix = mP
- fov = atan(ratio * 16.0 / Lens) # Get fov stuff
-
- dist = xres/2*tan(fov) # Calculate dist from pinhole camera to image plane
+ ##
+ # Public methods
+ #
- screenxy=[0,0,vertz]
- x=-vertx
- y=verty
- z=vertz
+ def doProjection(self, v):
+ """Project the point on the view plane.
- #----------------------------
- # calculate x'=dist*x/z & y'=dist*x/z
- #----------------------------
- screenxy[0]=int(xres/2.0+4*x*dist/z)
- screenxy[1]=int(yres/2.0+4*y*dist/z)
- return screenxy
+ Given a vertex calculate the projection using the current projection
+ matrix.
+ """
+
+ # Note that we need the vertex expressed using homogeneous coordinates
+ p = self.projectionMatrix * Vector([v[0], v[1], v[2], 1.0])
+
+ mW = self.size[0]/2
+ mH = self.size[1]/2
+
+ if p[3]<=0:
+ p[0] = int(p[0]*mW)+mW
+ p[1] = int(p[1]*mH)+mH
+ else:
+ p[0] = int((p[0]/p[3])*mW)+mW
+ p[1] = int((p[1]/p[3])*mH)+mH
+
+ # For now we want (0,0) in the top-left corner of the canvas
+ # Mirror and translate along y
+ p[1] *= -1
+ p[1] += self.size[1]
+
+ return p
-## Backface culling routine
-#
+ ##
+ # Private methods
+ #
+
+ def _calcPerspectiveMatrix(self, fovy, aspect, near, far):
+ """Return a perspective projection matrix."""
+
+ top = near * tan(fovy * pi / 360.0)
+ bottom = -top
+ left = bottom*aspect
+ right= top*aspect
+ x = (2.0 * near) / (right-left)
+ y = (2.0 * near) / (top-bottom)
+ a = (right+left) / (right-left)
+ b = (top+bottom) / (top - bottom)
+ c = - ((far+near) / (far-near))
+ d = - ((2*far*near)/(far-near))
+
+ m = Matrix(
+ [x, 0.0, a, 0.0],
+ [0.0, y, b, 0.0],
+ [0.0, 0.0, c, d],
+ [0.0, 0.0, -1.0, 0.0])
-def isFaceVisible(face, obj, cameraObj):
- """
- Determine if the face is visible from the current camera.
- """
- numvert = len(face)
- # backface culling
- a = []
- a.append(face[0][0])
- a.append(face[0][1])
- a.append(face[0][2])
- a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
- a[0] += obj.LocX - cameraObj.LocX
- a[1] += obj.LocY - cameraObj.LocY
- a[2] += obj.LocZ - cameraObj.LocZ
- b = []
- b.append(face[1][0])
- b.append(face[1][1])
- b.append(face[1][2])
- b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
- b[0] += obj.LocX - cameraObj.LocX
- b[1] += obj.LocY - cameraObj.LocY
- b[2] += obj.LocZ - cameraObj.LocZ
- c = []
- c.append(face[numvert-1][0])
- c.append(face[numvert-1][1])
- c.append(face[numvert-1][2])
- c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
- c[0] += obj.LocX - cameraObj.LocX
- c[1] += obj.LocY - cameraObj.LocY
- c[2] += obj.LocZ - cameraObj.LocZ
-
- norm = [0,0,0]
- norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
- norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
- norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
-
- d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
- return (d<0)
+ return m
+
+ def _calcOrthoMatrix(self, fovy, aspect , near, far, scale):
+ """Return an orthogonal projection matrix."""
+
+ top = near * tan(fovy * pi / 360.0) * (scale * 10)
+ bottom = -top
+ left = bottom * aspect
+ right= top * aspect
+ rl = right-left
+ tb = top-bottom
+ fn = near-far
+ tx = -((right+left)/rl)
+ ty = -((top+bottom)/tb)
+ tz = ((far+near)/fn)
+
+ m = Matrix(
+ [2.0/rl, 0.0, 0.0, tx],
+ [0.0, 2.0/tb, 0.0, ty],
+ [0.0, 0.0, 2.0/fn, tz],
+ [0.0, 0.0, 0.0, 1.0])
+
+ return m
# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
# TODO: a class to represent the needed properties of a 2D vector image
+# Just use a NMesh structure?
# ---------------------------------------------------------------------
self.canvasSize = canvasSize
+ ##
# Public Methods
#
def printCanvas(mesh):
return
-
+ ##
# Private Methods
#
VectorWriter.__init__(self, file, canvasSize)
+ ##
# Public Methods
#
- def printCanvas(self, mesh):
- """Convert the mesh representation to SVG."""
+ def printCanvas(self, scene):
+ """Convert the scene representation to SVG."""
self._printHeader()
- for obj in mesh:
- for face in obj:
+ for obj in scene:
+ self.file.write("<g>\n")
+
+ for face in obj.faces:
self._printPolygon(face)
+
+ self.file.write("</g>\n")
self._printFooter()
-
+ ##
# Private Methods
#
There is no color Handling for now, *FIX!*
"""
- intensity = 128
stroke_width=1
self.file.write("<polygon points=\"")
+ i = 0
for v in face:
- if face.index(v)!= 0:
+ if i != 0:
self.file.write(", ")
+
+ i+=1
- self.file.write(`v[0]` + ", " + `v[1]`)
+ self.file.write("%g, %g" % (v[0], v[1]))
+
+ color = [ int(c*255) for c in face.col]
self.file.write("\"\n")
- self.file.write("\tstyle=\"fill:rgb("+str(intensity)+","+str(intensity)+","+str(intensity)+");")
+ self.file.write("\tstyle=\"fill:rgb("+str(color[0])+","+str(color[1])+","+str(color[2])+");")
self.file.write(" stroke:rgb(0,0,0);")
- self.file.write(" stroke-width:"+str(stroke_width)+"\"/>\n")
+ self.file.write(" stroke-width:"+str(stroke_width)+";\n")
+ self.file.write(" stroke-linecap:round;stroke-linejoin:round\"/>\n")
# ---------------------------------------------------------------------
#
# ---------------------------------------------------------------------
+def RotatePoint(PX,PY,PZ,AngleX,AngleY,AngleZ):
+
+ NewPoint = []
+ # Rotate X
+ NewY = (PY * cos(AngleX))-(PZ * sin(AngleX))
+ NewZ = (PZ * cos(AngleX))+(PY * sin(AngleX))
+ # Rotate Y
+ PZ = NewZ
+ PY = NewY
+ NewZ = (PZ * cos(AngleY))-(PX * sin(AngleY))
+ NewX = (PX * cos(AngleY))+(PZ * sin(AngleY))
+ PX = NewX
+ PZ = NewZ
+ # Rotate Z
+ NewX = (PX * cos(AngleZ))-(PY * sin(AngleZ))
+ NewY = (PY * cos(AngleZ))+(PX * sin(AngleZ))
+ NewPoint.append(NewX)
+ NewPoint.append(NewY)
+ NewPoint.append(NewZ)
+ return NewPoint
+
class Renderer:
"""Render a scene viewed from a given camera.
self.canvasSize = (0.0, 0.0)
+ ##
# Public Methods
#
if cameraObj == None:
cameraObj = scene.getCurrentCamera()
- # TODO: given the camera get the Wold-to-camera transform and the
- # projection matrix
-
context = scene.getRenderingContext()
self.canvasSize = (context.imageSizeX(), context.imageSizeY())
Objects = scene.getChildren()
- # A mesh to store the transformed geometrical structure
- mesh = []
+ # A structure to store the transformed scene
+ newscene = []
for obj in Objects:
print "Type:", obj.getType(), "\tSorry, only mesh Object supported!"
continue
- OBJmesh = obj.getData() # Get the mesh data for the object
- meshfaces = OBJmesh.faces # The number of faces in the object
+ # Get a projector for this object
+ proj = Projector(cameraObj, obj, self.canvasSize)
- transformed_object = []
+ # Let's store the transformed data
+ transformed_mesh = NMesh.New(obj.name)
- for face in meshfaces:
+ # Store the materials
+ materials = obj.getData().getMaterials()
+
+ meshfaces = obj.getData().faces
- # TODO: per face color calculation
- # TODO: add/sorting in Z' direction (per face??)
+ for face in meshfaces:
# if the face is visible flatten it on the "picture plane"
- if isFaceVisible(face, obj, cameraObj):
+ if self._isFaceVisible(face, obj, cameraObj):
# Store transformed face
transformed_face = []
for vert in face:
- vertxyz = list(vert)
-
- p1 = flatten_new(vert, cameraObj, self.canvasSize,
- obj)
- transformed_face.append(p1)
- continue
-
- # rotate camera
- vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2],
- cameraObj.RotX, cameraObj.RotY, cameraObj.RotZ)
- #-cameraObj.RotX, -cameraObj.RotY, -cameraObj.RotZ)
-
+ p = proj.doProjection(vert.co)
- # original setting for translate
- vertxyz[0] -= (obj.LocX - cameraObj.LocX)
- vertxyz[1] -= (obj.LocY - cameraObj.LocY)
- vertxyz[2] -= (obj.LocZ - cameraObj.LocZ)
+ transformed_vert = NMesh.Vert(p[0], p[1], p[2])
+ transformed_face.append(transformed_vert)
+ newface = NMesh.Face(transformed_face)
+
+ # Per-face color calculation
+ # code taken mostly from the original vrm script
+ # TODO: understand the code and rewrite it clearly
+ ambient = -250
+ fakelight = [10, 10, 15]
+ norm = face.normal
+ vektori = (norm[0]*fakelight[0]+norm[1]*fakelight[1]+norm[2]*fakelight[2])
+ vduzine = fabs(sqrt(pow(norm[0],2)+pow(norm[1],2)+pow(norm[2],2))*sqrt(pow(fakelight[0],2)+pow(fakelight[1],2)+pow(fakelight[2],2)))
+ intensity = floor(ambient + 200*acos(vektori/vduzine))/200
+ if intensity < 0:
+ intensity = 0
+
+ if materials:
+ newface.col = materials[face.mat].getRGBCol()
+ else:
+ newface.col = [0.5, 0.5, 0.5]
+
+ newface.col = [ (c>0) and (c-intensity) for c in newface.col]
+
+ transformed_mesh.addFace(newface)
- # rotate object
- vertxyz = RotatePoint(vertxyz[0], vertxyz[1], vertxyz[2], obj.RotX, obj.RotY, obj.RotZ)
-
+ # at the end of the loop on obj
+
+ #transformed_object = NMesh.PutRaw(transformed_mesh)
+ newscene.append(transformed_mesh)
+ # reverse the order (TODO: See how is the object order in NMesh)
+ #newscene.reverse()
+
+ return newscene
- p1 = flatten(vertxyz[0], vertxyz[1], vertxyz[2],
- cameraObj, self.canvasSize)
- transformed_face.append(p1)
-
- # just some fake lighting...
+ ##
+ # Private Methods
+ #
- transformed_object.append(transformed_face)
+ def _isFaceVisible(self, face, obj, cameraObj):
+ """Determine if the face is visible from the current camera.
- # at the end of the loop on obj
- mesh.append(transformed_object)
- return mesh
+ The following code is taken basicly from the original vrm script.
+ """
+ camera = cameraObj
- # Private Methods
- #
+ numvert = len(face)
- def _removehiddenFaces(obj):
- return
+ # backface culling
- def _testClipping(face):
+ # translate and rotate according to the object matrix
+ # and then translate according to the camera position
+ #m = obj.getMatrix()
+ #m.transpose()
+
+ #a = m*Vector(face[0]) - Vector(cameraObj.loc)
+ #b = m*Vector(face[1]) - Vector(cameraObj.loc)
+ #c = m*Vector(face[numvert-1]) - Vector(cameraObj.loc)
+
+ a = []
+ a.append(face[0][0])
+ a.append(face[0][1])
+ a.append(face[0][2])
+ a = RotatePoint(a[0], a[1], a[2], obj.RotX, obj.RotY, obj.RotZ)
+ a[0] += obj.LocX - camera.LocX
+ a[1] += obj.LocY - camera.LocY
+ a[2] += obj.LocZ - camera.LocZ
+ b = []
+ b.append(face[1][0])
+ b.append(face[1][1])
+ b.append(face[1][2])
+ b = RotatePoint(b[0], b[1], b[2], obj.RotX, obj.RotY, obj.RotZ)
+ b[0] += obj.LocX - camera.LocX
+ b[1] += obj.LocY - camera.LocY
+ b[2] += obj.LocZ - camera.LocZ
+ c = []
+ c.append(face[numvert-1][0])
+ c.append(face[numvert-1][1])
+ c.append(face[numvert-1][2])
+ c = RotatePoint(c[0], c[1], c[2], obj.RotX, obj.RotY, obj.RotZ)
+ c[0] += obj.LocX - camera.LocX
+ c[1] += obj.LocY - camera.LocY
+ c[2] += obj.LocZ - camera.LocZ
+
+ norm = Vector([0,0,0])
+ norm[0] = (b[1] - a[1])*(c[2] - a[2]) - (c[1] - a[1])*(b[2] - a[2])
+ norm[1] = -((b[0] - a[0])*(c[2] - a[2]) - (c[0] - a[0])*(b[2] - a[2]))
+ norm[2] = (b[0] - a[0])*(c[1] - a[1]) - (c[0] - a[0])*(b[1] - a[1])
+
+ d = norm[0]*a[0] + norm[1]*a[1] + norm[2]*a[2]
+ # d = DotVecs(norm, Vector(a))
+
+ return (d<0)
+
+ def _doClipping(face):
return
# ---------------------------------------------------------------------
-scene = Scene.GetCurrent()
-renderer = Renderer()
+# hackish sorting of faces according to the max z value of a vertex
+def zSorting(scene):
+ for o in scene:
+ o.faces.sort(lambda f1, f2:
+ # Sort faces according to the min z coordinate in a face
+ #cmp(min([v[2] for v in f1]), min([v[2] for v in f2])))
+
+ # Sort faces according to the max z coordinate in a face
+ cmp(max([v[2] for v in f1]), max([v[2] for v in f2])))
+
+ # Sort faces according to the avg z coordinate in a face
+ #cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2)))
+ o.faces.reverse()
+
-projectedMesh = renderer.doRendering(scene)
-canvasSize = renderer.getCanvasSize()
+def vectorize(filename):
+ scene = Scene.GetCurrent()
+ renderer = Renderer()
-# hackish sorting of faces according to the max z value of a vertex
-for o in projectedMesh:
- o.sort(lambda f1, f2:
- cmp(sum([v[2] for v in f1])/len(f1), sum([v[2] for v in f2])/len(f2)))
- o.reverse()
+ flatScene = renderer.doRendering(scene)
+ canvasSize = renderer.getCanvasSize()
+
+ zSorting(flatScene)
+
+ writer = SVGVectorWriter(filename, canvasSize)
+ writer.printCanvas(flatScene)
+
+try:
+ Blender.Window.FileSelector (vectorize, 'Save SVG', "proba.svg")
+except:
+ vectorize("proba.svg")
-writer = SVGVectorWriter("proba.svg", canvasSize)
-writer.printCanvas(projectedMesh)